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S1 Parametrization of the semi-parametric SVAR model

Under the main assumptions of the paper (i.e. Assumptions 2.1 and 2.2) the parameters of
the SVAR are generally not locally identified. Even under the additional assumption that the
errors € follow non-Gaussian distributions, we have that A(«, o) can only be identified up to
permutation and sign changes of its rows (e.g. Comon, 1994).

Therefore, to ensure that we study economically interesting permutations we typically need
to impose additional identifying restrictions, such as zero or sign restrictions. The choice for
such restrictions interacts with the chosen parametrization for A(a, o) for which we give a few

examples.

ExAMPLE S1.1 (Supply and demand): Following Baumeister and Hamilton (2015), when the

SVAR defines a demand and a supply equation we can set

-1

A Ha,0) = , (S1)

where o = (a?,a®) are the short run demand and supply elasticities, and o = (01, 09)" scales
the structural shocks. With independent non-Gaussian errors A is identified up to permutation
and sign changes of its rows. To pin down an economically interesting rotation we can impose

the sign restrictions al < 0, a®* >0 and 01,09 > 0.

ExAMPLE S1.2 (Rotation matrix): A canonical choice sets
A (a,0) = 2%(0)R(a) , (52)

where 21/2(a) is a lower triangular matriz (with positive diagonal elements) defined by the vector
o and R(«) is a rotation matriz that is parametrized by the vector .. Different parametrizations
for the rotation matriz are possible, see Magnus et al. (2021) for a detailed discussion. Similar
to in Example S1.1, even with independent non-Gaussian errors R(«) is not uniquely identified

and additional zero-, sign-, or long-run-restrictions are needed to pin down the desired rotation.

As the above examples make clear, several commonly used parametrizations can be adopted.
Three general comments apply.

First, pinning down a specific permutation, as in the first example, is necessary for the
economic interpretation of the results, but it is not necessary for the score testing methodology

of the paper which fixes v under the null.



Second, the robust non-Gaussian approach of this paper can be combined with any of the
existing SVAR identification approaches to obtain an economically interesting specification.
Besides zero and sign restrictions one can also think of combining with external instruments or
more general prior information as in Baumeister and Hamilton (2015) or Braun (2021).

Third, often multiple parametrizations are possible. We recommend jointly testing the
possibly weakly identified parameters when they are of direct economic interest (e.g. Example
1). In contrast, when the interest is in more general functions, such as impulse responses or
forecast error variances, we suggest to parameterize A such that « is as low-dimensional as
possible, e.g. via the rotation matrix specification as in Example 2. In this way the Bonferroni
procedure of Algorithm 2 can be executed over the smallest possible grid for «, which reduces

the computational burden.

S2 Technical details for the main proofs
Here we establish some technical details utilised in the proofs in section A of the main text.
S2.1 Markov structure

Define Z; == (Y, Y/ 1,..., Y/ ,11)'s Co = (cp, 0',...,0"),

Bg1 Bga -+ Bpp-1 Bop At

I 0 e 0 0 0

By:=1 0 r - 0 0|, Dg=10
(0 o I 0 0 |

and note that we can write

Zy = Cog+ BgZi—1 + Dyey. (S3)

This can be re-written in de-meaned form as
Zt = Bth,1 + Dgét (84)

with Zt = Zy — my, for my = (Z;’io Bg) Cyp = (I — 89)71C9.

LEMMA S2.1: Suppose that assumption 2.1 holds. Define Uy as the (unique, strictly) stationary



solution to (S3). Then Ug: has the representation

[ee] oo
Upe =mo+ > BjDgerj, mg:=(I—-Bg) 'Co, > Bl < 0.
§=0 j=0
If pg is the largest absolute eigenvalue of the companion matriz By and v > 0 is such that

po+v <1, then
E [[Doe |[°

1 —(pg +v)°’

Proof. Rewriting (S3) as (S4) and applying Theorem 11.3.1 in Brockwell and Davis (1991) yields

E ||Ug,s — mpl|® < € [1,4+9].

the first part. For the second part,

o0 o o0
1Us,e = mall <> 1By IIDscc—sll < > IBall/ IDoer—jll < D (po + )’ Docr—j .
=0 =0 =0

Since E ||Dge;—;||° = E ||Dger]|° < oo for all t € N, all j > 0 and p € [1,4 4+ 6], it follows that

E [|Det[|®

[e.e]
E ||Ups — mg (po + v)°E | Dger_||° = — 0t
U0 = moll < 3¢ D51 = 1= oy

LEMMA 52.2: Let @y, 9 be the probability measure corresponding to @y ¢ = %E?:l qo,t, where qg ¢
is the density of X; under Py (1 <t < n).51 Then Qn.p v, Qo, where Qg is the distribution

of the (unique, strictly) stationary solution to (1).

Proof. By Lemma S2.1, (S4) has a (unique, strictly) stationary solution with finite second
moments. Applying Theorem 2 in Saikkonen (2007) gives that the Markov chain (Z;) is V-
geometrically ergodic with V(z) = 1 + ||2||?>. That is, for an invariant probability measure 7y,

some 7 € (1,00) and some R < oo

Y PR E) = Follrv < Y IPR (-, Z) = Follv < RV(2) = R(|Z] + 1) < oo, (S5)

n=1

where ]551(-,2) is the n-step transition probability and Z is the initial condition.5? 7y is the
distribution of Up; — my as defined in Lemma S2.1 (Kallenberg, 2021, Theorem 11.11).

Let fy : REP — RE be defined as

fo(z) = [IK Oxxk(p—1)| (T +ma),

S1Here, and throughout the appendix, any reference to the density of X; is to be understood as to the density of
the non-deterministic parts of X;.

52The norm ||v||v is defined by ||v||v = sup <y | [ f dv| where the supremum is taken over all measurable functions
dominated by V for any probability measure v.



i.e. the function which adds mg to its argument and then returns the first K elements. The
distribution of X; under P} (given the initial condition ) is then Q4 '(:,2) = Pi'(-,2) o f, !,
i.e. the pushforward of ﬁgil(-, Z) under fp. Henceforth we shall omit the Z in the notation.
Similarly let Qg = 79 0 f, ! i.e.the pushforward of 7y under f. That Qg is the distribution of
the (unique, strictly) stationary solution to (1) can be seen by noting that the first K elements
of Up; form a (strictly) stationary time series and satisfy the defining equation (1); by Theorem

11.3.1 in Brockwell and Davis (1991) it is therefore the unique solution. Then by (S5),

1< 1 ¢
=~ Q- Qf| <> 1R - Qolly
t=1 t=1

TV

1 ¢ pt—1  ~

< |E =,
t=1
1< =

<o 2|7 = 7], + o)
t=1

— 0. O

S2.2 Moment bounds

LEMMA S2.3: Suppose that assumption 2.1 holds. Then for any sequence 6, = (v + gn/\/1, 1)

with g, — g € RY, for some p > 0, under P
(i) sup,exE [|Ido, [2+] < o0;
(i1) supen B |[1s, 27| < oc.

Proof. Since the deterministic terms in égn and ggn are either constants or continuous functions
of v (by Assumption 2.1(iii)), they are uniformly bounded, since {y + g,/v/n :n € N} U {v} is

compact. It is therefore sufficient to show that under ' , each of

sup B[l A0V, ol ], sup B |lox(A0eeVa, )] swp E[IXH,
neN,1<t<n neN,1<t<n neN,1<t<n

is finite. Since under P, each A(05,)ke Vo, + ~ Mk, finiteness of the first two follow directly from

Assumption 2.1(ii). For the third, recurse equation (S3) backwards under 6 = 6,,, to obtain

t—1 t—1
Zy=> Bj Cg, + > B) Dy, j+Bj Z.
§=0 j=0



Each of By, Cy, Dy (depend on € only through v and) are continuous functions of 7, hence

0= sup|By,[l2 <1, sup | Cy,[l2 < C1, sup|[Dg, |2 < C2,
neN neN neN

where the first is due to Assumption 2.1(i). Since we condition on Zj, by Assumption 2.1(ii),

Bz 14+ < [ _C o Cy \**° 445 445
|27 < -0 + T E|e1]* ™ + || Zo]I*° < o0. (S6)

As the bound on the right hand side is independent of ¢ or n, the claim follows. O

LEMMA S2.4: Let Wy, 4 be as in the Proof of Proposition A.1 and suppose the conditions of that
Proposition hold. Then, P}|\/nWi,4|***] is uniformly bounded for some p > 0. In consequence,

under Py, Wy ; satisfies:
n
lim ZIE (W2, 1{|V/nW,,| > evn}] =0, for any e > 0. (S7)
n—00 P ’

Proof. Uniform boundedness of Pj'[|/nW, |*"*] implies:

n
; 2+p _
lim E Wyt =0,

which in turns implies (S7) (cf. Billingsley, 1995, page 362). For the uniform boundedness, as

K
/Wy = g'lo(Ye, X1) + D hie(Ape(cr, o) Vo),
k=1

and the Ry, are bounded, it suffices to note that by Lemma $2.3 E[(¢'ly(X;, Y;))?H*] < C under
Py for some p > 0. O
S2.3 Log-likelihood ratios
LeEMMA S2.5 (DQM): Suppose that assumption 2.1 holds. Then with W, and Uy defined as
in the proof of Proposition A.1,

n
JEEOE;(WH,t —Upyt)? =0,

where the expectation is taken under Py.

Proof. We argue similarly to Lemma 7.6 in van der Vaart (1998). Let Vp,; := ¥; — BX; and



©() = (g,mh1,...,nxhi) for v = (g,h) with g € RE, h € . Let

K
po(Yi, Xi) = |AO)] [ me(Are(0)Var)
k=1
I (Ako (9 + USO(U))‘/O'FUQD(’U)J)

K
Ny
s0.u(Ye Xt) = 9o rup(w) (Ve Xo) + Z 1+ uhg(Age (0 + () Votup(w),t)

k=1

+ i Uh;g(Akt(e + U(p(v))vb-i—uap(v),t) [Dl,kz,u‘/e—&-ucp(v),t + D27k,uXt]

1+ Uhk(Aki(e + u@(v))‘/@+ug@(v),t) 7

k=1
with
Lo Lo
D1k =€} Z 9o, Dai(0 4+ up(v)) + € Z 9o, Do (0 + up(v))
=1 =1
Ly
Doy = —Ake(0 + up(v)) Z Dy (0 + up(v)).
=1

By Assumption 2.1 and standard computations, the derivative of u — | /Dpupm) at u = u is
%Se,u Po+up(v) (everywhere). Inspection reveals that this is continuous in u.

For qg; the density of X; under P and sg = 54,

Eg(Wm —Upy)? = ig/ (\/ﬁ [\/1;7: - 1] - ;8(9)2]?9(19,15 dA
= / (\/ﬁ [V/Po, — v/Po) — ;89\/279)2%9 d,

with G, ¢ = %2?21 go,t- The integrand converges to zero as n — oo by the differentiability of

U /Potup(v) &t U = 0.53 Let

IG,u,n = /Sg,u Po+up(v) ‘jnﬁ d\ = /537u dGG,u,na

where Gy o, is the distribution of (Y3, X;) corresponding to the density Po+up(v)dn,p- By Lemma
S3.2 Gy o/ /mm — Go. defined by

Go(A) = /A po d(My) © Qo(2)).

For any (uy) C [0,1] we have that s3 N s2 (pointwise). By Lemma S2.6 and Corollary

S3Note that DPon = Do, (9,h) = Poto(v)/ v



2.9 in Feinberg et al. (2016), limy, o0 Iy, /i = J 55 dGp < 0o and hence

1 1
‘/0 Je’u/ﬁndu—/o /sgdegdu

By absolute continuity, Jensen’s inequality and the Fubini — Tonelli theorem,

< sup — 0.

u€[0,1]

I@,u/\/ﬁ,n_/sgdGG

2 _ 1 1 2 1
/(\/ﬁ [VPo, = /Ps))” o d < 4//0 (80,u/\/ﬁ\/p9+uap(v)/\/ﬁ) qn,edud)\é/o N2

Combine these observations with Proposition 2.29 in van der Vaart (1998). O

LEMMA 52.6: Suppose that assumption 2.1 holds. Let sg,, and Gg,,pn be as in the proof of Propo-
sition S2.5. Then for any (un)nen C [0,1], sgu NG is asymptotically uniformly Gg .,/ /mn-
integrable and sy € La(Gy).

Proof. That sg € La(Gy) follows from the moment bounds in Assumption 2.1(ii), the bounded-
ness of the hy, the form of ¢y given in equations (7) - (9) and Lemma S2.1 given that Qg is the
law of the stationary solution to (1).

For the uniform integrability, let ¥, = 0 + u,p(v)/+/n — 0 and

s9,0(Ye, X¢) = g'ly, (Y, X2)

' K hk(Ako(ﬂn)Vﬁn,t)
$9,2(Ye, Xt) =) 1+ uphi(Age(90) Vi, 1)//1

k=1
unh%(Ak. (ﬁn)vﬁn,t) Dl,k,un/\/ﬁvﬂmt + Dkavun/\/ﬁXt} /\/ﬁ
L+ unhy(Ake (90) Vo, 1)/ V12

K

$9,8(Ye, Xp) =

k=1

It suffices to show that under Gy, /. /m, €ach sy, ; (i = 1,2,3) has uniformly bounded 2 + p
moments for some p > 0 for all sufficiently large n.

