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S1 Parametrization of the semi-parametric SVAR model

Under the main assumptions of the paper (i.e. Assumptions 2.1 and 2.2) the parameters of

the SVAR are generally not locally identified. Even under the additional assumption that the

errors ϵk,t follow non-Gaussian distributions, we have that A(α, σ) can only be identified up to

permutation and sign changes of its rows (e.g. Comon, 1994).

Therefore, to ensure that we study economically interesting permutations we typically need

to impose additional identifying restrictions, such as zero or sign restrictions. The choice for

such restrictions interacts with the chosen parametrization for A(α, σ) for which we give a few

examples.

Example S1.1 (Supply and demand): Following Baumeister and Hamilton (2015), when the

SVAR defines a demand and a supply equation we can set

A−1(α, σ) =

 −αd 1

−αs 1

−1 σ1 0

0 σ2

 , (S1)

where α = (αd, αs)′ are the short run demand and supply elasticities, and σ = (σ1, σ2)
′ scales

the structural shocks. With independent non-Gaussian errors A is identified up to permutation

and sign changes of its rows. To pin down an economically interesting rotation we can impose

the sign restrictions αd ≤ 0, αs ≥ 0 and σ1, σ2 > 0.

Example S1.2 (Rotation matrix):A canonical choice sets

A−1(α, σ) = Σ1/2(σ)R(α) , (S2)

where Σ1/2(σ) is a lower triangular matrix (with positive diagonal elements) defined by the vector

σ and R(α) is a rotation matrix that is parametrized by the vector α. Different parametrizations

for the rotation matrix are possible, see Magnus et al. (2021) for a detailed discussion. Similar

to in Example S1.1, even with independent non-Gaussian errors R(α) is not uniquely identified

and additional zero-, sign-, or long-run-restrictions are needed to pin down the desired rotation.

As the above examples make clear, several commonly used parametrizations can be adopted.

Three general comments apply.

First, pinning down a specific permutation, as in the first example, is necessary for the

economic interpretation of the results, but it is not necessary for the score testing methodology

of the paper which fixes α under the null.
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Second, the robust non-Gaussian approach of this paper can be combined with any of the

existing SVAR identification approaches to obtain an economically interesting specification.

Besides zero and sign restrictions one can also think of combining with external instruments or

more general prior information as in Baumeister and Hamilton (2015) or Braun (2021).

Third, often multiple parametrizations are possible. We recommend jointly testing the

possibly weakly identified parameters when they are of direct economic interest (e.g. Example

1). In contrast, when the interest is in more general functions, such as impulse responses or

forecast error variances, we suggest to parameterize A such that α is as low-dimensional as

possible, e.g. via the rotation matrix specification as in Example 2. In this way the Bonferroni

procedure of Algorithm 2 can be executed over the smallest possible grid for α, which reduces

the computational burden.

S2 Technical details for the main proofs

Here we establish some technical details utilised in the proofs in section A of the main text.

S2.1 Markov structure

Define Zt := (Y ′
t , Y

′
t−1, . . . , Y

′
t−p+1)

′, Cθ := (c′θ, 0
′, . . . , 0′)′,

Bθ :=



Bθ,1 Bθ,2 · · · Bθ,p−1 Bθ,p

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


, Dθ :=



A−1
θ

0

0
...

0


and note that we can write

Zt = Cθ + BθZt−1 + Dθϵt. (S3)

This can be re-written in de-meaned form as

Z̃t = BθZ̃t−1 + Dθϵt (S4)

with Z̃t := Zt −mθ, for mθ := (
∑∞

i=0 Bθ)Cθ = (I − Bθ)
−1Cθ.

Lemma S2.1: Suppose that assumption 2.1 holds. Define Uθ,t as the (unique, strictly) stationary
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solution to (S3). Then Uθ,t has the representation

Uθ,t = mθ +

∞∑
j=0

Bj
θDθϵt−j , mθ := (I − Bθ)

−1Cθ,

∞∑
j=0

∥Bj
θ∥ <∞.

If ρθ is the largest absolute eigenvalue of the companion matrix Bθ and υ > 0 is such that

ρθ + υ < 1, then

E ∥Uθ,t −mθ∥ρ ≤ E ∥Dθϵt∥ρ

1− (ρθ + υ)ρ
, ρ ∈ [1, 4 + δ].

Proof. Rewriting (S3) as (S4) and applying Theorem 11.3.1 in Brockwell and Davis (1991) yields

the first part. For the second part,

∥Uθ,t −mθ∥ ≤
∞∑
j=0

∥Bj
θ∥∥Dθϵt−j∥ ≤

∞∑
j=0

∥Bθ∥j∥Dθϵt−j∥ ≤
∞∑
j=0

(ρθ + ν)j∥Dθϵt−j∥.

Since E ∥Dθϵt−j∥ρ = E ∥Dθϵt∥ρ <∞ for all t ∈ N, all j ≥ 0 and ρ ∈ [1, 4 + δ], it follows that

E ∥Uθ,t −mθ∥ρ ≤
∞∑
j=0

(ρθ + ν)jρ E ∥Dθϵt−j∥ρ =
E ∥Dθϵt∥ρ

1− (ρθ + ν)ρ
.

Lemma S2.2: Let Qn,θ be the probability measure corresponding to q̄n,θ :=
1
n

∑n
t=1 qθ,t, where qθ,t

is the density of Xt under P
n
θ (1 ≤ t ≤ n).S1 Then Qn,θ

TV−−→ Qθ, where Qθ is the distribution

of the (unique, strictly) stationary solution to (1).

Proof. By Lemma S2.1, (S4) has a (unique, strictly) stationary solution with finite second

moments. Applying Theorem 2 in Saikkonen (2007) gives that the Markov chain (Z̃t) is V-

geometrically ergodic with V(x) = 1 + ∥x∥2. That is, for an invariant probability measure π̃θ,

some r ∈ (1,∞) and some R <∞

∞∑
n=1

rn∥P̃n
θ (·, z̃)− π̃θ∥TV ≤

∞∑
n=1

rn∥P̃n
θ (·, z̃)− π̃θ∥V ≤ RV(z̃) = R(∥z̃∥2 + 1) <∞, (S5)

where P̃n
θ (·, z̃) is the n-step transition probability and z̃ is the initial condition.S2 π̃θ is the

distribution of Uθ,t −mθ as defined in Lemma S2.1 (Kallenberg, 2021, Theorem 11.11).

Let fθ : RKp → RK be defined as

fθ(x) :=
[
IK 0K×K(p−1)

]
(x+mθ),

S1Here, and throughout the appendix, any reference to the density of Xt is to be understood as to the density of
the non-deterministic parts of Xt.

S2The norm ∥ν∥V is defined by ∥ν∥V := supf≤V

∣∣∫ f dν
∣∣ where the supremum is taken over all measurable functions

dominated by V for any probability measure ν.
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i.e. the function which adds mθ to its argument and then returns the first K elements. The

distribution of Xt under P
n
θ (given the initial condition z̃) is then Qt−1

θ (·, z̃) = P̃ t−1
θ (·, z̃) ◦ f−1

θ ,

i.e. the pushforward of P̃ t−1
θ (·, z̃) under fθ. Henceforth we shall omit the z̃ in the notation.

Similarly let Qθ = π̃θ ◦ f−1
θ , i.e.the pushforward of π̃θ under f . That Qθ is the distribution of

the (unique, strictly) stationary solution to (1) can be seen by noting that the first K elements

of Uθ,t form a (strictly) stationary time series and satisfy the defining equation (1); by Theorem

11.3.1 in Brockwell and Davis (1991) it is therefore the unique solution. Then by (S5),∥∥∥∥∥ 1n
n∑

t=1

Qt
θ −Qθ

∥∥∥∥∥
TV

≤ 1

n

n∑
t=1

∥∥Qt
θ −Qθ

∥∥
TV

≤ 1

n

n∑
t=1

∥∥∥P̃ t−1
θ − π̃θ

∥∥∥
TV

≤ 1

n

n∑
t=1

∥∥∥P̃ t
θ − π̃θ

∥∥∥
TV

+ o(1)

→ 0.