We start with sy, o: since each hy is bounded, for all large enough n, each numerator is
uniformly bounded above and each denominator is uniformly bounded below, away from zero.
Thus there is a M such that |sy, 2(Y;, X¢)| < M for all such n.

For sy, 3, by assumption 2.1 part (iii), each Dy y,,, / /m and Dy, /. are uniformly bounded
for all large enough n; the same is true of ||A(J,)7!|l2. Using this, the fact that Vy, , =
A (19”)_1 €; and arguing similarly to as in the preceding paragraph we have that for some M
and all large enough n, |sy, 3(Yz, X¢)| < M [||let|| + | X¢]|]. Thus it is enough to verify that

5 5
sup Gy malledl 0 <00, sup Gy mall Xel T < oo (S8)

n>N,1<t<n n>N,1<t<n



Under Gy, /n.n» the elements € ; are (independently across k) distributed according to n(1+
unhi/\/n), so there are ¢, C' < oo such that

K

445
2 K -
h
Goun il < G/ /i [Z Gfk] < CZ Kl + \/%> /!wk\4+5nk(wk)dwk <C,
=1

k=1

where |hy(z)| < hy. By arguing analogously to as in in Lemma S2.3, one has (cf. (S6))

oo [ G\ Cy \* 4t 446
Goun)ymnllZe]| 770 S T, + T, Gounjymmler] ™ + 1 Zo] 777,

which is uniformly bounded given the penultimate display.

Finally consider sy, 1. It suffices to show that each component of éﬁn has 4 + § moment
bounded uniformly for all n > N.5* By Assumption 2.1(iii), by increasing N if necessary,
supyet (%, (V)] < M for all [k, j and € o, 0 and likewise supyer || Ake(9)Dy, (V)| < M.
Recall that Vg, ; = A (9,) " . Given (S8) and the observations in footnote S4 to complete the

_ dlog nk(fv))
- dz

proof it suffices to note that (for ¢y and some C' < oo,

h
Coanmnldr"** < (1 + \/%) [1o@l*n@) e <. =

LEMMA S2.7: Let Wy, ¢ be as in the Proof of Proposition A.1 and suppose the conditions of that
Proposition hold. Let Gy be defined as in the Proof of Lemma S2.5. Then, under Pj,

2
‘ n T2 . ) K
nlgroloE tzl Wit ~l= 0, with 7%:=Gy (g’ﬂg(Y, X) + ;hk(Ak.(G)Vb)> .
Proof. Define
. K
ro(Xye) = E[so(Ye, X¢)?| Xi],  s0(Y, X) = g'ly(Y, X) + Z hi(Are(0)Vp),
k=1

where the conditional expectation is taken under Py'. Since conditional expectations are L con-

S4The form each such component is that given in equations equations (7) — (9). Note here that each ¢y is
(implicitly) a function of 7 and thus when evaluating equations (7) — (9) at ¥n, the ¢, that appear are
@k,un,n, defined as

d(log mi () + log(1 + uhi(2)/v/n))
dzx

NG
1+ uhk/\/ﬁ

Since each hy, and h}, are bounded, increasing N if necessary, one has for n > N,

d)k,u,n = = ¢k +

|¢k,un,n‘ S |¢k| + M.



tractions, by Lemma S2.4, we have that Pj[|rg(X:)|'+#/?] < C < oo and hence (|rg(X;)|* /%) ien

is uniformly Pj'-integrable. Moreover we have for .7; = o(eq, ..., €),
ro(Xt) = E[Se(n7Xt)2\Xt] = E[sy(V3, Xt)z\ft—l]v

as is clear from the definition of s9.5° Hence (sq(Y;, X¢)? —ro(X}),.%;) is a martingale difference

squence and by Theorem 19.7 in Davidson (1994)

Lo 1+p/2
lim E |~ Z[Se(Yt, Xi)? = ro(Xy)] = 0.

n—00 n
t=1

Now define ug(X;) = rg(X;) — E[rg(X;)], which satisfies P [|ug(X;)|'*#/?] < C < oo and is
evidently mean zero. By Theorem 3 in Saikkonen (2007), Z; and hence up(X;) (e.g. Davidson,
1994, Theorem 14.1) has geometrically decaying [-mixing coefficients. Therefore, by Theorem
14.2 in Davidson (1994), (ug(Xt)/n)nen,1<t<n is an Li-mixingale array with respect to the

filtration formed by F,,+ = o(X1, ..., X;) relative to the sequence of positive constants
1/(1+p/2)
nt<enp = rnax{l/n, (Pé1 [|ue(Xt)/n|1+p/2D } < n 'max{C,1}.
By Theorem 19.11 in Davidson (1994),

lim E

n—oo

1
— =0.
n

n
Z u@(}/}/a Xt)
t=1

It remains to show that 1 Y% | E[rg(X;)] — 72. Since E[rg(Xy)] = E[so(Yz, X)),

n

1 « 1
7 = Goon [o(Y X)) = 1 3 Bon(¥i X0)* = 1 3 Elro(X)
where G, is as defined in the Proof of Lemma S2.5. That E % > so(Y, X;)? < C follows
from Lemma S2.4. Therefore, by Lemma S2.6, sy(Y, X)? is uniformly Gy,0,n—integrable and also

72 < 00. Then, by Corollary 2.9 in Feinberg et al. (2016) and Lemma S3.2, 72 — 7. O

LEMMA S2.8: In the setting of Proposition A.2,

pgn(gnvh)
log =orp (D)

7
Pon(g.n)
S5See e.g. Theorem 7.3.1 in Chow and Teicher (1997) for the (almost sure) equality of the conditional expectations.

10



Proof. Since by Proposition A.1 and Example 6.5 in van der Vaart (1998) P, b (g.n) <P Py it
suffices to show that the left hand side is opp(1). We first show that

V23 n n 2
Py, (g.,0) 1 15 1 Iy
log o :—E gly(Yy, Xy) — E —E g ly(Yy, X + opn (1
Py \/H =1 ¥ 1) \/ﬁ t=1 oY X P{,( )
n 2
Pp,,(4,0)
log —=—~= lo(Yi, X lo(Yi, X + opn (1
gp,g fgget t) — fgget t) Pg()

For these log-likelihood expansions we may appeal to Lemma 1 in Swensen (1985). The
required Conditions (1.3) - (1.7) and (iii) of his Theorem 1 are all established in the proof of
Proposition A.1 (take each hy = 0). It remains to show condition (1.2) for each of the cases in

the above display. In particular, set

Wnt

1
s 2\/*9 K@(Y;f’Xt)

and (cf. equations (37), (38))

Unt =

)

1/2
<’A( g'ru ) ﬁ Ak‘ gTL’h))%n(gmh)’t) -1
|A(6) Pt Mk (Are(0) V1)

where we note that A(0) = A(0,(0,h)) and Vp =V, (0,n). We verify (1.2), i.e. that

n

Z(Wn,t - Un,t)2

t=1

lim E

n—o0

=0,

under B S6 The argument now follows similarly to that in Lemma S2.5. To simplify the nota-
tion, let p, = p(, ) and lf,y = lf(,m) where n = (m1,...,nK) will remain fixed. By Assumption
2.1 and standard computations, the derivative of v+ | /py is %57 D~ (everywhere). Inspection
reveals that this is continuous in ~.

Let v, = v+ gn/v/n. For gp; the density of X; under P},

=L [l - s
~ [ (valvr - vrl - gaﬁ) Tno d,

with g, ¢ = %Z?:l go,t- The term inside the parentheses converges to zero as n — oo by the

S6This suffices as the second expansion is just the special case g, = ¢ for each n € N.

11



differentiability of v — ,/py and that (g, — g)’ lfw /P~ — 0 pointwise. Let

Iy um = /(g/é’7+ugn)2p’7+uyn qnp dX = /(g,év+u9n)2 dGgun,

where Gy ., is the distribution of (Y3, X;) corresponding to the density p-ug, Gn,o. By Lemma
S3.2 Gy, /vmm IV, Gy, defined as in the proof of Lemma S2.5. For any (u,) C [0,1] we
have that (g’l&wﬂmgn/\/ﬁ)2 — (¢'¢,)? (pointwise). Each component of £, € Ly(Gg) by Lemma
$2.6 and moreover sup,,y Gaun/\/ﬁﬂl||é,\/+ungn/\/ﬁ“2+p < C for some p > 0.57 Therefore, by

Corollary 2.9 in Feinberg et al. (2016), limn—o0 Iy 4, )/ = [(¢'4,)?dGy < 0o and hence

1 1
‘/0 Ie7u/\/ﬁ7ndu_/0 /sszgdu

By the continuous differentiability of ,/p,, Jensen’s inequality and the Fubini — Tonelli

< sup
u€(0,1]

I@u/\/ﬁn - /(gléﬁ)2dG9 —0

theorem,

_ 1 ! : 2 _
/ (Vi [P — VP3)) G dX < 1 / /0 ((g'fwugn/ﬁ) \/Pwugn/ﬁ) Gn.p dudA

1
S/O Iau/\/ﬁ’ndu.

Combining these observations with Proposition 2.29 in van der Vaart (1998) verifies (1.2) and
hence the claimed log — likelihood expansions follow from Lemma 1 in Swensen (1985).

To complete the proof set

ak,n,t = Ak.(‘gn(gm h))%n(gn,h),ta Ukt = Ako(‘gn(ga h))VGn(g,h),t?

and observe that

Py Py
1 9n(gnyh) [ gYMO) log 0n (9,0 )]

pen (g,h) Py

iilog< 3’%”’5)>—1og<1+W>,

where the bracketed term is oPGn(l) by the preceding argument. Hence it suffices to show that

an arbitrary k-th element of the outer sum on the right hand side is also opp(1). Let € € (0,1)

STThis follows from (a) the continuity requirements in Assumption 2.1(iii), (b) under Go,u, //m,n We have that

e;CA(en(ungn7O))71V91L(un9nv0) = e ~ M and (c) SUP, >N 1<t<n Ge,un/\ﬁ,n”Xt||4+(s
by an argument analogous to that which is established in the proof of Lemma S2.6.

< 00, which can be shown

12



be fixed and define

= U < = < .
B, {mx |hk<uk,n,t>/¢ﬁ_s}, F, {&% |hk<uk,n,t>|/\/ﬁ_e}

Since hy, is bounded Pg(E,NF,) — 1. On this set we may perform a two-term Taylor expansion

of log(1 + x) to obtain

_ (g n,t) = he(Wiong) }hk(ﬁk,n,t)z — hge(wpent)? R i (Ugnt) R P (k. t)
NG 2 " NG NG

where |R(z)| < |z|®. For the remainder terms one has for any u;,

"

< hk(“i)lih( .)2<L
Sasign i on S

n
=1

since hy, is bounded. For the first term in Taylor expansion, note that the derivative (in 6, 0) of
A(#,0) is bounded on a neighbourhood of (8,0) (by Assumption 2.1). Combine this with the

boundedness of h; and the mean value theorem to conclude that

[ (gene) = hac(urene)] S 0”2l gn — gl lleell + 11 Xel] -

Using this, since hy is bounded,

[, = hac(urn,e)?) S 2l gn — gl lledll + 11X )] -

Therefore, using (S6) and Assumption 2.1(ii)

n

D

i=1

() = P (ugng) 1 hg(rne)® — hi(upng)®

Vn 2 n

1) I ¢
Sl —oll (1 75 ) 3 el + 1600 = ;1) 0

LEMMA S2.9: In the setting of Proposition A.2,

Db (gushn)
IOg dnlin) — opn (1)
pgn (gn,h) On (gn,h)

13



Proof. For notational ease, set

Uk,n,t = G%A(en(gnv h))‘/bn(gn,h),t = G;cA(gn(gn, hn))V@n(gn,hn),t-

One has that

3

n K

pGn(gn,h) k=1 t=1

hence it suffices to show that each

Ing = _10g(1 + gy (i z)/v/n) = log(1 + hg(ug ) /1) Dinton,
=1
Let € € (0,1) be fixed and define

B = { s [ ) V7 < 2
Fo = { g g/ < 2

Since hy is bounded, Py (9n h)F - 1; Py o (gn h)En — 1 follows from Lemma S2.11. Hence
Py (gn,h)Fn NE, — 1. On E, N F, we can perform a two-term Taylor expansion of log(1 + x)

to obtain

log(14h p(uk nt)/vn) —log(1 + hg(uknt)/v/n)
= hn(ukng)  Lhgn(ugnd)?  h(ugng) |1 Pe(ugn)?

vn 2 n vn 2. n

where |R(z)| < |z[3. Tt follows that

11 &

Lok = Z P (k) — P (W) — (e (Uknt)? — P (g nt)?]

5 t=

We will show that the remainder terms vanish. In particular, one has

()5

t=1

n

D

t=1

hk,n(uk,n,t)

n

hkn(ukznt)2 |hk n(uktn)| 1 . 2
) 1344 < ) [id) _ h X
n =15 vn Zﬁ b (Uknt)

14



By Markov’s inequality with Lemmas S2.10 and S2.11, this converges to zero in By (gnh) prob-

ability. The same evidently holds for the case where hy, ,, = hy for each n € N. Thus,

11
lng = f thn (Ukn,t) — hi(Ugne) — 5n ;[hk,n(uk,n,t>2 — hi(upnt)?] + opp h)(l),

and it remains to show that ﬁ Sy Pen (Wen ) — P (U ) and % oy [Pk (uk,nvt)Q—hk (uk,n,t)z]

also converge to zero in probability. The second of these follows directly from Lemma S2.10,

Markov’s inequality and the reverse triangle inequality since
1 n
> [hin (k) = P ()]

P (gn.h) ( "
t=1

1 n
> 5) < g_lﬁ ZE [hk,n(uk,n,t)Q - hk(uk,n,t)Q]

= ' E [hppn(whnt)® — hi(uhng)?]

— 0.

For the remaining term, we start by noting that

E[(hgn(er) — hi(exr)) i (ex)]
NG

Elhg n (k) — hie(Uknt)] =

SO

1 < I
NG > Elhk i (whn,0)] — Elhg (ugn,0)]| < - > Mhwen = Bl Loy Mokl o gy = O-
i=1 t=1

Thus it suffices to show that

= 7 P9nn( n,h)
7 Z ’LLk n t hk(uk,n,t) —9> 07

for g (Wkn ) = e (Upne) — E [ilk,n(uk,n,t>:| and R (wgnt) = P (U t) —E [hk(uk,n,t)]- By
the reverse triangle inequality and Lemma S2.10,

- 2
E [(hk,n(ukymt) — hk(uk’n,t» } — 0, uniformly in ¢.

Using this, the independence of the uy ¢, and Markov’s inequality:

Bg. (g (
B (gn,h) B

This establishes that Zle nk ———— 0, as required.

\}ﬁ Zn: ilkn(uknt) - ilk(uknt) > S 5 ZE {(hk n(UWkn,t) — hk(uk,n,t)>2] — 0.
t=1

15



LEMMA S2.10: In the setting of Proposition A.2, let ugnt = €, A0, (gn.h) Vo, (gnh)t- Under

B (gn )’

1okl Lo (P
E [hk,n<uk,n,t) - hk(uk,n,t)]Q < ||hn,k - thLQ(PQ”) (1 + ¢ .

NG

Proof. Under Pg;(gn hy> Ukt ™ k(1 + hi/\/n), so for e ~ ny, since hy is bounded,

E [ (Une) — hie(wpme)]
— [ 1raal@) =l 1) 1+ o) Vi) da
1
< Elhin(er) — hiler)] + 7 E[hkn(ex) = hi(en)) |l Lo (ppy
< g = bl Lopy + Nhnge = Picll Loepy |k oo () / /10 O

LEMMA S2.11: In the setting of Proposition A.2, let uy s = 6;A9n(gn7h)‘/gn(gn’h)7t. Then

max ‘hk,n (uk,n,t) Pgln(gnyh) O

1<t<n Vn

Proof. Under Py

n

(gush)> Ukt ™ k(1 + hi/v/n). By Lemma S2.10, hypn(ugpn,) is uniformly

square Pyl (o h)fintegrable and hence the Lindeberg condition holds for g, (ugnt)/v/n:

n—oo

. - hk n(uknt)2
lim > B | 1 (e ng)| > 5V}
t=1

1 n
= lim — ; E [P (te,n,)* L { [ Pon i ()| > 5v/n}]

= lim E [hk,n(uk,n,t)Z]- {’hn,k(uk,n,t)‘ > 5\/5}]

n—o0

=0,

for any 6 > 0. This implies the claimed uniform asymptotic negligability condition (e.g. Gut,

2005, Remark 7.2.4):

h Py
max | kﬂl(uk‘ﬂ’b,t” On (gn,h) 0 D

1<t<n Vn
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S2.4 Scores

LEMMA 52.12: Suppose Assumption 2.1 holds. Let pg and @, ¢ be as in the Proof of Proposition
S2.5 and suppose that 0, = (yn,n) — (v,m) = 6. Then

n—oo

~ ~ 2
lim / |0, pi2a7% o322 ax = o, (59)

Proof. The integral in (S9) can be re-written as

L
> [ (lo,atwaipn, (0.9 = losly. 2ol 2) %) AA) © Qua(o)
=1

Inspection of the forms of ¢y and py reveals that each integrand in the preceding display con-
verges to zero as n — oco. If we show that

lim sup / (G, 1po, AN ® Q) < / (500 d(A ® Q) < o0, (S10)

n—oo
the proof will be complete in view of Lemma S2.2, Proposition S3.1 and Remark S3.1.5% The
preceding display is equivalent to

limsup/ggml dGy,, o.n < /l%l dGy < o0,

n—o0

for Gy, the distribution of (Y, X) corresponding to the density pyd, ¢ and Gy as defined in
the proof of Lemma S2.5. That @gn ;= Zg ; pointwise is clear from its form, as given in Lemma
3.1. The finiteness of each of the integrals in the above display along with the fact that for some

N € N and some p > 0,
sup /ég:f dGy,, 6.n < 00

n>N

follows from the form of l%l (as given in Lemma 3.1) along with Assumption 2.1.5 O

LEMMA S2.13 (Smoothness): Suppose that Assumption 2.1 holds. Then for any sequence 0, =

(v + gn/V/n,n) with g, — g € RE,

1 no _ ~ P
o= ) [een(Yt,Xt) = (Ve Xi)| + Ip ngn = 0.
t=1

S8Note that the product structure of A ® Q..o and Lemma S2.2 ensure that A ® Qn.¢ — A ® Qp setwise.
S9Cf. the proof of Lemma S2.3: arguing in essentially the same manner as there allows one to obtain uniform
boundedness of the 4 + ¢ moments of €k, ¢r(er), Xt (uniformly in ¢) and all the non-stochastic terms in E%ml.

17



Proof. From (the proof of) Lemma S2.8 we have

n—oo

1. 2
lim [\/ﬁ (péf _ pé/z) as - 2g’€gpé/2§i{92} A\ =0, (S11)

whilst by Lemma S2.12 we have

~ ~ 2
N A e ] ) 12
Define
_ _ 1 _
o= / péfpé/ Grodh =1 3 / (py” — péf)Qqn,e dA.
We have

2 1 . 2 1 . 2
o () =) = = (VA [l - 0y] - Seion) + (59t
2 2
— g'lgpy*v/n <p§£2 —py 2) :

and so by (S11) and the continuity of the inner product

1 .
Jor == [ iR (- )
1 1. 2 B
— n/ (29/591%/2) Tn,o A\ + o(n 1)

— i(nfl/Qg)/I'n,e(nfl/Qg) + o(nfl),

where 1,9 == [{gl;pedned\ = O(1).5" Tt follows that ¢;' = 1 — a, with a, — 0 and
nay, = %g’fgg +o(1).

R,, is equal to the sum of

1 |- e, (Yi, X;)'/? 1-
! :—g lo (Yi, Xp) |1 - = ;
ST t)< pol¥i X2 )| T
1« |; po, (Yi, X0)'/% - 1-
R! ::75 lg (Vi X)) (Y}, X, —I .
i g 2 | s g~ XD e

Since fnﬁ is O(1) by Lemma 52.3 it suffices to prove that these converge in probability to zero

with g, replaced by g; let the corresponding expressions be called R;,, for i =1,2.

S10This follows by noting that ||f4||? is uniformly integrable under pg@,.o which is a consequence of Lemma S2.3.
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For Ry, we note that (omitting the arguments of the functions)
1/2 1/2

Py, 11nN'/_ln~ Dy, 1
fzg" ( - 1/z)+2n;€9n eg—n;@n\/ﬁG— o 2f€9g>

Dy
n n 1/2 2
1 S o 1 3 P, 1

t=1

The first term on the second line is Opp (1) hence Opp (1) (by contiguity). The second has
L1(Pg) norm

2

2
< / [f <pé/2 1/2 + 2\7%91)9/ >} Tn,pdX — 0,

n 1/2

1 Py 1
E|- 1P |
> [\/ﬁ ( py” Wﬁ@)

t=1

where the convergence is by (S11). Therefore, it suffices to show that
- Zegne’ Lo LN (S13)

We may replace jmg in (S13) with Iy = fggéé) dGy with Gy as defined in the proof of Lemma
S2.5. In particular, let Gy, = Gy, as defined in the proof of Lemma S2.5. Then, since
106 (Y, X1)0g(Yz, X)'||'+#/? is uniformly L;(P}') bounded (Lemma S$2.3) one has

sup/ H%%HH”/Z dGp e < o0,
neN

and so ||£79€’9H is uniformly Gy ,—integrable. By Lemma S3.2 and Theorem 2.8 of Serfozo (1982),

’Nz

Z]E [zg Y;,Xt)ze(yt,xt / lollydGg — / llydGy = Iy.  (S14)
For any M > 0, one has the decompositions
EY) = Zfenf’ denl{l%nll < M}1{||6g] < M}
"=

- - . 1 < - - . .
==Y 4y 1{|l¢ MY, + =N by 14|14y || < MYLL{|E M
n;en {II4e,, 1| > }e+n;en o, || < MYl1{[|lp]| > M}

19



and

B3 =T~ [ Doy {1 < YL < M) G

— [Gads {1l > MYAG + [ Tyl > MYL{oll > M} dCo
Additionally, for E taken under FPj', define
1 . ~ . . - - . .
Bl = D o Ll | < MY (1) < 1)~ (75, 100, < MyEL{dp]) < 21}

Epy=E— Zfenl{llﬂen\l < M}epL{||fg]| < M} — /feéél{\lgeH < M}1{|[d|| < M} dGy.
t 1

Since [[lofy1{[|lo]| > MY < obll, 10aC31{lICo] > MIL{|boll > M} < |[€ofy| and |[Gofy| is
Gy—integrable by Lemma S2.3, by the dominated convergence theorem, for any § > 0 there is
an M such that Eé\/ll < § for M’ > M. For any M > 0, by Theorem 3 in Saikkonen (2007),
Theorem 14.1 in Davidson (1994) and Theorem 2 in Kanaya (2017) one has (cf. Lemma S2.14
below)

n 3 - OP" (M /\F)
For EM 4 we introduce a new measure: define pu, as
Mn(A) = /Acnpen (l’, y)1/2p9($, y)1/2 d()‘(y) ® Qn(x»

By Lemma S3.2 one has that u,, — G, as well as G, 9 — G, in TV. Then, by Cauchy — Schwarz
and Lemma S2.3
it [ o, 1000, < MYGLLal < MY dun — [ Tt {1Fall < MY < MY dGrg
/ (2o, 10080, 1l < MYpg/* = T1{11o | < Mpy®) E1{11gll < MYpy> a1 © Qo 0)
= [ (l0,10070,11 > M3if* = B0l > 23y Ep11dall < MYpy/* AN Qo)
o [ (@0,0002 = Gnif?) E1 006l < MYof/* A3 Qo)

< o(1) + sup o, {1, |1 {1, | > M}] + sup By [Iol1{}ls]| > M}]
ne ne

The last two right hand side terms can be made arbitrarily small, uniformly in n, by taking M
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large enough; the o(1) term follows from (S12) and is uniform in M. Now, by G, ¢ Y Gy,

1 / GL{|10ll < MYEL{|[fg]| < M} dGi, — / WL{11%]) < MYEyL{]|dgl| < M} dGy

< M?|| G — Gollrv-

Since p, — Gy and G 9 — Gy in total variation, one has that ||p, — Gy

lo, 1{||s, || < M}H1{|||| < MY} is uniformly bounded, one has that

v — 0. Since

[ 10 < MY Q1) < D~ [ B0, 10100, ) < MYL{ol < 31} G

S M2Hl’[ln - Gn,9

ITv.
As ¢t — 1= —a, — 0, it follows that
Eply < M? (|| = Gupllirv + Guo = Gollrv] + en + M>?|an| + (M),

where 0 < (M) = super Erp. | 1o, I21{18, | > M}| +supners Erp [100lP1{11s]| > M}] =0
as M — oo and r does not depend on n and e, = o(1). For ET% note that since ||fg||? is
uniformly P}'-integrable (Lemma $2.3), 31" | 149]|% = Opp(1). By Markov’s inequality, for
any 6 > 0

t=1

| A -
Py (‘nz 16, 11%1{|Cs,.|| > M}

1~ - ~
> 5) <6 'E ”n > o, I1P1{14,. || > M}“
t=1
<5t sup 126, 1171146, || > M}
ne

<5 lr(M).

Thus by taking M — oo, the probability on the left hand side of the preceding display vanishes.
Therefore, the same is true of

Pe"( >5),

by contiguity. That is, we can take a large enough M such that the probability in the display

1 e - -
- Z 146, 11*1{|4p,,|| > M}

t=1

above is arbitrarily small (for all large enough n € N).