S2.2 Moment bounds

Lemma S2.3: Suppose that assumption 2.1 holds. Then for any sequence θn = (γ + gn/
√
n, η)

with gn → g ∈ RL, for some ρ > 0, under Pn
θn

(i) supn∈N E
[
∥ℓ̇θn∥2+ρ

]
<∞;

(ii) supn∈N E
[
∥ℓ̃θn∥2+ρ

]
<∞.

Proof. Since the deterministic terms in ℓ̇θn and ℓ̃θn are either constants or continuous functions

of γ (by Assumption 2.1(iii)), they are uniformly bounded, since {γ + gn/
√
n : n ∈ N} ∪ {γ} is

compact. It is therefore sufficient to show that under Pn
θn
, each of

sup
n∈N,1≤t≤n

E
[
|A(θn)k•Vθn,t|4+δ

]
, sup
n∈N,1≤t≤n

E
[
|ϕk(A(θn)k•Vθn,t)|4+δ

]
, sup
n∈N,1≤t≤n

E
[
∥Xt∥4+δ

]
,

is finite. Since under Pn
θn
, each A(θn)k•Vθn,t ∼ ηk, finiteness of the first two follow directly from

Assumption 2.1(ii). For the third, recurse equation (S3) backwards under θ = θn, to obtain

Zt =
t−1∑
j=0

Bj
θn
Cθn +

t−1∑
j=0

Bj
θn
Dθnϵt−j + Bt

θnZ0.
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Each of Bθ, Cθ, Dθ (depend on θ only through γ and) are continuous functions of γ, hence

ϱ := sup
n∈N

∥Bθn∥2 < 1, sup
n∈N

∥Cθn∥2 < C1, sup
n∈N

∥Dθn∥2 < C2,

where the first is due to Assumption 2.1(i). Since we condition on Z0, by Assumption 2.1(ii),

E ∥Zt∥4+δ ≲

(
C1

1− ϱ

)4+δ

+

(
C2

1− ϱ

)4+δ

E |ϵ1|4+δ + ∥Z0∥4+δ <∞. (S6)

As the bound on the right hand side is independent of t or n, the claim follows.

Lemma S2.4: Let Wn,t be as in the Proof of Proposition A.1 and suppose the conditions of that

Proposition hold. Then, Pn
θ [|

√
nWn,t|2+ρ] is uniformly bounded for some ρ > 0. In consequence,

under Pn
θ , Wn,t satisfies:

lim
n→∞

n∑
t=1

E
[
W 2

n,t1{|
√
nWn,t| > ε

√
n}
]
= 0, for any ε > 0. (S7)

Proof. Uniform boundedness of Pn
θ [|

√
nWn,t|2+ρ] implies:

lim
n→∞

n∑
t=1

W 2+ρ
n,t = 0,

which in turns implies (S7) (cf. Billingsley, 1995, page 362). For the uniform boundedness, as

2
√
nWn,t = g′ℓ̇θ(Yt, Xt) +

K∑
k=1

hk(Ak•(α, σ)Vθ,t),

and the hk are bounded, it suffices to note that by Lemma S2.3 E[(g′ℓ̇θ(Xt, Yt))
2+ρ] ≤ C under

Pn
θ for some ρ > 0.

S2.3 Log-likelihood ratios

Lemma S2.5 (DQM): Suppose that assumption 2.1 holds. Then with Wn,t and Un,t defined as

in the proof of Proposition A.1,

lim
n→∞

E
n∑

t=1

(Wn,t − Un,t)
2 = 0,

where the expectation is taken under Pn
θ .

Proof. We argue similarly to Lemma 7.6 in van der Vaart (1998). Let Vθ,t := Yt − BXt and

6



φ(v) = (g, η1h1, . . . , ηKhK) for v = (g, h) with g ∈ RL, h ∈ ˙H . Let

pθ(Yt, Xt) := |A(θ)|
K∏
k=1

ηk(Ak•(θ)Vθ,t)

sθ,u(Yt, Xt) := g′ℓ̇θ+uφ(v)(Yt, Xt) +
K∑
k=1

hk(Ak•(θ + uφ(v))Vθ+uφ(v),t)

1 + uhk(Ak•(θ + uφ(v))Vθ+uφ(v),t)

+

K∑
k=1

uh′k(Ak•(θ + uφ(v))Vθ+uφ(v),t)
[
D1,k,uVθ+uφ(v),t + D2,k,uXt

]
1 + uhk(Ak•(θ + uφ(v))Vθ+uφ(v),t)

,

with

D1,k,u := e′k

Lα∑
l=1

gα,lDα,l(θ + uφ(v)) + e′k

Lσ∑
l=1

gσ,lDσ,l(θ + uφ(v))

D2,k,u := −Ak•(θ + uφ(v))

Lb∑
l=1

Db,l(θ + uφ(v)).

By Assumption 2.1 and standard computations, the derivative of u 7→ √
pθ+uφ(v) at u = u is

1
2sθ,u

√
pθ+uφ(v) (everywhere). Inspection reveals that this is continuous in u.

For qθ,t the density of Xt under P
n
θ and sθ := sθ,0,

E
n∑

t=1

(Wn,t − Un,t)
2 =

1

n

n∑
t=1

∫ (√
n

[√
pθn
pθ

− 1

]
− 1

2
sθ

)2

pθqθ,t dλ

=

∫ (√
n
[√
pθn −√

pθ
]
− 1

2
sθ
√
pθ

)2

q̄n,θ dλ,

with q̄n,θ := 1
n

∑n
t=1 qθ,t. The integrand converges to zero as n → ∞ by the differentiability of

u 7→ √
pθ+uφ(v) at u = 0.S3 Let

Iθ,u,n :=

∫
s2θ,u pθ+uφ(v) q̄n,θ dλ =

∫
s2θ,u dGθ,u,n,

where Gθ,u,n is the distribution of (Yt, Xt) corresponding to the density pθ+uφ(v)q̄n,θ. By Lemma

S3.2 Gθ,u/
√
n,n

TV−−→ Gθ, defined by

Gθ(A) :=

∫
A
pθ d(λ(y)⊗Qθ(x)).

For any (un) ⊂ [0, 1] we have that s2
θ,un/

√
n
→ s2θ (pointwise). By Lemma S2.6 and Corollary

S3Note that pθn = pθn(g,h) = pθ+φ(v)/
√
n.
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2.9 in Feinberg et al. (2016), limn→∞ Iθ,un/
√
n,n =

∫
s2θ dGθ <∞ and hence

∣∣∣∣∫ 1

0
Iθ,u/

√
n,n du−

∫ 1

0

∫
s2θ dGθ du

∣∣∣∣ ≤ sup
u∈[0,1]

∣∣∣∣Iθ,u/√n,n −
∫
s2θ dGθ

∣∣∣∣→ 0.

By absolute continuity, Jensen’s inequality and the Fubini – Tonelli theorem,

∫ (√
n
[√
pθn −√

pθ
])2

q̄n,θ dλ ≤ 1

4

∫ ∫ 1

0

(
sθ,u/

√
n
√
pθ+uφ(v)/

√
n

)2
q̄n,θ dudλ ≤

∫ 1

0
Iθ,u/

√
n,n du.

Combine these observations with Proposition 2.29 in van der Vaart (1998).

Lemma S2.6: Suppose that assumption 2.1 holds. Let sθ,u and Gθ,u,n be as in the proof of Propo-

sition S2.5. Then for any (un)n∈N ⊂ [0, 1], s2
θ,un/

√
n
is asymptotically uniformly Gθ,un/

√
n,n–

integrable and sθ ∈ L2(Gθ).

Proof. That sθ ∈ L2(Gθ) follows from the moment bounds in Assumption 2.1(ii), the bounded-

ness of the hk, the form of ℓ̇θ given in equations (7) – (9) and Lemma S2.1 given that Qθ is the

law of the stationary solution to (1).