Now, fix € > 0,6 > 0. By Lemma S2.3, 1 3°7 | 14|12 = Opp (1) and also LS, 14g,, ||? =
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Opp (1). By this and contiguity, we can choose R > 0 be such that for all n > Ny,

1~y 5 1~y 5
Fy (nZ 261> > R) <e/d B (nZ 2o, > R) <e/d
t=1 t=1

Take M large enough that ||[E) || < 4, r(M) < & and for all n > Ny

n (11 _
Fo ( =~ s P1{lIZ, ]| > M} > 5/R> <e/d
t=1
(& ,
Iy ( gZer|!21{H€9H > M} > 5/R> <e/4
t=1

where M,, > M and M, — oo slowly. This ensures that |E3™| < 4, P&(HE%{”H > 20) < ¢ for
all n > max{Ny, Na}. Then, let N be large enough such that N > max{N;, N2}, and for all

n> N, P(;“‘(HE%??H > ) < e and HE%KLH < 36.51 Combining these ensures that for all such n,

P;(

In conjunction with (S14) this establishes (S13).

1< . -
gZ@n%—Ig

t=1

> 75) < 2e.

We next show that Ry, converges to zero in Pj'~probability. Define

pen (}/ta Xt)1/2

s =Ly (Yy, X, )
v =t t)pe(Yt,Xt)l/?

mn(Xy) = / To, (s X 0, (0 X0) Y 2pa(y, X0)VV2dy,

and note that my,(X;) = E[Z, | X;] (Py—a.s.). Since E[lg, (Y, X;)|X:] = 0 under Pgt (which is

clear from its form),

mn(Xy) = / To, (s Xo)po, (4, X0) Y 2pa(y, X0) V2 dy
(S15)

— [ o, Xm0, (002 [l X0 = o, (0. X0 7] .
Using (S11), (S12) and Cauchy-Schwarz yields
0 ) ) iy 1, 15
S (o2 v (0 = il?) a8, — (o2, 59t "a07) | =0

which implies that

1 — 1- Py
% Zmn(Xt) + §In799 s 0,
t=1

SHTe. n such that M2|an| < 8, |en| < 8, M2 [|lttn — GnollTv + |Gne — GollTv] < 6. Here one needs to take
M,, — oo slowly enough that these sequences still converge to zero and M?> /v/n — 0.
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given the representation of m,, in (S15). In consequence it remains to show that

Tl

Ry, = \FZZM man(Xs) — Lo(Yz, Xi) =2 0.

Put F,+ = o(Y;, X¢). Then, as is straightforward to verify, (Zm—mn(Xt)—fg (Y, Xt), Fot)neNi<t<n

forms a martingale difference array. Hence it suffices to show that

1 & ; 2 B
=S | Zun = () = T, X) | 0.
i=1

The left hand side of this display can be written as

/

and so, given (S12) it suffices to show that the second term on the right hand side converges to

1/2 2
p@i ~

O 1/2 ~ Mn — Lo
Dy

0y

~ 2
pino <2 [ |5} "0l3 - ni/ a5 | ax+2 [ ol aQua

zero. For this note that by Fubini’s theorem and the Cauchy-Schwarz inequality

[ 1mala@uo < [ (il [0 = 5] @noax

S/Hf npé/z_l/QH d)\/ 1/2_ 1/2 J:L{;]zdk

The first term on the right hand side is O(1) by equation (S10), whilst the second converges to
zero by (S11) and the uniform Gy, — integrability of ¢’ lp as established in Lemma $2.6. [

S2.4.1 Estimation

LEMMA S2.14: Suppose that Assumption 2.1 holds and g, are o — integrable functions for some

0 > 2 such that max;—1, . n |]gn(E7Xt)||LQ < M, (all under P} ). Then,

=3 ul¥i X1) — B g (35, X0) = O (Mo /).

Proof. Let a,(m) be the av — mixing coefficients of the array {g,(Y:, Xi) — E[gn (Y, X1)] : n €
N, 1 <t < n}. By (the proof of) Theorem 14.1 in Davidson (1994), o, (m) < a(m — p) (for
m > p) where &(m) are the mixing coefficients of {Y; : t € N}. By Theorem 3 in Saikkonen
(2007) and Proposition 1.1.1 in Doukhan (1994) &(m) = O(a™) for some a € (0,1). Condition
A1l in Kanaya (2017) then holds (with A = 1) with 8 > p/(0 — 2). To see this note that for all
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m > M; we have &(m — p) < Ca™ whilst Ca™ < Am~? whenever

log(A) — log(C) 4+ m|log(a)|
log(m) ’

f <

As the right hand side diverges as m — oo, for all m larger than some M > M, the inequality
will hold for some S > o/(0 — 2). Noting that the inequality above continues to hold if we
increase A, we may then choose A such that each &(m) < Am =P for all 1 < m < M. The result
then follows by Theorem 2 in Kanaya (2017). O

LEMMA S2.15: Suppose that Assumptions 2.1 and 2.2 hold. Then

(i) If Z,1 = ﬁ S lo(Ye, Xy) and Zp g = AG (o (Y"), then under Py,

0 Iy Iy
Zn o Lo~ N 1 ’ ~ !
—305,) \d1lo o3,

Additionally, let 0, = 0,,(gn,0) = (7 + gn//n,n) for gn — g € RE. Then

(ii) We have that

n

1 - ~ _ -1/2
- ; (4o, (Y, X0) = B, (¥i, X0)) = opp (n71/2),

(iii) || 10, — Ip|| = opp. (V}/z) where vy, is defined in Assumption 2.2, and Iy = Gelplly with

Gy as in the proof of Lemma S2.5.

Proof. For part (i), let z; be

K /
2t = (ZQ()/;H Xt)/7 glée(}/;H Xt) + Z hk (Ako‘/e,t)> ’
k=1

and F; = o(€1,...,€). Under P}, {z, F; : t € N} is a martingale difference sequence such that

n I, I, Iy I
l ZE [thé] _ n,0 0,09 . 0 09 ’
n t=1

T 2 /T 2
gIn,@ Og.hn g1y O4.h

noting Lemma 3.1 and Theorem 12.14 of Rudin (1991). That o2

2 .
9.h.n COLIVETZES to a Tgn 18 part

of the conclusion of Proposition A.1. That jgm — Iy follows by combining Lemma S2.3, the
fact that Gy, as defined in the proof of Lemma S2.5 converges in total variation to Gy (cf.
Lemma S3.2), and Corollary 2.9 in Feinberg et al. (2016). Lindeberg’s condition is satisfied

since {||z|/* : ¢ € N} is uniformly P}-integrable (by Lemma S2.3 and the fact that each hy
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is bounded) and the variance convergence in the preceding display. Part (i) then follows from
Proposition A.1 and the central limit theorem for martingale differences.

Define A, := A(6rn), Bn == B(6n), and (3 5 = ¢} ;(65) for each triple (I, ], k) of indicies
and z € {a,0}. Note that each A, ;(Y; — B, X;) = €x+ ~ ni under Py . Hence

K K K
oy oy (Ye, X4) = Z Z L, Ok (€k.t) 6Jt+ZCnlkk[Tk 1€kt + Thok(€ry)] (S16)
k=1j=1,j+k k=1
K K K
lo, oy (Ye, Xy) = Z Z Co ke j Pk (€r )€t + Z ot [Th 1€kt + T2k 6k )] (S17)
k=1 j=1,j#k k=1
K

Co by (Yis X0) = = An ke Doy [61(x0) (X — EXy) — E Xy (hacre + Skokilens))]  (S18)
k=1
By Assumption 2.1(iii), ¢, = (% k= [le(a,a)]k.A(a,U):jl for z € {o,0}. Note that
the entries of Dy are all zero except for entry [ (corresponding to b;) which is equal to one.
We verify (ii) for each component of the efficient score (S16) — (S18). For components (S16)

and (S17), we define for z either of a, o

K K
Plnt = Z Z glafk,j,n(bk(An,kovn,t)An,joVn,t s

k=1 j=1,j£k
and
K K
Sélm,t = Z Z Cﬁk7j7n¢k,n(An,kovn,t)An,joVn,t >
k=1 j=1,j#k
with V., = Y; — B, X, and let ¢, = maxe(r] je(K]ke[K] |¢j k] Which converges to ¢ =

maxe(L) je[K]ke[K] |Cffj7k7oo| < 0o. We have that

Z (ﬁk,n(An,koVn,t)An,joVn,t - ¢k (An,kovn,t)An,joVn,t )
t:l

Z(plnt Qplnt <IZ Z Cn

k=1 j=1,j#k

%2?21 qgkm(An,k.Vn’t)An,j.Vn,t Ok(An e Vit)An jo Vit = op, ( 1/2) by applying Lemma
A1 with Wy, = Ay je Vit (noting that A, peVis > €k and Ay, joVy =~ €54 with are indepen-
dent for any s,t with Eg, (A jeVpnt)? = 1 by Assumption 2.1(ii)), and the outside summations

are finite, it follows that

1 <,
7n ;(‘Pl,n,t — Pint) = opr (1). (S19)
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n

That 7y, LN 71, follows from Lemma 52.16. Now, consider o ;¢ defined by
K
P2,7,n,t = Z Cyzl,l,k,k [Tk,lAn,koVn,t + Tk,2’f(An,koVn,t)] s

k=1

for x equal to either a or o. Since sum is finite and each [(¥, . .| = [CZ ;.| < oo it is sufficient

to consider the convergence of the summands. In particular we have that

1 « 1 «
— Z [Tkn1 — Th1) An ke Vit = [Thn1 — ki) —= ZAn,koVn,t — 0,
Vi Vi

1 .
%Z[Tk,nﬁ_Tk,Q]ﬁ(An,koV t) = [Thn2 — Tk2] fz Ay jeVit) = 0,
=1

in probability, since A, yoVi: ~ €xt ~ nr and (ex¢)e>1 and (k(€g))e>1 are id.d. mean-zero
sequences with finite second moments such that the central limit theorem holds.
Together these yield that

1 « Py
= (P220mt — P2mnt) — 0, (S20)
t=1

3

Combination of (S19) and (S20) yields (ii) for components of the type (S16), (S17).
For components (S18) let ay k1 = —Ap keDb,s Skn = Skn — Sks Cnyt = Eg, Xy and ¢, =

%Z?:l Cnyt- Since ap ki — Goo ki = A, 0) e Dy, (v, 0), it suffices to show that
(1) %Z?:l ¢k(An ko ) ¢k n( n koVn,t) (Xt - Cn,t) - OPQ"n (7171/2);

(11) %Z?:l :¢k(An ko ) ¢k n( n koVn,t): (Xn - En) = OPéln (n71/2);

(i) 2301 [@n(AnkaVin) = Fn(AnaVint) | @ = ens) = oy, (n7112);
(iv) 5 2y Or(AnpeVint) (Xn — ) = opp (n71/2);
(V) 7 21 Or(AnpeVie) (En — cng) = opp (n71/?);
(vi) 2370 X0 [Cen1 Anke Vit + o2 (An ke Vit)] = opy. (n=1/2);
(vii) L300 (Xp — @) [Sk,1An ke Vit + Sk,26(An ke V)] = opy. (n=1/2);
(viii) %Z?ZI(E,L —Cnt) [Sk1An ke Vit + Sk2k(An ke Vi) = opy. (n_1/2)

(i) follows by (the first part of) Lemma A.1 applied with W,, ; = X;—¢,¢. This is mean-zero,

independent of all A,, yeV}, s with s > ¢ and has uniformly bounded second moments (cf. (S6)).
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(ii) follows by Jensen’s inequality, (the second part of) Lemma A.1 applied with W,, ; = 1,
(S6), Lemma S2.14 and Corollary 3.1.

(iii) follows by Cauchy — Schwarz, (the second part of) Lemma A.1 applied with W,,; =1
and Lemma S2.17.

For (iv), ﬁzgl Ok(ApkeVit) = Opgln(l) by the central limit theorem and X, — &, =
LS [ X — enyg] Lon, 0, which follows by (S6), Lemma S2.14 and Corollary 3.1.

(v) follows by Cauchy — Schwarz, the fact that E ¢ (Ap keVat)? = E ¢p(ex)? is uniformly
bounded hence 1 37 | ¢p (A, yeVini)? = Opy. (1) by Markov’s inequality and Lemma S2.17.

For (vi), X,, = Op, (1) by e.g. Markov’s inequality and (S6). By the central limit theorem
also % Yo U= Opénn(]_) for U; equal to either A, roVy ¢ or K(Ay keVn,t). The result therefore
follows from Lemma S2.16.

For (vii), as for (vi), ﬁ S U= OPgLn(l) for U; equal to either A, o Vit Or K(Ap ke Vi t)-
Therefore it suffices to note that X,, — &, Lo, 0, as noted for (iv).

For (viii), for Uy equal to either ¢ 1 Ay ke Vit OF Sk 25(Ap ke Vi), by Markov’s inequality

by Lemma S2.17.

1 _ _ R 1<
3t 2 e) £ B S e 5 2 o 0

To verify (iii) we note that

A~

I, — feH <
2

Tng, — f9H2 (S21)

v ~

In,en - In,Gn

+
2

+
2

In,On - In,en

where I := E[Eg(Y}, Xt)gg(Y;g, Xy = % Doy E[Zg(Y}, Xt)gg(Yt, X¢)'] with the expectation taken
under Gy, I, = LS o(Ye, X1)lo(Yi, X)) and I, = LS lo(Ye, X0)lp(Yy, Xy)'. We will
show each right hand side term is opy (V,l/ 2).
For the first right hand side term in (S21) let r € {a,0,b} and let [ denote an index, we
write Uy, ., = Lo, v, (Ye, X1), Upr, = Lo, +,(Ye, X¢) and Dy gy, = Lo, v, (Ye, Xo) — Lo, 0y (Ye, X1).
Since it is the absolute value of the (r,l) — (s,m) component of fnjgn - fnﬂn, it is sufficient

1 n . 1 n 7
to show that ‘g >t Unitr Dntosn + 37 2241 Dty Ut s

1/2
:OPé’Ln(Vn/ ) as n — oo for any r, s €

{a,0,b} and [, m. By Cauchy-Schwarz and Lemma S2.19

n 1/2 n 1/2
1 ~ 1
= (n > Ut2,5m> <n > Di,t,m> = Opp (1) x0pp (/%) = opp (),
1

1 n
-~ § :Dnvtv""l Utysm
n

t=1

: (n Ug’“”) (n 2 D%,t,s#) = Opy (1)xory, () = orp (%),
1=

1 n
g g Un,t,rl Dn,t,sm
t=1
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for any (r,1) — (s,m). It follows that

2 2

+2

ZDntrlUt Sm

1 n
E § Un,t,nDn,t,sm + Dn,t,n Ut,sm

[ ZUntrl n,t,Sm

and hence |10, — Ing, ll2 < 1 Ing, — Ino, lr = opp. (Vn/g)

For the second right hand side term in (S21), Let Qﬁ;tm = Lo, (Yi, X0)lp,, o (Ye, X)),
where 7, s € {a, 0,b} and [, m denote the indices of the components of the efficient scores. Fix
any r,s and [, m and note that by the fact that ggn has uniformly bounded 2 4+ §/2 moments
under P, Theorem 3 of Saikkonen (2007) and Theorem 1 of Kanaya (2017) together imply

that (cf. Lemma 52.14)
- Z Qinin — Bo, Qi = Orp (nV/770/2) = opp (i), pe (1,14 6/4],

/2)'

hence |0, = Ing, |l2 = orp (va

That the last right hand side term in (S21) is o(un/ ) follows from the assumed local Lipschitz
continuity of the map defining the (’s, that of each 5 — A(a, )k, Theorem 11.11 of Kallenberg
(2021) and Lemma S2.18. O

LEMMA S2.16: If assumption 2.1 holds, then |0k — Oknll2 = opr (Unp) = opy (1/,1/2), where 0,

is as in Lemma S2.15 and o € {1,s}.

Proof. Under Pjl, Ay geVit =~ €t ~ Mg, for Viyp =Y, — B, Xy and A, = A(0y). Let w €
{(0,—-2)",(1,0)} Since the map M +— M ! is Lipschitz at a positive definite matrix My, then

for large enough n, with probability approaching one
0k — oknlle = (M = M wlla < 20 M2 — My Hl2 < 20 My — M|, (S22)
for some positive constant C. By Theorem 2.5.11 in Durrett (2019)
3 1-p
- Z nko - E(An,kovn,t) ] = OPQ"n (n P )
- Z n, ko E(An,kovn,t)4] = OPQ"n <n7> .
These together imply that

- ~ 1-p
|V = Millz < |1V = Millp = ory (077" ) = 05 ().
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Combining these convergence rates with equation (5S22) yields the result. O

LEMMA S2.17: In the setting of Lemma S2.15, let ¢, = Eg, X; and ¢, = %Z?:l cnt- Then

1~ 2 —1
= |l =0(n™h).
n
t=1
Proof. Since X; = (1,Z]_,)', it suffices to show that 137 & — 150 ¢ n—1)
for ¢, == Eq, Zi—1. Let Cp00 = Z]O‘io Bgann. This converges uniformly in n since under

Assumption 2.1 parts (i) & (iii), the sets {||Bg,|l2 : » € N} U {||Bg|l2} and {||Cg,ll2 : n €
N} U {||Cyl|2} are bounded above by p, < 1 and C, < oo respectively. By Jensen’s inequality

n 2

1 _ _
— E [Cn,oo - Cn,t}
n

t=1

n

2
Cn t— E én,t
t:l

\ —

N

n 1
g”cnt én,ooHQ‘Fn;
n
3

1 n
"

< - |Cn,t - 5n,ooH2

so it suffices to show that n/2 times the last term is uniformly bounded above. One has:

2
o0
ZHCnt Enc0ll” Z > B3.Co.— B 2
t=1 ||j=t—1
n n 2
< Z B, Co. +ZHB§;%H
t=1 ||j=t—1 t=1
r 2
n o0
t 1
< 1B, II311Co |12 +ZHB@"H2 122
t=1 |j=t-1 t=1
2 " opit t—1)
*
ey [0 ] imry
t=1
2 1
<%z 2} . 0
[(1—/)*)2 1Zol 1—p?

LEMMA S2.18: In the setting of Lemma 52.15, let Xy = (1,Y/ ... ,f/t’_p)’ where Y, is a sta-

tionary solution to (1). Then,
(i) £ 301 o, X¢ — Eo Xy = o(vi®),
(it) £ Y1 [Bo, Xi|[Eo, Xi)' — [Eo Xi][Eo Xi]' = o(vi?).
(iii) LS By, [X; — B, Xi][X; — B, X' — Eg[X; — Eg X;][X; — g X;] = o(vi'?).

Proof. Note that || Eg, X; — Eg, X¢||? < [|ént — én.ool|? in the notation of (the proof of) Lemma
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S$2.17, which shows that 2 3% | [|éns — neol> = O(n™'). Hence by Jensen’s inequality,

1 o .
=3 I, Xi — Eg, Kl = O(n™%) = o(vi/?),
t=1

Since 8+ By X; = vec(tr, (tp @ (Ix — By — ... — Bp)~'¢)) is locally Lipschitz,

1 ¢ . . > > -
=3 1Ea, X —Eo Xill = |[Eo, X — Eo Xil| = O(n ™) = o(u/?).
t=1
Combination of the above two displays yields that 137 | || Eg, X; — Eg X/ = Oo(n1?) =
0(1/}/ 2) which implies (i). Moreover, combined with the uniform moment bounds given in (S6)

and Lemma S2.1 this yields

n

1< . . 1 . ~
- > lEq, Xi][Eo, Xi)' — [Bp Xi][Eo Xi]'|| < - D B, X =By Xi|| = O(n~'/2) = o(/?),
-1 t=1
which implies (ii).
For (iii) let Uy = X; — By X; and Uy, = X; — Ey X;. Note that as Ugy = Y '—¢ B}Dyes—;
and Uﬁ,t = Z;io B{9D19€t_j, Ugmt—ﬁgmt and Uy, ; are independent. Additionally by Assumption
2.1 parts (i) and (iii) the sets the sets {||Bg, ||2 : » € N} and {||Dg, ||2 : n € N} are bounded

above by p, < 1 and D, < oo respectively. Hence
1 n
- > HEen [Uen,tUén,t - Uan,tUémt} H
t=1

1 < - 1 & - -
3 [ ) 3 e () )

%Z Es, Y D Bj,Do.cijei 4Dp, (8]

k=0 j3=t—1

n o0
y
<33 1Ba D, 3

t=1 j=t—1
n
<oy s
t=1 j=t—1
S ANEYiNE
1_/)* 1_pa2( n
=0(n™).

IN

Additionally, we can write vec(Ey Uﬁ,tﬁ,{g’t) = (I — By ® By) ! vec(DyD)y), which is locally
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Lipschitz in 8 at 8. This implies that

1 & . S _
- > B, U, U, , — By UpeUp, = O(n™%) = o(13/?).
t=1

The previous two displays suffice for (iii). O

LEMMA S2.19: In the setting of Lemma S2.15, for each r € {a,0,b} and
2
*Z( 5 (Vi Xt) — g rl(YtaXt)) = opr (Vn).

Proof. We start by considering elements in %2?21 (één al(Yt7Xt) £9~ a (Yt,Xt)> . Define
Thng = Thing — Thq and Vi, =Y; — B, X;. Since each |C3’l7k7j] < oo and the sums over k, j are

finite, it is sufficient to demonstrate that for every k, j, m, s € [K], with k # j and s # m,

- Z [¢k n\<n ko n t) ¢k( n, ko ):| |:¢s n(An se Vn t) (bs (An,so Vn,t)] An,jo V;E,nAn,mo Vn,t
(523)
- Z [(Z)k n\n ko n t) ¢k( n, ko )i| An,jovn,t [%s,n,lAn,soVn,t + 7~_3,71,2'%(1471,50Vn,t)] <S24)

IR 5 5 5
— Z [Ts,n,lAn,soVn,t + Ts,n,QK/(An,soVn,t)] [Tk,n,lAn,koVn,t + Tk,n,2’{(An7koVn,t)] (825)

t=1

3

are each opr (Vn).
For (S25), let & (z) = x and & () = k(x). Then, we can split the sum into 4 parts, each of

which has the following form for some ¢, w € {1,2}

le—_ T

; Z Ts,n,qﬁc,n,wfq(An,sovn,t>§w (An,kovn,t) = Ts,n,q'rk,n,wg Z gq(An,soVn,t)gw (An,kovn,t) = OPé’:L (Vn)7
t=1 t=1

since we have that each 75, ¢Trnw = opr (vn) by lemma S2.16.512 For (S24) we can argue

similarly. Again let & (z) = z and &(x) = k(z). Then, we can split the sum into 2 parts, each

S12The fact that 2 37 | €(An,seVin,t)€w(An ke Vint) = Opw (1) can be seem to hold using the moment and i.i.d.

assumptions from assumption 2.1 and Markov’s 1nequahty, noting once more that A, reVn,:+ = €+ under P"
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of which has the following form for some ¢ € {1,2}

- Z [¢k n\An, ko n t) ¢k( n ko )] An,jovn,t%s,n,ng(An,sovn,t)

1 N 2 1
< %SJWJ (n z; [d)k,n( n, ke V5 ) ¢k( n, ke Vi )] (An,j.vn7t)2> (n z; §Q(A"’5° "’t)Q)
t= t=
= Opgtn (Un)

by Lemma A.1 applied with W), ; = A;, jeVit and Ts g = = opr (vn 1/2 ).513 For (S23) use Cauchy-

Schwarz with Lemma A.1

— Z {d)kn nikeVit) = Ok (An ke V; )} |:¢s n(Ap seVit) — ¢S(An,s.Vn,t)] AnjeVnitAnmeVn i

n

1/2
( Z |:¢kn n,ke nt) ¢k( n,ke nt)}z(An,joVn,t)2>
t=1

S

n 1/2
1 N 2
X <TL Z [¢S,n(An,soVn,t) - ¢S(AH,SOV7L,t):| (An,movn,t)g)
t=1
= Opezzn (Vn)

This completes the proof for the components corresponding to a;. We note that the components
corresponding to o; follow analogously.

Finally, we consider the elements in ' | (@mbl (Yy, X¢) — Lo, p, (Yt,Xt)>2. Let an k=
—Ap keDbys Skn = Sk — Sky Cnt = Bg, Xy and &, = %Z?:1 Cpyt. Since an ) — Qoo ki =

A(av, 0)geDy, (v, 0), it suffices to show that
- 12
(1) %Z?:l _¢k(An ko ) ¢k n( n koVn,t)_ ||Xt - cn,tH2 = OP(;LTL (Vn);

_ 12
(11) %Z?:l _¢k(An ke Vi ) ¢k n( n koVn,t)_ HXn - EnHQ = OPéln (Vn);

(iii) + >0 :¢k(An ko Vit) — Bren(An koVn,t): i 120 = cntll® = opp (vn);
(iv) 30 Or(AnkeVa)? | X — 2al|* = 0pp (vn);

(v) L300 DA e Va)? G0 — cal® = opp (vn);

(vi) 30 1Kl [Shn Anpe Vit + Semak(An ke Vii)]? = opp (vn);
(vid) 257y 1K — @oll? [ok 1 An ke Vit + Sk 26 (An ke Vi) = 087 (vn);

(Vlll) % Z?:l ”En — CTL,tHZ [gk,lAn,koVn,t + gk,2/f(An,koVn,t)]2 = OPéTn (V’n>

$13See footnote S12.
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(i) follows from repeated application of Lemma A.1 with W,,; = e;.(Xt — Cnt)-
(i) follows from application of Lemma A.1 with W,; = 1 and X, — &, = 2377 |[X; —
P
Cn.t] — 0, which follows by (S6), Lemma S2.14 and Corollary 3.1.

/ S14

(iii) follows by Lemma A.1 applied repeatedly with Wi, ; = €/(n — cnt)-
For (iv), %Z?:l k(A e Vit)? = Opgln(l) since ¢ (Ap keVnt)? has uniformly bounded sec-
ond moments and X,, — ¢, = Opp (n=Y2), by (S6), Lemma S2.14 and Corollary 3.1.

For (v) use Markov’s inequality and Lemma S2.17 to conclude

n n
P (i > dxlAnsaie) e enel” > ) < v e E [dn(e)?] iZ 2 = enal® = 0.
For (vi), X, = Op, (1) by e.g. Markov’s inequality and (S6). Similarly, IS UiUpj =
Openn(l) for 7,7 € {1,2} with Us1 = Ay, keVint and Upo = k(A keVint). The result then follows
from Lemma S2.16.
For (vii), 130 UyUp; = Openn(l) for 4,57 € {1,2} with U and U2 as in the preceding
paragraph. Therefore it suffices to note that X,, — &, = Op, (n=1/2), as noted for (iv).