For the uniform integrability, let ϑn := θ + unφ(v)/
√
n→ θ and

sϑn,1(Yt, Xt) := g′ℓ̇ϑn(Yt, Xt)

sϑn,2(Yt, Xt) :=
K∑
k=1

hk(Ak•(ϑn)Vϑn,t)

1 + unhk(Ak•(ϑn)Vϑn,t)/
√
n

sϑn,3(Yt, Xt) :=
K∑
k=1

unh
′
k(Ak•(ϑn)Vϑn,t)

[
D1,k,un/

√
nVϑn,t + D2,k,un/

√
nXt

]
/
√
n

1 + unhk(Ak•(ϑn)Vϑn,t)/
√
n

It suffices to show that under Gθ,un/
√
n,n each sϑn,i (i = 1, 2, 3) has uniformly bounded 2 + ρ

moments for some ρ > 0 for all sufficiently large n.

We start with sϑn,2: since each hk is bounded, for all large enough n, each numerator is

uniformly bounded above and each denominator is uniformly bounded below, away from zero.

Thus there is a M such that |sϑn,2(Yt, Xt)| ≤M for all such n.

For sϑn,3, by assumption 2.1 part (iii), each D1,k,un/
√
n and D2,k,un/

√
n are uniformly bounded

for all large enough n; the same is true of ∥A(ϑn)−1∥2. Using this, the fact that Vϑn,t =

A (ϑn)
−1 ϵt and arguing similarly to as in the preceding paragraph we have that for some M

and all large enough n, |sϑn,3(Yt, Xt)| ≤M [∥ϵt∥+ ∥Xt∥]. Thus it is enough to verify that

sup
n≥N,1≤t≤n

Gθ,un/
√
n,n∥ϵt∥4+δ <∞, sup

n≥N,1≤t≤n
Gθ,un/

√
n,n∥Xt∥4+δ <∞. (S8)
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Under Gθ,un/
√
n,n, the elements ϵt,k are (independently across k) distributed according to ηk(1+

unhk/
√
n), so there are c, C <∞ such that

Gθ,un/
√
n,n∥ϵt∥4+δ ≤ Gθ,un/

√
n,n

[
K∑
k=1

ϵ2t,k

] 4+δ
2

≤ c
K∑
k=1

[(
1 +

h̄k√
n

)∫
|xk|4+δηk(xk) dxk

]
≤ C,

where |hk(x)| ≤ h̄k. By arguing analogously to as in in Lemma S2.3, one has (cf. (S6))

Gθ,un/
√
n,n∥Zt∥4+δ ≲

(
C1

1− ϱ

)4+δ

+

(
C2

1− ϱ

)4+δ

Gθ,un/
√
n,n|ϵ1|4+δ + ∥Z0∥4+δ,

which is uniformly bounded given the penultimate display.

Finally consider sϑn,1. It suffices to show that each component of ℓ̇ϑn has 4 + δ moment

bounded uniformly for all n ≥ N .S4 By Assumption 2.1(iii), by increasing N if necessary,

supϑ∈T |ζxl,k,j(ϑ)| ≤ M for all l, k, j and x ∈ α, σ and likewise supϑ∈T ∥Ak•(ϑ)Dbl(ϑ)∥ ≤ M .

Recall that Vϑn,t = A (ϑn)
−1 ϵt. Given (S8) and the observations in footnote S4 to complete the

proof it suffices to note that (for ϕk = d log ηk(x)
dx ) and some C <∞,

Gθ,un/
√
n,n|ϕk|4+δ ≤

(
1 +

h̄k√
n

)∫
|ϕ(x)|4+δηk(x) dx ≤ C.

Lemma S2.7: Let Wn,t be as in the Proof of Proposition A.1 and suppose the conditions of that

Proposition hold. Let Gθ be defined as in the Proof of Lemma S2.5. Then, under Pn
θ ,

lim
n→∞

E

∣∣∣∣∣
n∑

t=1

W 2
n,t −

τ2

4

∣∣∣∣∣ = 0, with τ2 := Gθ

(
g′ℓ̇θ(Y,X) +

K∑
k=1

hk(Ak•(θ)Vθ)

)2

.

Proof. Define

rθ(Xt) := E[sθ(Yt, Xt)
2|Xt], sθ(Y,X) := g′ℓ̇θ(Y,X) +

K∑
k=1

hk(Ak•(θ)Vθ),

where the conditional expectation is taken under Pn
θ . Since conditional expectations are L1 con-

S4The form each such component is that given in equations equations (7) – (9). Note here that each ϕk is
(implicitly) a function of ηk and thus when evaluating equations (7) – (9) at ϑn, the ϕk that appear are
ϕk,un,n, defined as

ϕk,u,n :=
d(log ηk(x) + log(1 + uhk(x)/

√
n))

dx
= ϕk +

uh′
k/

√
n

1 + uhk/
√
n
.

Since each hk, and h′
k are bounded, increasing N if necessary, one has for n ≥ N ,

|ϕk,un,n| ≤ |ϕk|+M.
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tractions, by Lemma S2.4, we have that Pn
θ [|rθ(Xt)|1+ρ/2] ≲ C <∞ and hence (|rθ(Xt)|1+ρ/2)t∈N

is uniformly Pn
θ –integrable. Moreover we have for Ft := σ(ϵ1, . . . , ϵt),

rθ(Xt) = E[sθ(Yt, Xt)
2|Xt] = E[sθ(Yt, Xt)

2|Ft−1],

as is clear from the definition of sθ.
S5 Hence (sθ(Yt, Xt)

2−rθ(Xt),Ft) is a martingale difference

squence and by Theorem 19.7 in Davidson (1994)

lim
n→∞

E

∣∣∣∣∣ 1n
n∑

t=1

[sθ(Yt, Xt)
2 − rθ(Xt)]

∣∣∣∣∣
1+ρ/2

= 0.

Now define uθ(Xt) := rθ(Xt) − E[rθ(Xt)], which satisfies Pn
θ [|uθ(Xt)|1+ρ/2] ≲ C < ∞ and is

evidently mean zero. By Theorem 3 in Saikkonen (2007), Zt and hence uθ(Xt) (e.g. Davidson,

1994, Theorem 14.1) has geometrically decaying β-mixing coefficients. Therefore, by Theorem

14.2 in Davidson (1994), (uθ(Xt)/n)n∈N,1≤t≤n is an L1–mixingale array with respect to the

filtration formed by Fn,t := σ(X1, . . . , Xt) relative to the sequence of positive constants

n−1 ≤ cn,t = max

{
1/n,

(
Pn
θ

[
|uθ(Xt)/n|1+ρ/2

])1/(1+ρ/2)
}

≤ n−1max{C, 1}.

By Theorem 19.11 in Davidson (1994),

lim
n→∞

E

∣∣∣∣∣ 1n
n∑

t=1

uθ(Yt, Xt)

∣∣∣∣∣ = 0.

It remains to show that 1
n

∑n
i=1 E[rθ(Xt)] → τ2. Since E[rθ(Xt)] = E[sθ(Yt, Xt)],

τ2n := Gθ,0,n

[
sθ(Y,X)2

]
=

1

n

n∑
t=1

E sθ(Yt, Xt)
2 =

1

n

n∑
t=1

E[rθ(Xt)],

where Gθ,0,n is as defined in the Proof of Lemma S2.5. That E 1
n

∑n
t=1 sθ(Yt, Xt)

2 ≲ C follows

from Lemma S2.4. Therefore, by Lemma S2.6, sθ(Y,X)2 is uniformly Gθ,0,n–integrable and also

τ2 <∞. Then, by Corollary 2.9 in Feinberg et al. (2016) and Lemma S3.2, τ2n → τ .

Lemma S2.8: In the setting of Proposition A.2,

log
pnθn(gn,h)

pnθn(g,h)
= oPn

θn(g,h)
(1).

S5See e.g. Theorem 7.3.1 in Chow and Teicher (1997) for the (almost sure) equality of the conditional expectations.