For (viii), for Uy ; and U2 as in the preceding paragraph and ,j € {1, 2},

1~ . I~
Pé?z (‘n Z 1en — Cn,t”ng,iUt,igk,jUtJ > Vn5> <, e 1|§k,z’§k,j|[E Ut%i]lm[E Ut%j]lmﬁ Z len — Cn,t||2
t=1 t=1

Gl 2
S Vn EZHCn_Cn,tH —0,
t=1

by Markov’s inequality and Lemma S2.17. O

S2.5 Assumption 2.1-(ii)-(b)

We provide a sufficient condition under which Assumption 2.1 part (ii)-(b) holds, given part

(ii)-(a). For convenience recall that part (ii) reads as

(ii) Conditional on the initial values (Y’ 1,...,Yy)", & = (€1, ..., €x ) is independently and
identically distributed across ¢, with independent components e ;. Eachn = (n1,...,1x) €
‘H is such that each 7 is nowhere vanishing, dominated by Lebesgue measure on R, con-
tinuously differentiable with log density scores denoted by ¢x(z) = 0lognk(z)/0z, and
forallk=1,..., K

(a) Eepy = 0, Ee%t =1, Eei’tg < 00, E(ei’t) —-1> E(ezvt)Q, and E¢i+6(ek,t) < oo (for

some 6 > 0);

S1That this is uniformly bounded follows from (S6).
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(b) Erlers) =0,E @2 (exs) > 0, Edplent)ens = —1, Eéﬁk(ﬁk,t)ﬁ?w =0 andEQZ)k(Ek,t)E%t =

In this assumption part (a) is standard — only imposes that the shocks are mean zero with unit
variance, and that certain 4 + § moments are finite —. In contrast, part (b) may seem strong
at first sight.

An important observation is that (b) should not be understood independently from (a).
Indeed, the following lemma shows that given (a), condition (b) follows if the structural shocks

have densities that decays to zero at a polynomial rate.

LEMMA S2.20: Let a, = inf{x € RU {—o0} : ng(z) > 0} and by, = sup{zx € RU {oo} : nx(x) >
0}. Suppose that, for r = 0,1,2,3: (i) if ap = —oo then ni(x) = o(z™3) as * — —o0, else
aj limyq, ni(z) = 0, and (ii) if by, = oo then ny(x) = o(z™3) as x — oo, else bl limyp, N (z) = 0.

Then, if part (a) of assumption 2.1-(ii) holds, part (b) is also satisfied.

Proof. Let r € {0,1,2,3}, by = sup{x € R: np(z) > 0} and ax = inf{z € R : n(x) > 0}. We

have, by integration by parts, with G, denoting the measure on R corresponding to 7,

by r
dz
— dz.
ar /Uk(Z) dz i

/gf)k(z)zr dGy, :/zzgz;nk(z)zr dz = /n,;(z)zr dz = ni(2)z"

b,
(Zk_

Our hypothesis ensures that z’”nk(z)’ 0. Therefore we have Gy (z)z" = —Gk%z’”. For
r = 0 this equals zero as %ZO = %1 = 0. For r € {1,2,3} we have % = r2"~! and hence

Gror(2)2" = —rGrz"~ 1. Since G1 =1, Gz = 0, and Gy2% = 1, the result follows. O

We now provide two examples. The first is a mixture of normals. We directly verify the
moment conditions in (a) and (b) are satisfied.
The second example is a normalised x3 distribution. We show that this does satisfy the

moment conditions in (a) but not those in (b) (nor the conditions of Lemma S2.20).51%

EXAMPLE S2.1 (Normal mixtures): Suppose that €y has the density function

M M M M
Me(2) = > pmfm (2 bm:0m)s P =0, > pm=1, > pmfim =0, > pm(om, + pz,) =1,
m=1 m=1 m=1

— = m=1

where (2, im, 02,) is the density function of a ey ~ N (tm,02,).

ex has mean zero and unit variance. We first establish that each of the conditions in (a) are

515 Additionally, the (normalised) x3 distribution does not have a nowhere vanishing Lebesgue density.
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satisfied. In particular we first note that E [|ex|"] is finite for any positive integer r as
Ellerl] = Y pmEllem|] < oo, (526)

since the Normal distribution has finite moments of all orders. To establish that E[E%P <
E[ei] — 1 note that this is equivalent to the linear independence in Lo of 1, e, e% (e.g. Horn and

Johnson, 2013, Theorem 7.2.10). This is equivalent to the condition that
2 2, 2mrd) _ e — e —
aj +2a1a3 + a5+ azE[e] =0 = a; = a2 = a3 =0.
This holds since E[e}] > 1 = E[e2] by the fact that L, norms are increasing and so
a? + 2a1a3 + a3 + @i E[ef] > af + 2a1a3 + a3 = (a1 + a3)? > 0,

where equality is possible only if a; = as = az = 0. Next, note that

M _
Zm:1 me'm2(z — o) fn (2, toms O'rQn)

and for any integer r and some p € R
M
ok (" S k()" ()7 (2] + [1]) Y P (25 pims o) | = k()] (|2] + |ua])-
m=1

Recursively using this inequality from r = 0, yields (for some constant C, € (0,00))

6 (2)]" < Cr(|2]" + |u]").

That E |p(ex)|” < oo for any integer r then follows from (S26).
For the conditions in (b), note that by (S27),

J— 6 ms 2
E ¢k (ex)er] = me/ C Mm;’f(m)( L m)ﬁk(z) dz
= — Z PmOom, / z— Mm)fm(ekyﬂma rzn) dz

- Z P (B[] —Elel] )
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Taking r = 0,1,2,3 in the right hand expression respectively gives:

me;zQ (Nm - Nm) =0,

M=

El¢r(ex)] = —

3
1§

E

Elgr(er)er] = — Y pmoy? (02, + p2, — p2) = -1,

3
I

Elor(er)er] = = Y pmom” (Hiy + 3tm0m, — (0, + pi ) itm) =0,

E

3
[

E[¢r(er)e}] = —

M=

Dm0 (Hom + 6110, + 30, — iy, — 3, 000) = =3 .

3
1§

EXAMPLE S2.2 (The normalised x3 distribution): Suppose that &, ~ x3 and let €, = (€, — 2)/2.
Then €, has mean zero, variance one and density function ni(z) = exp(—z — 1) on its support
[—1,00) on which we also have that ¢x(z) = —1. The x3 distribution has finite moments of all

orders and has moment generating function (e.g. Johnson et al., 1995, p. 420)
M:(t)=(1-2t)"1, t<1/2.

Hence €, has finite moments of all orders. The same is evidently true of ¢r(ex) = —1. Using
the above display, we have

M (t)=e'(1—-t)"1, t<1,

and therefore may directly calculate Ele;] = 2 and E[e}] = 9, hence E[e;]? < E[e}] — 1 holds.
The moment conditions in part (a) are therefore all satisfied.
However, E ¢p(z) = —1 # 0, hence part (b) does not hold. Note also that this example does

not satisfy the requirements of Lemma S2.20: we have ap, = —1,by, = 0o and
lim g (x) = lim1 exp(—z—1)=1#0,
P

zlag

and hence the required condition is violated for r = 0.

S3 Technical tools

This section records some technical tools used in the proofs for ease of reference.

LEMMA S3.1 (Discretisation): Suppose that P, is a sequence of probability measures and f, :
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I' R, T cRY, is a sequence of functions which satisfy

Py

fa(yn) =0 (528)

for any v = v + gn/V/1, gn — g € RE. Suppose that the estimator sequence 7, satisfies
V2| 3n =] = Op, (1) and 7, takes values in %, = {CZ/\/n: Z € R} for some L x L matriz

C. Then

() 225 0.

Proof. Since 7, is \/n-consistent there is an M > 0 such that P, (vn||7, — || > M) < e. If
V1| —7|| < M then 7 is equal to one of the values in the finite set .#¢ = {y* € .7, : [|[7*—7] <
n~12)M }. For each M this set has finite number of elements bounded independently of n, call

this upper bound B. For any v > 0

P (| fa(Gn)| > v) < e+ Z n ({[fn ()] > 0} 0 {Fn = m})

'\/neyc

<e+ Y Pullfaly)l >v)

"Yney

< e+ BE(|fn(v)| > v),

where % € ¢ maximises v — Py, (|fn(7)] > v). As % € S, |v* — || < n/2M. Hence
letting g, = v/n(v:—7), llgnl| < M. Arguing along subsequences if necessary, we may therefore
assume that g, — g € R* and hence f,,(7}) RNy} by (S28). The proof is complete on combining
this with the previously established bound on P, (| fn(3.)| > v). O

LEMMA S3.2: Let (X,B(X)) be a measurable space, and Q, a sequence of probability measures

n (X, B(X)) which converges to a probability measure Q in total variation. Let (Y,B(Y),\)
be a measure space and suppose that p, : X XY — [0,00) is a sequence of functions and
p: X xY — [0,00) a function such that (i) [pn(z,y)d\(y) =1 = [p(z,y)d\(y) for each
n € N and each x € X and (ii) p, — p pointwise. Then, if G, and Gy, are defined according to

Gu(A) = /A pa, 1) dA(Y) © Qu(x));
G(A) = /A p(,y) dAW) © Q(x)),

it follows that G, =5 G.

Proof. For any z, p,(x,-) — p(x,-) pointwise and since each p,(-,z), p(-,z) has integral one
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under A\, by Proposition 2.29 in van der Vaart (1998),

/|pnxy P y) dA(y) = 0,

pointwise. Let (¢, )nen be a sequence of measurable functions on X x Y with v, € [0,1]. Then

/g ) dOw (z).

Since 2y, (x) < [pn(x,y)dX(y) + [ p(z,y) d\(y) = 2, the 2,,(z) are uniformly @Q,, — integrable
and uniformly @ — integrable. By Theorem 2.8 of Serfozo (1982), [ 2,(z)dQy(z) — O

‘//w”(x’yxp"(x’y)—p(%y)) Ay) dQy (z

LEMMA S3.3: Suppose that P, and Q, are probability measures (each pair (P,,Qy) is defined
on a common measurable space) with corresponding densities p, and gy (with respect to some

o-finite measure vy, ). Let l, = log q,/pn be the log-likelihood ratio.S'6 If
ln = Opn(l),

then dTV(Pna Qn) —0

Proof. By the continuous mapping theorem

I _ exp (1) LNy}

Pn

Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4) then implies that @, < P,. Let ¢,
be arbitrary measurable functions valued in [0, 1]. Since the ¢,, are uniformly tight, Prohorov’s
theorem ensures that for any arbitrary subsequence (n;);en there exists a further subsequence

(nm)men such that ¢, ~» ¢ € [0,1] under P, . Therefore,

(¢nm7 eXp( ﬂm)) (gba ) under an-

By Le Cam’s third Lemma (e.g. van der Vaart, 1998, Theorem 6.6), under @,,, the law of ¢,

converges weakly to the law of ¢. Since each ¢, € [0, 1]

lim [Qnm d’nm an ¢nm] =0

m— 00

As (n;j)jen was arbitrary, the preceding display holds also along the original sequence. O

5167 may be defined arbitrarily when p, = 0.
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ProposITION S3.1 (Cf. Proposition 2.29 in van der Vaart, 1998): Suppose that on a mea-
sureable space (S,S), (tn)nen S a sequence of measures and p a measure such that p(A) <
liminf, o0 pn(A) for each A € S. If (fn)nen and f are (real-valued) measurable functions such

that f,, — f in p-measure and limsup,_, o [ |fal? dpn < [|fIPdp < oo for some p > 1, then
f ‘fn - f‘pdﬂn — 0.

Proof. (a + b)P < 2P(aP 4 bP) for any a,b > 0 and hence, under our hypotheses,
0 < Pl + 2211 — |fu— f > 2 fIP in o - measure.
By Lemma 2.2 of Serfozo (1982) and limsup,, . [ |ful? din < [|fP dp < o0,

[ an < timint [ 215,04 2187 152 - 1P d

§2p+1/!f\pdu—limsup/\fn—f”dun- O

n—oo

REMARK S3.1: The condition that u(A) < liminf, o pn(A) for each A € S in Propositions

S53.1 is clearly satisfied if p, — p setwise or in total variation.

S4 Log density score estimation and optimal knot selection

In this section we provide more details for the estimation of the log density scores. Further, we
discuss a data-driven way for selecting the number of knots following the approach of Chen and
Bickel (2006). We evaluate the size and power of the test under optimal knot selection in some

additional simulations that are presented below.