10



Proof. Since by Proposition A.1 and Example 6.5 in van der Vaart (1998) Pn
θn(g,h)

◁ ▷ Pn
θ it

suffices to show that the left hand side is oPn
θ
(1). We first show that

log
pnθn(gn,0)

pnθ
=

1√
n

n∑
t=1

g′ℓ̇θ(Yt, Xt)− E

(
1√
n

n∑
t=1

g′ℓ̇θ(Yt, Xt)

)2

+ oPn
θ
(1)

log
pnθn(g,0)

pnθ
=

1√
n

n∑
t=1

g′ℓ̇θ(Yt, Xt)− E

(
1√
n

n∑
t=1

g′ℓ̇θ(Yt, Xt)

)2

+ oPn
θ
(1)

For these log–likelihood expansions we may appeal to Lemma 1 in Swensen (1985). The

required Conditions (1.3) - (1.7) and (iii) of his Theorem 1 are all established in the proof of

Proposition A.1 (take each hk = 0). It remains to show condition (1.2) for each of the cases in

the above display. In particular, set

Wn,t :=
1

2
√
n
g′ℓ̇θ(Yt, Xt)

and (cf. equations (37), (38))

Un,t :=

[(
|A(θn(gn, h))|

|A(θ)|

)
×

K∏
k=1

ηk(Ak•(θn(gn, h))Vθn(gn,h),t)

ηk(Ak•(θ)Vθ,t)

]1/2
− 1

where we note that A(θ) = A(θn(0, h)) and Vθ = Vθn(0,h). We verify (1.2), i.e. that

lim
n→∞

E

[
n∑

t=1

(Wn,t − Un,t)
2

]
= 0,

under Pn
θ .

S6 The argument now follows similarly to that in Lemma S2.5. To simplify the nota-

tion, let pγ := p(γ,η) and ℓ̇γ := ℓ̇(γ,η) where η = (η1, . . . , ηK) will remain fixed. By Assumption

2.1 and standard computations, the derivative of γ 7→ √
pγ is 1

2 ℓ̇γ
√
pγ (everywhere). Inspection

reveals that this is continuous in γ.

Let γn := γ + gn/
√
n. For qθ,t the density of Xt under P

n
θ ,

E
n∑

t=1

(Wn,t − Un,t)
2 =

1

n

n∑
t=1

∫ (√
n

[√
pγn
pγ

− 1

]
− 1

2
g′ℓ̇γ

)2

pγqθ,t dλ

=

∫ (√
n
[√
pγn −√

pγ
]
− 1

2
g′ℓ̇γ

√
pγ

)2

q̄n,θ dλ,

with q̄n,θ := 1
n

∑n
t=1 qθ,t. The term inside the parentheses converges to zero as n → ∞ by the

S6This suffices as the second expansion is just the special case gn = g for each n ∈ N.
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differentiability of γ 7→ √
pγ and that (gn − g)′ℓ̇γ

√
pγ → 0 pointwise. Let

Iθ,u,n :=

∫
(g′ℓ̇γ+ugn)

2 pγ+ugn q̄n,θ dλ =

∫
(g′ℓ̇γ+ugn)

2 dGθ,u,n,

where Gθ,u,n is the distribution of (Yt, Xt) corresponding to the density pγ+ugn q̄n,θ. By Lemma

S3.2 Gθ,un/
√
n,n

TV−−→ Gθ, defined as in the proof of Lemma S2.5. For any (un) ⊂ [0, 1] we

have that (g′ℓ̇γ+ungn/
√
n)

2 → (g′ℓ̇γ)
2 (pointwise). Each component of ℓ̇γ ∈ L2(Gθ) by Lemma

S2.6 and moreover supn≥N Gθ,un/
√
n,n∥ℓ̇γ+ungn/

√
n∥2+ρ ≤ C for some ρ > 0.S7 Therefore, by

Corollary 2.9 in Feinberg et al. (2016), limn→∞ Iθ,un/
√
n,n =

∫
(g′ℓ̇γ)

2 dGθ <∞ and hence

∣∣∣∣∫ 1

0
Iθ,u/

√
n,n du−

∫ 1

0

∫
s2θ dGθ du

∣∣∣∣ ≤ sup
u∈[0,1]

∣∣∣∣Iθ,u/√n,n −
∫
(g′ℓ̇γ)

2 dGθ

∣∣∣∣→ 0.

By the continuous differentiability of
√
pγ , Jensen’s inequality and the Fubini – Tonelli

theorem,

∫ (√
n
[√
pγn −√

pγ
])2

q̄n,θ dλ ≤ 1

4

∫ ∫ 1

0

(
(g′ℓ̇γ+ugn/

√
n)
√
pγ+ugn/

√
n

)2
q̄n,θ dudλ

≤
∫ 1

0
Iθ,u/

√
n,n du.

Combining these observations with Proposition 2.29 in van der Vaart (1998) verifies (1.2) and

hence the claimed log – likelihood expansions follow from Lemma 1 in Swensen (1985).

To complete the proof set

ũk,n,t := Ak•(θn(gn, h))Vθn(gn,h),t, uk,n,t := Ak•(θn(g, h))Vθn(g,h),t,

and observe that

log
pnθn(gn,h)

pnθn(g,h)
−

[
log

pnθn(gn,0)

pnθ
− log

pnθn(g,0)

pnθ

]

=

K∑
k=1

n∑
i=1

log

(
1 +

hk(ũk,n,t)√
n

)
− log

(
1 +

hk(uk,n,t)√
n

)
,

where the bracketed term is oPn
θ
(1) by the preceding argument. Hence it suffices to show that

an arbitrary k-th element of the outer sum on the right hand side is also oPn
θ
(1). Let ε ∈ (0, 1)

S7This follows from (a) the continuity requirements in Assumption 2.1(iii), (b) under Gθ,un/
√
n,n we have that

e′kA(θn(ungn, 0))
−1Vθn(ungn,0) = ϵk ∼ ηk and (c) supn≥N,1≤t≤n Gθ,un/

√
n,n∥Xt∥4+δ < ∞, which can be shown

by an argument analogous to that which is established in the proof of Lemma S2.6.
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be fixed and define

En :=

{
max
1≤i≤n

|hk(ũk,n,t)|/
√
n ≤ ε

}
, Fn :=

{
max
1≤i≤n

|hk(uk,n,t)|/
√
n ≤ ε

}
.

Since hk is bounded Pn
θ (En∩Fn) → 1. On this set we may perform a two-term Taylor expansion

of log(1 + x) to obtain

log

(
1 +

hk(ũk,n,t)√
n

)
− log

(
1 +

hk(uk,n,t)√
n

)
=
hk(ũk,n,t)− hk(uk,n,t)√

n
− 1

2

hk(ũk,n,t)
2 − hk(uk,n,t)

2

n
+R

(
hk(ũk,n,t)√

n

)
−R

(
hk(uk,n,t)√

n

)
,

where |R(x)| ≤ |x|3. For the remainder terms one has for any ui,

n∑
i=1

∣∣∣∣R(hk(ui)√
n

)∣∣∣∣ ≤ max
1≤i≤n

hk(ui)√
n

1

n

n∑
i=1

hk(ui)
2 ≲

1√
n
,

since hk is bounded. For the first term in Taylor expansion, note that the derivative (in θ, σ) of

A(θ, σ) is bounded on a neighbourhood of (θ, σ) (by Assumption 2.1). Combine this with the

boundedness of h′k and the mean value theorem to conclude that

|hk(ũk,n,t)− hk(uk,n,t)| ≲ n−1/2∥gn − g∥ [∥ϵt∥+ ∥Xt∥] .

Using this, since hk is bounded,

|hk(ũk,n,t)2 − hk(uk,n,t)
2| ≲ n−1/2∥gn − g∥ [∥ϵt∥+ ∥Xt∥] .

Therefore, using (S6) and Assumption 2.1(ii)

n∑
i=1

∣∣∣∣hk(ũk,n,t)− hk(uk,n,t)√
n

− 1

2

hk(ũk,n,t)
2 − hk(uk,n,t)

2

n

∣∣∣∣
≲ ∥gn − g∥

(
1 +

1√
n

)
1

n

n∑
i=1

[∥ϵt∥+ ∥Xt∥] = oPn
γ
(1).

Lemma S2.9: In the setting of Proposition A.2,

log
pnθn(gn,hn)

pnθn(gn,h)
= oPn

θn(gn,h)
(1).
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Proof. For notational ease, set

uk,n,t := e′kA(θn(gn, h))Vθn(gn,h),t = e′kA(θn(gn, hn))Vθn(gn,hn),t.