S4.1 B-spline based log density score estimation

For & < --- < &y a knot sequence, the first order B-splines are defined according to b(l)(ac) =

i
1 e +1)(:E). Subsequent order B-splines can be computed according to the recurrence relation

Wy =& -1 Sivl —T L (1-1)
b (z) = — L8y gy SHLTE (-1 529
o (@) Civie1 — & " (@) iyt — & T () (829)

forl>1andi=1,...,N — 1. A l-th order B-spline is [ — 2 times differentiable in x with first

derivative

*) -1 - -1 -1
(@) = ————b"" V() - ————b' (). $30
o @) Civie1 — & " (@) it — Eipg HY (z) (S30)

See de Boor (2001) for more details on B-splines.
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Let by, = (bk,n,lv--wbk,n,Bk,n), be a collection of By, cubic (i.e. 4-th order) B-splines

and let ¢y, = (chn’l,...,ck,n,Bkm)’ be their derivatives: cg . i(z) = (ﬂ)’“d"i;(x) for each i €
{1,..., Bk n}. The knots of the splines, &, = (§k7n7i)£’“1”b are equally spaced in [Eﬁn, Egn] with

Okm = Ekmit1 — ki > 0.517 For each (k,n) pair the relationships between the number of
knots (K}, ), the number of spline functions (By,) and dy,, are given by By, = Ky, — 4 and
Kin =14 (Y, — E£)/0kn
Since the B-splines vanish at infinity for any n € N, integration by parts gives that
[ 61 = i buale)Pme(a) 0z
— [ou@rn s+ [Ghabuln@ e +2 [dan@mEd 63

=E ép(er)? + U Elbn (€r)bin (€r) [W0kn + 20 B i (€r),

where we integrate over the support of ¢y, (which is also the support of by, and ¢, ). This

mean-squared error is minimized by:5!8

wk,n = — E[bk,n(ﬁk)bk,n(€k)/]_1 E[ck’n(ek)]. (832)

Replace the population expectations with sample counterparts to define the estimator of vy, ,
1o R
wk,n = ; ; bk,n (Akov'y,t)bk,n(AkoV%t), E ; Ck,n (Akov'y,t) .

Our estimate for the log density score ¢y, is given by
(lgk,n(z) = z%gmbkm(z) . (833)

As discussed in the main text, the knots of the splines, &, = (fkm,i)fikl’" are taken as equally
spaced in [Eﬁn, Egn] In practice we take these points as the 95th and 5th percentile of the
samples {AreV;}; adjusted by log(log(n)), where A = A(o,0) and V; =Y; — BX; for a given

parameter choice v = (a, ). In our main simulations we used By, , = 12 splines.

S4.2 Data driven B-spline selection

The number of B-spline basis functions By, is a tuning parameter. In practice we can use

cross-validation to choose By, for each k. A possible approach is as follows

S'For each k = 1,..., K the sequences (Zf ,)nen, (EX . )nen, (Bi,n)nen and (0k,n)nen are deterministic.

S18This differs from the expression in Chen and Bickel (2006) by a factor of —1 as they estimate —¢y.
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(i) Split the sample A,V ¢ randomly into two halves, say n; and no.

(ii) For By, =1,2,..., use nj to estimate v based on (S33), say ¢y, (2), and use ny to eval-
uate (S31) empirically, but omitting the first term E ¢y (ex)?, say Cralny (Bk,n). Similarly

calculate ¢, |n, (Bk,n)-

(iii) Select the optimal By, ,, as the largest value such that %(anlm (Bi,n) +Cnyjny (Br,n)) strictly

decreases until By, ,.

This method is taken from Jin (1992) and Chen and Bickel (2006). Jin (1992) proved its validity
under an iid assumption. In the additional simulations of Section S5 we experiment with this

cross-validation algorithm.

S5 Additional simulation results

S5.1 Alternative parametrizations

We show that the parametrization of A(«, o) does not affect the size of the score test nor
the alternative tests considered. Specifically, we repeat Tables 2 and 3 from the main text,
respectively, for an upper triangular parameterization of A. Tables S1 and S2 below show that

rejection rates are not affected by the change in parameterization.

S5.2 Data driven B-spline selection

In this section we evaluate the performance of the score test when the number of B-splines is
selected using cross-validation following the approach of Jin (1992), see the discussion in Section
S4. All specifications are the same as in the main text and we use the one-step efficient estimates
to estimate the nuisance parameters 5. The results are shown in Table S3.

We find that with cross validation the test becomes slight conservative. The empirical
rejection frequencies for n = 200,500 are nearly always below the nominal level. Only when
n = 1000 the correct size is reached. A possible reason for this result is that the selection
criteria from Jin (1992); Chen and Bickel (2006) is based on minimizing the mean squared error
of the log density score estimate which may not be optimal for the size of the test. In future

work it may be attractive to modify the selection criteria to directly target the size of the test.

S5.3 Size for larger SVARs

In the main text we presented simulation results for SVAR models of dimensions K = 2 and

K = 3. Here we explore higher dimensional SVAR models. In such settings two bottlenecks
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TABLE S1: EMPIRICAL REJECTION FREQUENCIES: TRIANGULAR A

K p n N(0,1) t(15) ¢t(10) t(5) SKU KU BM SPB SKB TRI
One-Step Efficient Estimates

2 1 200 5.0 5.8 5.8 6.0 5.2 7.2 4.2 4.6 4.6 4.6
2 1 500 7.2 5.8 6.0 5.9 51 6.1 48 5.1 6.2 5.0
2 1 1000 6.9 6.2 6.1 6.2 4.8 5.3 4.8 4.8 5.2 5.3
2 4 200 4.7 4.8 54 5.8 57 58 49 56 4.8 3.8
2 4 500 7.0 5.6 6.8 6.1 4.6 52 4.0 4.7 4.6 4.6
2 4 1000 6.1 6.5 6.4 5.8 5.0 51 4.3 4.6 4.5 5.3
2 12 200 6.1 5.6 52 6.4 5.8 4.5 4.4 4.7 4.7 4.2
2 12 500 6.6 7.0 6.2 7.1 6.2 5.3 4.7 5.1 5.6 4.6
2 12 1000 7.0 6.0 5.8 6.4 54 55 4.6 5.8 6.2 4.9
3 1 200 5.6 6.8 7.0 8.0 72 99 51 5.5 6.1 4.6
3 1 500 7.6 6.8 70 7.1 59 6.6 42 5.1 6.0 4.9
3 1 1000 7.5 7.2 6.1 6.2 50 6.2 4.8 5.2 4.9 52
3 4 200 5.4 7.4 8.2 8.9 7.1 6.8 4.1 4.6 5.7 3.8
3 4 500 8.0 6.4 72 8.8 6.8 77 64 6.1 5.8 4.9
3 4 1000 7.9 6.6 8.0 6.7 58 6.2 6.0 5.8 53 6.3
3 12 200 3.1 3.9 3.0 4.2 2.5 3.6 3.0 2.0 2.8 2.6
3 12 500 8.5 9.4 8.8 10.2 9.6 6.2 38 4.1 6.0 2.3
3 12 1000 8.8 7.8 8.2 87 74 6.6 54 5.5 6.2 4.7
OLS Estimates

2 1 200 3.6 4.2 42 6.5 48 72 32 28 5.6 3.2
2 1 500 4.4 4.1 4.5 6.3 4.7 7.5 3.7 4.1 5.6 4.3
2 1 1000 4.5 5.0 4.8 6.0 4.8 6.2 42 4.1 5.0 5.1
2 4 200 3.6 5.4 6.1 6.4 9.2 46 3.6 2.9 5.0 3.1
2 4 500 4.8 4.5 5.5 6.6 4.8 46 3.4 3.2 4.3 3.5
2 4 1000 4.1 5.2 52 5.2 53 4.8 3.1 3.2 4.8 4.7
2 12 200 7.2 7.4 8.4 9.4 6.4 4.8 4.5 3.0 6.6 4.4
2 12 500 5.6 7.3 6.1 83 6.9 37 43 3.3 49 3.8
2 12 1000 5.2 5.1 5.2 6.4 8.2 42 34 2.6 9.5 3.4
3 1 200 3.6 5.2 6.0 9.5 6.0 74 28 24 6.0 25
3 1 500 3.8 5.0 53 9.4 52 6.8 32 3.0 55 3.2
3 1 1000 3.6 4.9 45 7.6 59 71 36 3.6 4.4 3.9
3 4 200 7.1 8.8 84 12.2 7.0 50 2.8 0.8 4.9 2.2
3 4 500 5.0 5.4 6.7 10.9 7.0 4.9 2.2 14 5.6 1.2
3 4 1000 4.7 4.8 6.0 7.8 7.6 4.7 3.6 2.8 4.2 2.8
3 12 200 15.6 146 17.1 216 11.1 107 82 6.3 144 6.7
3 12 500 9.7 104 11.5 16.0 11.0 3.5 28 1.5 7.5 2.8
3 12 1000 6.4 6.8 82 105 104 33 3.2 1.6 54 3.3

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
: @ # ap in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameter
estimates B are either one-step efficient or OLS estimates. The columns correspond to the dimension K, the
number of lags p, the sample size n and the different choices for the distributions of the structural shocks, € +
for k=1,..., K. The distributions are reported in Table 1. Rejection rates are computed based on M = 2,500
Monte Carlo replications.

Hoza:aovs.H1
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TABLE S2: EMPIRICAL REJECTION FREQUENCIES FOR ALTERNATIVE TESTS: TRIANGULAR A

Test N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI
€1t ~ €2t

Sois 4.8 4.9 54 71 42 7.1 3.7 39 6.3 4.7
Sonestep 8.0 6.7 69 6.9 47 6.3 4.9 55 7.1 5.3
gbw 4.2 3.8 40 66 4.7 3.7 3.2 3.8 4.1 4.0
BKRPW 4.4 4.1 4.4 4.2 58 284 5.1 57 6.5 5.2
LMPML;t 5.1 4.9 49 6.5 91 83 66.7 814 59 850
LMGMM,LL 1.7 1.6 3.6 11.1 6.9 7.2 6.4 6.1 1.9 5.1
LMGMM Kew 1.4 2.1 3.8 17.2 9.9 8.0 6.1 5.9 1.2 5.2
LRPML;t 259 11.3 65 4.8 49 1.6 100.0 100.0 11.5 100.0
LRGMM,LL 3.5 7.4 89 159 124 98 5.9 58 7.5 4.6
LRGEMM,Kew 6.3 77123 222 163 129 6.4 6.2 6.8 4.9
WPMLt 4.5 7.4 9.2 104 11.2 80 66.2 699 83 69.6
WGMM,LL 120 179 18.8 225 17.5 14.6 6.6 6.8 15.3 5.6

WGMM, Kew 19.3 21.8 251 230 165 15.8 7.1 7.0 19.1 5.8

Note: The table reports empirical rejection frequencies for tests of the hypothesis Ho : &« = ap vs. H1 : @ # o
with 5% nominal size for the SVAR(1) model with K = 2 and T' = 500, and ap = 0.5594. S,1s denotes the semi-
parametric score test using OLS estimates for [, S'(mﬁstep uses one-step efficient estimates. LMPML’t, WPMLE and
LRFPML:t denote the pseudo-maximum likelihood tests based on Gouriéroux et al. (2017), assuming t-distributed
shocks. LMGEMMLL yGMMLL g LREMMLL denote the GMM-based tests based on Lanne and Luoto (2021)
with one co-kurtosis condition based on €3,e;. LMEMMKew yyGMM Kew o), q [ REMMKew Jonote the correspond-
ing GMM-based tests of Keweloh (2021) using both co-kurtosis conditions. Finally, SPW and BKRPY denote
the bootstrapped GMM-based and non-parametric test of Drautzburg and Wright (2023), respectively. The
columns correspond to different choices for the distributions of the structural shocks, €, for k =1,..., K. The
distributions are reported in Table 1. The tests of Drautzburg and Wright (2023) use 500 bootstrap replications
to simulate the null distribution of the test statistics. Rejection rates are computed based on M = 1,000 Monte
Carlo replications.
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TABLE S3: EMPIRICAL REJECTION FREQUENCIES: OPTIMAL KNOT SELECTION

n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

200 5.2 4.6 5.8 6.1 44 55 59 6.6 5.0 7.3
500 4.7 4.1 5.0 5.7 4.7 56 5.5 6.4 49 75
1000 4.6 4.9 44 3.7 46 5.7 5.3 6.7 46 83

200 5.0 5.9 5.7 5.6 3.7 51 46 46 46 5.3
500 4.8 4.8 4.8 5.6 44 57 58 5.8 42 6.0
1000 4.2 5.0 5.0 45 4.8 52 5.1 6.1 4.8 6.4

12 200 7.0 6.5 74 7.8 5.2 48 46 4.0 6.8 3.5
12 500 5.7 6.6 6.4 6.2 46 49 41 4.8 5.3 4.5
12 1000 0.4 5.2 5.5 5.0 5.6 49 43 4.7 5.7 54

200 9.3 6.5 71 98 76 6.9 438 5.2 49 56
500 5.0 5.3 5.9 73 5.0 6.1 5.8 7.6 5.2 6.8
1000 5.0 5.8 5.3 5.9 4.7 58 6.3 9.1 49 9.0

200 6.1 8.4 9.2 11.0 6.2 60 29 2.3 5.8 3.1
500 5.7 5.7 6.8 8.6 5.6 50 46 4.7 46 3.9
1000 5.4 5.2 5.7 b7 5.2 52 5.0 6.1 44 6.1

12 200 13.0 140 148 156 127 83 7.0 5.5 12.8 5.8
12 500 94 103 10.2 124 83 45 33 2.5 6.8 3.2
12 1000 6.8 7.3 7.7 8.2 73 51 4.2 4.3 56 44

I N N = )

I N N e

W wwWw|www|www| ||| X

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
Hoy:a=aovs. Hi : @ # ap in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameter
estimates ﬁ are OLS estimates. For each density score the number of B-splines is determined by cross-validation.
The columns correspond to the dimension K, the number of lags p, the sample size n and the different choices
for the distributions of the structural shocks, ey, for k = 1,..., K. The distributions are reported in Table 1.
Rejection rates are computed based on M = 2,500 Monte Carlo replications.
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can arise. First, the computational costs for constructing the confidence sets in Algorithm
1 increase substantially as one must evaluate the test at each point of the grid. Even in the
most parsimonious specification for K = 5 such a grid is 10 dimensional. We note that this
bottleneck is not specific to our approach but arises for most weak identification robust tests
when constructing confidence sets.