One has that

log
pnθn(gn,hn)

pnθn(gn,h)
=

K∑
k=1

n∑
t=1

log(1 + hk,n(uk,n,t)/
√
n)− log(1 + hk(uk,n,t)/

√
n),

hence it suffices to show that each

ln,k :=
n∑

t=1

log(1 + hk,n(uk,n,t)/
√
n)− log(1 + hk(uk,n,t)/

√
n)

Pn
θn(gn,h)−−−−−−→ 0.

Let ε ∈ (0, 1) be fixed and define

En :=

{
max
1≤t≤n

|hk,n(uk,n,t)|/
√
n ≤ ε

}
;

Fn :=

{
max
1≤t≤n

|hk(uk,n,t)|/
√
n ≤ ε

}
.

Since hk is bounded, Pn
θn(gn,h)

Fn → 1; Pn
θn(gn,h)

En → 1 follows from Lemma S2.11. Hence

Pn
θn(gn,h)

Fn ∩ En → 1. On En ∩ Fn we can perform a two-term Taylor expansion of log(1 + x)

to obtain

log(1+hk,n(uk,n,t)/
√
n)− log(1 + hk(uk,n,t)/

√
n)

=
hk,n(uk,n,t)√

n
− 1

2

hk,n(uk,n,t)
2

n
−
hk(uk,n,t)√

n
+

1

2

hk(uk,n,t)
2

n

+R

(
hk,n(uk,n,t)√

n

)
−R

(
hk(uk,n,t)√

n

)
,

where |R(x)| ≤ |x|3. It follows that

ln,k =
1√
n

n∑
t=1

hk,n(uk,n,t)− hk(uk,n,t)−
1

2

1

n

n∑
t=1

[hk,n(uk,n,t)
2 − hk(uk,n,t)

2]

+

n∑
t=1

R

(
hk,n(uk,n,t)√

n

)
−R

(
hk(uk,n,t)√

n

)
.

We will show that the remainder terms vanish. In particular, one has

n∑
t=1

∣∣∣∣R(hk,n(uk,n,t)√
n

)∣∣∣∣ ≤ n∑
t=1

∣∣∣∣hk,n(uk,n,t)√
n

∣∣∣∣ ∣∣∣∣hk,n(uk,n,t)2n

∣∣∣∣ ≤ max
1≤t≤n

|hk,n(uk,t,n)|√
n

1

n

n∑
t=1

hk,n(uk,n,t)
2.
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By Markov’s inequality with Lemmas S2.10 and S2.11, this converges to zero in Pn
θn(gn,h)

prob-

ability. The same evidently holds for the case where hk,n = hk for each n ∈ N. Thus,

ln,k =
1√
n

n∑
t=1

hk,n(uk,n,t)− hk(uk,n,t)−
1

2

1

n

n∑
t=1

[hk,n(uk,n,t)
2 − hk(uk,n,t)

2] + oPn
θn(gn,h)

(1),

and it remains to show that 1√
n

∑n
t=1 hk,n(uk,n,t)−hk(uk,n,t) and

1
n

∑n
t=1[hk,n(uk,n,t)

2−hk(uk,n,t)2]

also converge to zero in probability. The second of these follows directly from Lemma S2.10,

Markov’s inequality and the reverse triangle inequality since

Pn
θn(gn,h)

(∣∣∣∣∣ 1n
n∑

t=1

[hk,n(uk,n,t)
2 − hk(uk,n,t)

2]

∣∣∣∣∣ > ε

)
≤ ε−1 1

n

n∑
t=1

E
[
hk,n(uk,n,t)

2 − hk(uk,n,t)
2
]

= ε−1 E
[
hk,n(uk,n,t)

2 − hk(uk,n,t)
2
]

→ 0.

For the remaining term, we start by noting that

E[hk,n(uk,n,t)− hk(uk,n,t)] =
E[(hk,n(ϵk)− hk(ϵk))hk(ϵk)]√

n

so ∣∣∣∣∣ 1√
n

n∑
t=1

E[hk,n(uk,n,t)]− E[hk(uk,n,t)]

∣∣∣∣∣ ≤ 1

n

n∑
t=1

∥hk,n − hk∥L2(Pn
θ )∥hk∥L2(Pn

θ ) → 0.

Thus it suffices to show that

1√
n

n∑
t=1

h̃k,n(uk,n,t)− h̃k(uk,n,t)
Pn
θn(gn,h)−−−−−−→ 0,

for h̃k,n(uk,n,t) := h̃k,n(uk,n,t)−E
[
h̃k,n(uk,n,t)

]
and h̃k(uk,n,t) := h̃k,n(uk,n,t)−E

[
h̃k(uk,n,t)

]
. By

the reverse triangle inequality and Lemma S2.10,

E
[(
h̃k,n(uk,n,t)− h̃k(uk,n,t)

)2]
→ 0, uniformly in t.

Using this, the independence of the uk,t,n and Markov’s inequality:

Pn
θn(gn,h)

(∣∣∣∣∣ 1√
n

n∑
t=1

h̃k,n(uk,n,t)− h̃k(uk,n,t)

∣∣∣∣∣ > ε

)
≤ 1

ε2
1

n

n∑
t=1

E
[(
h̃k,n(uk,n,t)− h̃k(uk,n,t)

)2]
→ 0.

This establishes that
∑K

k=1 ln,k
Pn
θn(gn,h)−−−−−−→ 0, as required.
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Lemma S2.10: In the setting of Proposition A.2, let uk,n,t := e′kAθn(gn,h)Vθn(gn,h),t. Under

Pn
θn(gn,h)

,

E [hk,n(uk,n,t)− hk(uk,n,t)]
2 ≤ ∥hn,k − hk∥L2(Pn

θ )

(
1 +

∥hk∥L∞(Pn
θ )√

n

)
.

Proof. Under Pn
θn(gn,h)

, uk,n,t ∼ ηk(1 + hk/
√
n), so for ϵk ∼ ηk, since hk is bounded,

E [hk,n(uk,n,t)− hk(uk,n,t)]
2

=

∫
[hn,k(x)− hk(x)]

2 ηk(x)(1 + hk(x)/
√
n) dx

≤ E[hk,n(ϵk)− hk(ϵk)]
2 +

1√
n
E[hk,n(ϵk)− hk(ϵk)]

2∥hk∥L∞(Pn
θ )

≤ ∥hn,k − hk∥L2(Pn
θ ) + ∥hn,k − hk∥L2(Pn

θ )∥hk∥L∞(Pn
θ )/

√
n.

Lemma S2.11: In the setting of Proposition A.2, let uk,n,t := e′kAθn(gn,h)Vθn(gn,h),t. Then

max
1≤t≤n

|hk,n(uk,n,t)|√
n

Pn
θn(gn,h)−−−−−−→ 0.

Proof. Under Pn
θn(gn,h)

, uk,n,t ∼ ηk(1 + hk/
√
n). By Lemma S2.10, hk,n(uk,n,t) is uniformly

square Pn
θn(gn,h)

–integrable and hence the Lindeberg condition holds for hk,n(uk,n,t)/
√
n:

lim
n→∞

n∑
t=1

E
[
hk,n(uk,n,t)

2

n
1
{
|hn,k(uk,n,t)| > δ

√
n
}]

= lim
n→∞

1

n

n∑
t=1

E
[
hk,n(uk,n,t)

21
{
|hn,k(uk,n,t)| > δ

√
n
}]

= lim
n→∞

E
[
hk,n(uk,n,t)

21
{
|hn,k(uk,n,t)| > δ

√
n
}]

= 0,

for any δ > 0. This implies the claimed uniform asymptotic negligability condition (e.g. Gut,

2005, Remark 7.2.4):

max
1≤t≤n

|hk,n(uk,n,t)|√
n

Pn
θn(gn,h)−−−−−−→ 0.
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S2.4 Scores

Lemma S2.12: Suppose Assumption 2.1 holds. Let pθ and q̄n,θ be as in the Proof of Proposition

S2.5 and suppose that θn = (γn, η) → (γ, η) = θ. Then

lim
n→∞

∫ ∥∥∥ℓ̃θnp1/2θn
q̄
1/2
n,θ − ℓ̃θp

1/2
θ q̄

1/2
n,θ

∥∥∥2 dλ = 0. (S9)

Proof. The integral in (S9) can be re-written as

L∑
l=1

∫ (
ℓ̃θn,l(y, x)pθn(y, x)

1/2 − ℓ̃θ,l(y, x)pθ(y, x)
1/2
)2

d(λ(y)⊗Qn,θ(x))

Inspection of the forms of ℓ̃ϑ and pϑ reveals that each integrand in the preceding display con-

verges to zero as n→ ∞. If we show that

lim sup
n→∞

∫
ℓ̃2θn,lpθn d(λ⊗Qn,θ) ≤

∫
ℓ̃2θ,lpθ d(λ⊗Qθ) <∞, (S10)

the proof will be complete in view of Lemma S2.2, Proposition S3.1 and Remark S3.1.S8 The

preceding display is equivalent to

lim sup
n→∞

∫
ℓ̃2θn,l dGθn,θ,n ≤

∫
ℓ̃2θ,l dGθ <∞,

for Gϑ,θ,n the distribution of (Y,X) corresponding to the density pϑq̄n,θ and Gθ as defined in

the proof of Lemma S2.5. That ℓ̃2θn,l → ℓ̃2θ,l pointwise is clear from its form, as given in Lemma

3.1. The finiteness of each of the integrals in the above display along with the fact that for some

N ∈ N and some ρ > 0,

sup
n≥N

∫
ℓ̃2+ρ
θn,l

dGθn,θ,n <∞

follows from the form of ℓ̃2ϑ,l (as given in Lemma 3.1) along with Assumption 2.1.S9

Lemma S2.13 (Smoothness): Suppose that Assumption 2.1 holds. Then for any sequence θn =

(γ + gn/
√
n, η) with gn → g ∈ RL,

Rn :=
1√
n

n∑
t=1

[
ℓ̃θn(Yt, Xt)− ℓ̃θ(Yt, Xt)

]
+ Ĩθ,ngn

Pn
θ−−→ 0.

S8Note that the product structure of λ⊗Qn,θ and Lemma S2.2 ensure that λ⊗Qn,θ → λ⊗Qθ setwise.
S9Cf. the proof of Lemma S2.3: arguing in essentially the same manner as there allows one to obtain uniform
boundedness of the 4 + δ moments of ϵk, ϕk(ϵk), Xt (uniformly in t) and all the non-stochastic terms in ℓ̃2θn,l.
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Proof. From (the proof of) Lemma S2.8 we have

lim
n→∞

∫ [√
n
(
p
1/2
θn

− p
1/2
θ

)
q̄
1/2
n,θ − 1

2
g′ℓ̇θp

1/2
θ q̄

1/2
n,θ

]2
dλ = 0, (S11)

whilst by Lemma S2.12 we have

lim
n→∞

∫ ∥∥∥ℓ̃θnp1/2θn
q̄
1/2
n,θ − ℓ̃θp

1/2
θ q̄

1/2
n,θ

∥∥∥2 dλ = 0. (S12)

Define

c−1
n :=

∫
p
1/2
θn
p
1/2
θ q̄n,θ dλ = 1− 1

2

∫
(p

1/2
θ − p

1/2
θn

)2q̄n,θ dλ.

We have

−n
(
p
1/2
θ − p

1/2
θn

)2
= −

(√
n
[
p
1/2
θn

− p
1/2
θ

]
− 1

2
g′ℓ̇θp

1/2
θ

)2

+

(
1

2
g′ℓ̇θp

1/2
θ

)2

− g′ℓ̇θp
1/2
θ

√
n
(
p
1/2
θn

− p
1/2
θ

)
,

and so by (S11) and the continuity of the inner product

∫
(p

1/2
θ − p

1/2
θn

)2q̄n,θ dλ =
1

n

∫
g′ℓ̇θp

1/2
θ q̄

1/2
n,θ

√
n
(
p
1/2
θn

− p
1/2
θ

)
q̄
1/2
n,θ dλ

− 1

n

∫ (
1

2
g′ℓ̇θp

1/2
θ

)2

q̄n,θ dλ+ o(n−1)

=
1

4
(n−1/2g)′İn,θ(n

−1/2g) + o(n−1),

where İn,θ :=
∫
ℓ̇θ ℓ̇

′
θpθ q̄n,θ dλ = O(1).S10 It follows that c−1

n = 1 − an with an → 0 and

nan = 1
4g

′İθg + o(1).

Rn is equal to the sum of

R′
1,n :=

1√
n

n∑
t=1

[
ℓ̃θn(Yt, Xt)

(
1− pθn(Yt, Xt)

1/2

pθ(Yt, Xt)1/2

)]
+

1

2
Ĩn,θgn ;

R′
2,n :=

1√
n

n∑
t=1

[
ℓ̃θn(Yt, Xt)

pθn(Yt, Xt)
1/2

pθ(Yt, Xt)1/2
− ℓ̃θ(Yt, Xt)

]
+

1

2
Ĩn,θgn .

Since Ĩn,θ is O(1) by Lemma S2.3 it suffices to prove that these converge in probability to zero

with gn replaced by g; let the corresponding expressions be called Ri,n for i = 1, 2.

S10This follows by noting that ∥ℓ̇θ∥2 is uniformly integrable under pθ q̄n,θ which is a consequence of Lemma S2.3.
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For R1,n we note that (omitting the arguments of the functions)

1√
n

n∑
t=1

ℓ̃θn

(
1−

p
1/2
θn

p
1/2
θ

)
+

1

2

1

n

n∑
t=1

ℓ̃θn ℓ̇
′
θg =

1

n

n∑
t=1

ℓ̃θn
√
n

(
1−

p
1/2
θn

p
1/2
θ

+
1

2
√
n
ℓ̇′θg

)

≤ 1

n

n∑
t=1

∥ℓ̃θn∥2 ×
1

n

n∑
t=1

[
√
n

(
1−

p
1/2
θn

p
1/2
θ

+
1

2
√
n
ℓ̇′θg

)]2
.

The first term on the second line is OPn
θn
(1) hence OPn

θ
(1) (by contiguity). The second has

L1(P
n
θ ) norm

E

∣∣∣∣∣∣ 1n
n∑

t=1

[
√
n

(
1−

p
1/2
θn

p
1/2
θ

+
1

2
√
n
ℓ̇′θg

)]2∣∣∣∣∣∣ ≤
∫ [√

n

(
p
1/2
θ − p

1/2
θn

+
1

2
√
n
ℓ̇′θgp

1/2
θ

)]2
q̄n,θ dλ→ 0,

where the convergence is by (S11). Therefore, it suffices to show that

1

n

n∑
t=1

ℓ̃θn ℓ̇
′
θ − Ĩn,θ

Pn
θ−−→ 0. (S13)

We may replace Ĩn,θ in (S13) with Ĩθ :=
∫
ℓ̃θ ℓ̇

′
θ dGθ with Gθ as defined in the proof of Lemma

S2.5. In particular, let Gθ,n := Gθ,0,n as defined in the proof of Lemma S2.5. Then, since

∥ℓ̃θ(Yt, Xt)ℓ̇θ(Yt, Xt)
′∥1+ρ/2 is uniformly L1(P

n
θ ) bounded (Lemma S2.3) one has

sup
n∈N

∫
∥ℓ̃θ ℓ̇′θ∥1+ρ/2 dGn,θ <∞,

and so ∥ℓ̃θ ℓ̇′θ∥ is uniformly Gθ,n–integrable. By Lemma S3.2 and Theorem 2.8 of Serfozo (1982),

Ĩn,θ =
1

n

n∑
t=1

E
[
ℓ̃θ(Yt, Xt)ℓ̇θ(Yt, Xt)

′
]
=

∫
ℓ̃θ ℓ̇

′
θ dGn,θ →

∫
ℓ̃θ ℓ̇

′
θ dGθ = Ĩθ. (S14)

For any M > 0, one has the decompositions

EM
n,1 :=

1

n

n∑
t=1

ℓ̃θn ℓ̇
′
θ −

1

n

n∑
t=1

ℓ̃θn1{∥ℓ̃θn∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M}

=
1

n

n∑
t=1

ℓ̃θn1{∥ℓ̃θn∥ > M}ℓ̇′θ +
1

n

n∑
t=1

ℓ̃θn1{∥ℓ̃θn∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ > M}
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and

EM
2 := Ĩθ −

∫
ℓ̃θ ℓ̇

′
θ1{∥ℓ̃θ∥ ≤M}1{∥ℓ̇θ∥ ≤M} dGθ

=

∫
ℓ̃θ ℓ̇

′
θ1{∥ℓ̃θ∥ > M}dG+

∫
ℓ̃θ ℓ̇

′
θ1{∥ℓ̃θ∥ > M}1{∥ℓ̇θ∥ > M}dGθ.