Second the number of finite dimensional nuisance parameters 8 increases rapidly when the
dimension of the SVAR model increases. For instance for K = 5 and p = 12 the number
of nuisance parameters Lg is around 300. This has several consequences. First, when n is
smaller than the number of nuisance parameters the test does not exist anymore as the inverse
of jn,'y,ﬂﬁ is not defined. Second, even when the number of nuisance parameters is proportional
(but smaller) than the sample size the asymptotic theory of our paper may not provide a good
approximation to the finite sample performance. The reason is that our theory is developed for
Lg fixed (hence Lg/n — 0). Extending the theory to the case where Lg may increase with n is
an interesting topic for future work.

That said, it is of interest to explore the finite sample performance of the test in these
settings. Table S4 reports the empirical rejection frequencies for the score test for larger SVARs
with K = 5. All other settings for the simulation design are similar as above. We exclude
n = 200 as the test is not defined for all specifications for this sample size. We find that the
test based on one-step efficient estimates behaves well when p = 1, reasonably well when p = 4
and quite erratic when p = 12. We therefore recommend keeping the lag length modest when

considering larger SVAR models.
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TABLE S4: EMPIRICAL REJECTION FREQUENCIES FOR LARGER SVARS
K »p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI
One-Step Efficient Estimates

1 500 141 146 14.0 13.6 7.8 87 6.2 5.5 7.0 44
1 1000 10,9 109 11.2 10.7 6.0 74 6.3 5.3 5.5 4.5

4 500 149 182 172 179 98 84 5.0 4.0 70 23
4 1000 143 149 149 128 6.8 89 64 5.6 76 5.1

12 500 0.4 0.3 04 0.5 0.6 04 0.0 0.0 04 0.0
12 1000 176 188 18.6 15.1 91 71 28 1.9 5.6 1.1

OLS Estimates

1 500 94 112 11.7 16.1 6.6 45 19 1.0 40 1.2
1 1000 6.8 8.3 9.1 124 6.1 48 3.2 2.0 4.2 1.7

4 500 16.4 207 21.1 25.2 74 16 0.5 0.0 42 0.0
4 1000 11.8 13.5 14.7 13.6 72 24 11 0.3 3.2 06

12 500 56.4 60.5 59.9 550 164 86 2.2 0.2 26.7 0.6
12 1000 285 278 30.7 276 108 23 09 0.1 5.0 04

Cu Ot | Ot Ot | Ot Ot

v Ot | Ot Ot | Ot Ot

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
Hy: o= ag vs. Hi : @ # «p in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameters
[ are estimated using either one-step efficient estimates or OLS. For each density score the number of B-splines
is fixed at B = 6. The columns correspond to different choices for the distributions of the structural shocks, € +
for k=1,..., K. The distributions are reported in Table 1. Rejection rates are computed based on M = 2,500
Monte Carlo replications.
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S5.4 Coverage and length of confidence sets

In this section, we consider evaluating our methodology for constructing confidence sets for
smooth functions of the SVAR parameters as discussed in Section 5. We focus on evaluating
the coverage and length of the confidence sets for structural impulse response functions, see
Example 5.1 for the details.

We consider a similar simulation set up as above and discuss the results for the SVAR(1)
model with K = 2, T' = 500, and two independent shocks drawn from the same distribution,
as listed in Table 1. In each case, the confidence set is calculated using Algorithm 2 for the
structural impulse response of the first variable to the second shock and we report the coverage
rate and length for horizons 0-12. Further, we compare our approach to the identification robust
methods of Drautzburg and Wright (2023), for which we change step (i) in Algorithm 2 and
replace the efficient score test by the tests of Drautzburg and Wright (2023).

Figure S1 shows the empirical coverage rates. Not surprising we generally find that the two-
step Bonferroni approach is conservative; all empirical coverage rates are above the nominal
90% level. This holds for all horizons, densities and methods considered.

That said, we find that if the efficient score test, based on one-step efficient estimates, is
used as the first step in the Bonferroni method the coverage becomes much closer to the nominal
size. This holds for nearly all densities, the exception being the t densities that are very close
to Gaussian, where there is generally very low power.

Figure S2 shows the length of the confidence intervals. We find that efficient score approach
gives the smallest length among all procedures considered and for all densities. The differences
between the methods varies; for some densities all methods give comparable intervals, but for
others the efficient score approach can give intervals that are up to 30% shorter in length. This
holds especially at longer horizons.

We conclude that the two-step Bonferroni method, where the first step is based on the effi-

cient score test, gives substantial efficiency improvements when compared to existing methods.
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FIGURE S1: COVERAGE RATES OF Cj, 4.4,0.9
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Note: The figure reports empirical coverage rates of confidence intervals at individual horizons for the impulse
response of the first variable to the second shock with 90% nominal coverage for the SVAR(1) model with K = 2
and T = 500. 5’018 denotes the semi-parametric score test using OLS estimates for f, gonestep uses one-step
efficient estimates. GMMP" denotes the GMM-based test of Drautzburg and Wright (2023) and BKR”W
denotes the non-parametric test of Drautzburg and Wright (2023). The tests of Drautzburg and Wright (2023)
use 500 bootstrap replications to obtain critical values. Coverage is computed using M = 1,000 Monte Carlo
replications.
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FIGURE S2: AVERAGE LENGTH OF Cj, 44,09
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Note: The figure reports average length of confidence intervals at individual horizons for the impulse response
of the first variable to the second shock with 90% nominal coverage for the SVAR(1) model with K = 2 and
T = 500. 5’015 denotes the semi-parametric score test using OLS estimates for 3, Sonestep uses one-step efficient
estimates. GMMPW denotes the GMM-based test of Drautzburg and Wright (2023) and BKRPY denotes
the non-parametric test of Drautzburg and Wright (2023). The tests of Drautzburg and Wright (2023) use 500
bootstrap replications to obtain critical values. Average length is computed using M = 1,000 Monte Carlo
replications.
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S5.5 Point estimation results

Table S5 shows the Root Mean Squared Errors (RMSEs) for parameter estimates & in the
K-variable SVAR(1) model with K = 2,7 = 500. We compare the performance of different
estimators and their one-step efficient counterparts as discussed in Section 6. Specifically, we
consider the psuedo maximum likelihood estimator of Gouriéroux et al. (2017) and the moment
estimators of Lanne and Luoto (2019) and Keweloh (2021) as initial estimators. For each of
these we compute the corresponding one-step efficient estimate from (29).

The results show that if the true density is Gaussian or close to Gaussian there is no
advantage in doing a one-step efficient update. Intuitively, in these settings the efficient scores
are noisy and add little additional information to the initial estimate, implying that the mean
squared errors do not improve. In contrast, when the underlying density is away from the
Gaussian (as imposed asymptotically by Assumption 6.1) the one-step efficient estimates always
have lower RMSEs. The gains can be large, and appear to outweigh the small relative losses

that are sometimes incurred for densities close to Gaussian.

TABLE S5: EFFICIENCY OF ONE-STEP UPDATED ESTIMATES &

PML! GMM*EE GM MEew
~ ~onestep N ~onestep ~ ~onestep
n Opn  Qn Qn  Qp On  Qpn

N(0,1) 0.207 0.235 0.188 0.194 0.194 0.194
t(15) 0.137 0.146 0.156 0.147 0.154 0.148
t(10) 0.103 0.108 0.129 0.113 0.120 0.114
t(5) 0.051 0.056  0.082 0.061 0.070 0.061
SKU 0.042 0.032 0.071 0.037 0.058 0.035
KU 0.041 0.026 0.082 0.041 0.068 0.038
BM 0.250 0.070 0.030 0.016 0.016 0.015
SPB 0.250 0.090 0.027 0.012 0.013 0.012
SKB 0.138 0.067 0.163 0.074 0.160 0.074
TRI 0.250 0.113 0.025 0.012 0.012 0.012

Note: The table reports Root Mean Squared Errors (RMSEs) for parameter estimates & in the K-variable
SVAR(1) model with K = 2,7 = 500. The rows correspond to different choices for the distributions of the
structural shocks, €k, for £k =1,..., K. The distributions are reported in Table 1. RMSEs are computed based
on M = 2,500 Monte Carlo replications.
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S6 Additional empirical results

S6.1 Alternative parametrization of Baumeister and Hamilton (2015) model

This section presents results from an alternative parametrization of the Baumeister and Hamil-
ton (2015) model where A~ is expressed as follows:
Afl(g,g) _ Alj Alj _ [ 0 cos(§) —sin(¢) 7 ¢ € 0.20) (534)
a1 A oy 03 sin(§)  cos(§)

The sign restrictions of the original model, which are formulated on demand and supply
elasticities as well as scaling parameters (see Example S1.1), imply that Aﬁl > O,Aﬁl <
0,142_11 > 0 and A2_21 > 0. The parametrization in (S34) translates the sign restrictions into
constraints imposed on (&, o). For the alternative parameterization, we assume that o1, 02,03 >
0, which corresponds to imposing the identification restriction ¢ € (0,7/2).5” Hence, for
Algorithm 1, we set up a grid of 500 grid-points in £ € (0,7/2). Note that there is a direct
mapping between the two parametrizations that given (£,0) lets us recover the elasticities
(a?,a®) from the main parametrization discussed in the paper. Specifically, we can define
g(&, o) as the following (smooth) vector-valued function which recovers the structural elasticities

(a?, ) from the rotation angle a.

g(&,0) = <ad’ as>';: (m-sin(&)wa-cos(é) az-cos(£>+os-sin(£))' ($35)

o1-sin(§) ) o1-cos(§)

Since g(&, 0) is a smooth function, we can use Algorithm 2 to recover confidence sets for
the structural elasticities (ad, a®). To this purpose, we define a grid with 250,000 equally-spaced
grid points for (a?,a®) € [-3,0) x (0, 3], similar to the grid used in the main parametrisation.
Similarly, we can use Algorithm 2 to directly recover confidence bands for the impulse response
functions.

Figures S3 and S4 report the confidence sets for labor demand and labor supply elasticities,
as well as confidence bands for the impulse response functions, respectively, obtained using the
alternative parametrization. Overall, the results are very close to the ones reported for the main
parametrization. Due to the Bonferroni procedure of Algorithm 2, the confidence set for the
elasticites is slightly wider than the one reported in the main text of the paper based on the
alternative parametrization. For the IRF bands, there are also slight differences in the widths

of the impulse response bands.

8195, o3 > 0 is trivial, since these capture standard deviations of the reduced form SVAR residuals. oz > 0 can

be verified from a Cholesky decomposition of the estimated reduced-form errors of the SVAR.
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FIGURE S3: CONFIDENCE SETS FOR LABOR DEMAND AND SUPPLY ELASTICITIES
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Note: 95% (light blue) and 67% (dark blue) confidence regions for labor demand and supply elasticities obtained
using Algorithm 2 with 250,000 equally-spaced grid points for (a?,a®) € [-3,0) x (0, 3].

FIGURE S4: IRF CONFIDENCE BANDS FOR LABOR DEMAND AND SUPPLY SHOCKS
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Note: 95% (light blue) and 67% (dark blue) confidence bands for impulse responses to labor supply and labor
demand shocks, obtained using using Algorithm 2 with 500 equally-spaced grid points for £ € [0,7/2].
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S6.2 Distributions of recovered structural shocks

In this section, we present kernel density estimates for the structural errors recovered from the
empirical studies in the paper. To obtain estimates of the structural shocks, we require an
estimate of a, which we obtained using a GMM estimator employing the moment conditions
of Keweloh (2021). Using the estimate, we can recover the structural shocks é (&, 3) for
k=1,...,K. We plot histograms of the structural errors in Figure S6.2 for the model of
Baumeister and Hamilton (2015) and on Figure S6.2 for the model of Kilian and Murphy

(2012), together with their kernel density estimates and an overlaid standard gaussian density.

FIGURE S5: DISTRIBUTIONS OF SHOCKS — BAUMEISTER AND HAMILTON (2015) MODEL
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Note: Histogram (light gray) and kernel density estimates (black solid) of the recovered structural shocks ég , for
k = 1,2 from the Baumeister and Hamilton (2015) model, overlaid with a standard normal density (red dashed).

FIGURE S6: DISTRIBUTIONS OF SHOCKS — KILIAN AND MURPHY (2012) MODEL
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Note: Histogram (light gray) and kernel density estimates (black solid) of the recovered structural shocks ég,; for
k =1,2,3 from the Kilian and Murphy (2012) model, overlaid with a standard normal density (red dashed).
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