Additionally, for E taken under Pn
θ , define

EM
n,3 :=

1

n

n∑
t=1

ℓ̃θn1{∥ℓ̃θn∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M} − E
[
ℓ̃θn1{∥ℓ̃θn∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M}

]
;

EM
n,4 := E

1

n

n∑
t=1

ℓ̃θn1{∥ℓ̃θn∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M} −
∫
ℓ̃θ ℓ̇

′
θ1{∥ℓ̃θ∥ ≤M}1{∥ℓ̇θ∥ ≤M}dGθ.

Since ∥ℓ̃θ ℓ̇′θ1{∥ℓ̃θ∥ > M}∥ ≤ ∥ℓ̃θ ℓ̇′θ∥, ∥ℓ̃θ ℓ̇′θ1{∥ℓ̃θ∥ > M}1{∥ℓ̇θ∥ > M}∥ ≤ ∥ℓ̃θ ℓ̇′θ∥ and ∥ℓ̃θ ℓ̇′θ∥ is

Gθ–integrable by Lemma S2.3, by the dominated convergence theorem, for any δ > 0 there is

an M such that EM ′
2 < δ for M ′ ≥ M . For any M > 0, by Theorem 3 in Saikkonen (2007),

Theorem 14.1 in Davidson (1994) and Theorem 2 in Kanaya (2017) one has (cf. Lemma S2.14

below)

EM
n,3 = OPn

θ
(M2/

√
n).

For EM
n,4 we introduce a new measure: define µn as

µn(A) :=

∫
A
cnpθn(x, y)

1/2pθ(x, y)
1/2 d(λ(y)⊗Qn(x)).

By Lemma S3.2 one has that µn → G, as well as Gn,θ → G, in TV. Then, by Cauchy – Schwarz

and Lemma S2.3

c−1
n

∫
ℓ̃θn1{∥ℓ̃θn∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M} dµn −

∫
ℓ̃θ1{∥ℓ̃θ∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M}dGn,θ

=

∫ (
ℓ̃θn1{∥ℓ̃θn∥ ≤M}p1/2θn

− ℓ̃θ1{∥ℓ̃θ∥ ≤M}p1/2θ

)
ℓ̇′θ1{∥ℓ̇θ∥ ≤M}p1/2θ d(λ⊗Qθ,n)

=

∫ (
ℓ̃θn1{∥ℓ̃θn∥ > M}p1/2θn

− ℓ̃θ1{∥ℓ̃θ∥ > M}p1/2θ

)
ℓ̇′θ1{∥ℓ̇θ∥ ≤M}p1/2θ d(λ⊗Qθ,n)

+

∫ (
ℓ̃θnp

1/2
θn

− ℓ̃θp
1/2
θ

)
ℓ̇′θ1{∥ℓ̇θ∥ ≤M}p1/2θ d(λ⊗Qθ,n)

≲ o(1) + sup
n∈N

Eθn

[
∥ℓ̃θn∥21{∥ℓ̃θn∥ > M}

]
+ sup

n∈N
Eθ

[
∥ℓ̃θ∥21{∥ℓ̃θ∥ > M}

]
.

The last two right hand side terms can be made arbitrarily small, uniformly in n, by taking M
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large enough; the o(1) term follows from (S12) and is uniform in M . Now, by Gn,θ
TV−−→ Gθ,∣∣∣∣∫ ℓ̃θ1{∥ℓ̃θ∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M}dGθ,n −

∫
ℓ̃θ1{∥ℓ̃θ∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M} dGθ

∣∣∣∣
≤M2∥Gn,θ −Gθ∥TV .

Since µn → Gθ and Gn,θ → Gθ in total variation, one has that ∥µn − Gn,θ∥TV → 0. Since

ℓ̃θn1{∥ℓ̃θn∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M} is uniformly bounded, one has that

∣∣∣∣∫ ℓ̃θn1{∥ℓ̃θn∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M}dµn −
∫
ℓ̃θn1{∥ℓ̃θn∥ ≤M}ℓ̇′θ1{∥ℓ̇θ∥ ≤M} dGn,θ

∣∣∣∣
≤M2∥µn −Gn,θ∥TV .

As c−1
n − 1 = −an → 0, it follows that

EM
n,4 ≤M2 [∥µn −Gn,θ∥TV + ∥Gn,θ −Gθ∥TV ] + en +M2|an|+ r(M),

where 0 ≤ r(M) := supn∈N EPn
θn

[
∥ℓ̃θn∥21{∥ℓ̃θn∥ > M}

]
+supn∈N EPn

θ

[
∥ℓ̃θ∥21{∥ℓ̃θ∥ > M}

]
→ 0

as M → ∞ and r does not depend on n and en = o(1). For EM
n,1 note that since ∥ℓ̇θ∥2 is

uniformly Pn
θ –integrable (Lemma S2.3), 1

n

∑n
t=1 ∥ℓ̇θ∥2 = OPn

θ
(1). By Markov’s inequality, for

any δ > 0

Pn
θn

(∣∣∣∣∣ 1n
n∑

t=1

∥ℓ̃θn∥21{∥ℓ̃θn∥ > M}

∣∣∣∣∣ > δ

)
≤ δ−1 E

[∣∣∣∣∣ 1n
n∑

t=1

∥ℓ̃θn∥21{∥ℓ̃θn∥ > M}

∣∣∣∣∣
]

≤ δ−1 sup
n∈N

E ∥ℓ̃θn∥21{∥ℓ̃θn∥ > M}

≤ δ−1r(M).

Thus by takingM → ∞, the probability on the left hand side of the preceding display vanishes.

Therefore, the same is true of

Pn
θ

(∣∣∣∣∣ 1n
n∑

t=1

∥ℓ̃θn∥21{∥ℓ̃θn∥ > M}

∣∣∣∣∣ > δ

)
,

by contiguity. That is, we can take a large enough M such that the probability in the display

above is arbitrarily small (for all large enough n ∈ N).

Now, fix ε > 0, δ > 0. By Lemma S2.3, 1
n

∑n
t=1 ∥ℓ̃θ∥2 = OPn

θ
(1) and also 1

n

∑n
t=1 ∥ℓ̃θn∥2 =
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OPn
θn
(1). By this and contiguity, we can choose R > 0 be such that for all n ≥ N1,

Pn
θ

(
1

n

n∑
t=1

∥ℓ̃θ∥2 > R

)
< ε/4, Pn

θ

(
1

n

n∑
t=1

∥ℓ̃θn∥2 > R

)
< ε/4.

Take M large enough that ∥EM
2 ∥ < δ, r(M) < δ and for all n ≥ N2

Pn
θ

(∣∣∣∣∣ 1n
n∑

t=1

∥ℓ̃θn∥21{∥ℓ̃θn∥ > Mn}

∣∣∣∣∣ > δ/R

)
< ε/4

Pn
θ

(∣∣∣∣∣ 1n
n∑

t=1

∥ℓ̇θ∥21{∥ℓ̇θ∥ > Mn}

∣∣∣∣∣ > δ/R

)
< ε/4

where Mn ≥ M and Mn → ∞ slowly. This ensures that ∥EMn
2 ∥ < δ, Pn

θ (∥E
Mn
n,1 ∥ > 2δ) < ε for

all n ≥ max{N1, N2}. Then, let N be large enough such that N ≥ max{N1, N2}, and for all

n ≥ N , Pn
θ (∥E

Mn
n,3 ∥ > δ) < ε and ∥EMn

n,4 ∥ ≤ 3δ.S11 Combining these ensures that for all such n,

Pn
θ

(∥∥∥∥∥ 1n
n∑

t=1

ℓ̃θn ℓ̇
′
θ − Ĩθ

∥∥∥∥∥ > 7δ

)
< 2ε.

In conjunction with (S14) this establishes (S13).

We next show that R2,n converges to zero in Pn
θ –probability. Define

Zn,t := ℓ̃θn(Yt, Xt)
pθn(Yt, Xt)

1/2

pθ(Yt, Xt)1/2
, mn(Xt) :=

∫
ℓ̃θn(y,Xt)pθn(y,Xt)

1/2pθ(y,Xt)
1/2dy,

and note that mn(Xt) = E[Zn,t|Xt] (P
n
θ –a.s.). Since E[ℓ̃θn(Yt, Xt)|Xt] = 0 under Pn

θn
(which is

clear from its form),

mn(Xt) =

∫
ℓ̃θn(y,Xt)pθn(y,Xt)

1/2pθ(y,Xt)
1/2 dy

=

∫
ℓ̃θn(y,Xt)pθn(y,Xt)

1/2
[
pθ(y,Xt)

1/2 − pθn(y,Xt)
1/2
]
dy.

(S15)

Using (S11), (S12) and Cauchy-Schwarz yields

lim
n→∞

∣∣∣∣〈ℓ̃θnp1/2θn
q̄
1/2
θ,n ,

√
n
(
p
1/2
θ − p

1/2
θn

)
q̄
1/2
n,θ

〉
λ
−
〈
ℓ̃θp

1/2
θ q̄

1/2
n,θ , −

1

2
g′ℓ̇θp

1/2
θ q̄

1/2
n,θ

〉
λ

∣∣∣∣ = 0,

which implies that
1√
n

n∑
t=1

mn(Xt) +
1

2
Ĩn,θg

Pn
θ−−→ 0,

S11I.e. n such that M2
n|an| < δ, |en| < δ, M2

n [∥µn −Gn,θ∥TV + ∥Gn,θ −Gθ∥TV ] < δ. Here one needs to take
Mn → ∞ slowly enough that these sequences still converge to zero and M2

n/
√
n → 0.
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given the representation of mn in (S15). In consequence it remains to show that

R∗
2,n :=

1√
n

n∑
t=1

Zt,n −mn(Xt)− ℓ̃θ(Yt, Xt)
Pn
θ−−→ 0.

Put Fn,t = σ(Yt, Xt). Then, as is straightforward to verify, (Zt,n−mn(Xt)−ℓ̃θ(Yt, Xt),Fn,t)n∈N,1≤t≤n

forms a martingale difference array. Hence it suffices to show that

1

n

n∑
i=1

E
∥∥∥Zt,n −mn(Xt)− ℓ̃θ(Yt, Xt)

∥∥∥2 Pn
θ−−→ 0.

The left hand side of this display can be written as

∫ ∥∥∥∥∥ℓ̃θn p
1/2
θn

p
1/2
θ

−mn − ℓ̃θ

∥∥∥∥∥
2

pθ q̄n,θ dλ ≤ 2

∫ ∥∥∥ℓ̃θnp1/2θn
q̄
1/2
n,θ − ℓ̃θp

1/2
θ q̄

1/2
n,θ

∥∥∥2 dλ+ 2

∫
∥mn∥2 dQn,θ,

and so, given (S12) it suffices to show that the second term on the right hand side converges to

zero. For this note that by Fubini’s theorem and the Cauchy-Schwarz inequality

∫
∥mn∥2 dQn,θ ≤

∫ ∥∥∥ℓ̃θnp1/2θn

[
p
1/2
θ − p

1/2
θn

]∥∥∥2 q̄n,θ dλ
≤
∫ ∥∥∥ℓ̃θnp1/2θn

q̄
1/2
n,θ

∥∥∥2 dλ

∫ [(
p
1/2
θn

− p
1/2
θ

)
q̄
1/2
n,θ

]2
dλ.

The first term on the right hand side is O(1) by equation (S10), whilst the second converges to

zero by (S11) and the uniform Gθ,0,n – integrability of g′ℓ̇θ as established in Lemma S2.6.

S2.4.1 Estimation

Lemma S2.14: Suppose that Assumption 2.1 holds and gn are ϱ – integrable functions for some

ϱ > 2 such that maxt=1,...,n ∥gn(Yt, Xt)∥Lϱ
≤Mn (all under Pn

θ ). Then,

1

n

n∑
t=1

gn(Yt, Xt)− E [gn(Yt, Xt)] = OPθ
(Mn/

√
n).

Proof. Let αn(m) be the α – mixing coefficients of the array {gn(Yt, Xt) − E[gn(Yt, Xt)] : n ∈

N, 1 ≤ t ≤ n}. By (the proof of) Theorem 14.1 in Davidson (1994), αn(m) ≤ α̃(m − p) (for

m ≥ p) where α̃(m) are the mixing coefficients of {Yt : t ∈ N}. By Theorem 3 in Saikkonen

(2007) and Proposition 1.1.1 in Doukhan (1994) α̃(m) = O(am) for some a ∈ (0, 1). Condition

A1 in Kanaya (2017) then holds (with ∆ = 1) with β > ϱ/(ϱ− 2). To see this note that for all
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m ≥M1 we have α̃(m− p) ≤ Cam whilst Cam ≤ Am−β whenever

β ≤ log(A)− log(C) +m| log(a)|
log(m)

.

As the right hand side diverges as m→ ∞, for all m larger than some M ≥M1, the inequality

will hold for some β > ϱ/(ϱ − 2). Noting that the inequality above continues to hold if we

increase A, we may then choose A such that each α̃(m) ≤ Am−β for all 1 ≤ m ≤M . The result

then follows by Theorem 2 in Kanaya (2017).

Lemma S2.15: Suppose that Assumptions 2.1 and 2.2 hold. Then

(i) If Zn,1 :=
1√
n

∑n
t=1 ℓ̃θ(Yt, Xt) and Zn,2 := Λn

θn(g,h)
(Y n), then under Pn

θ ,

Zn ⇝ Z ∼ N

 0

−1
2σ

2
g,h

 ,

 Ĩθ Ĩθg

g′Ĩθ σ2g,h

 .

Additionally, let θn := θn(gn, 0) = (γ + gn/
√
n, η) for gn → g ∈ RL. Then

(ii) We have that

1

n

n∑
t=1

(
ℓ̂θn(Yt, Xt)− ℓ̃θn(Yt, Xt)

)
= oPn

θn
(n−1/2).

(iii) ∥În,θn − Ĩθ∥ = oPn
θn
(ν

1/2
n ) where νn is defined in Assumption 2.2, and Ĩθ := Gθ ℓ̃θ ℓ̃

′
θ with

Gθ as in the proof of Lemma S2.5.

Proof. For part (i), let zt be

zt :=

(
ℓ̃θ(Yt, Xt)

′, g′ℓ̇θ(Yt, Xt) +

K∑
k=1

hk(Ak•Vθ,t)

)′

,

and Ft := σ(ϵ1, . . . , ϵt). Under P
n
θ , {zt,Ft : t ∈ N} is a martingale difference sequence such that

1

n

n∑
t=1

E
[
ztz

′
t

]
=

 Ĩn,θ Ĩθ,θg

g′Ĩn,θ σ2g,h,n

→

 Ĩθ Ĩθg

g′Ĩθ σ2g,h

 ,
noting Lemma 3.1 and Theorem 12.14 of Rudin (1991). That σ2g,h,n converges to a σ2g,h is part

of the conclusion of Proposition A.1. That Ĩθ,n → Ĩθ follows by combining Lemma S2.3, the

fact that Gθ,0,n as defined in the proof of Lemma S2.5 converges in total variation to Gθ (cf.

Lemma S3.2), and Corollary 2.9 in Feinberg et al. (2016). Lindeberg’s condition is satisfied

since {∥zt∥2 : t ∈ N} is uniformly Pn
θ -integrable (by Lemma S2.3 and the fact that each hk
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is bounded) and the variance convergence in the preceding display. Part (i) then follows from

Proposition A.1 and the central limit theorem for martingale differences.

Define An := A(θn), Bn := B(θn), and ζ
x
n,l,k,j := ζxl,k,j(θn) for each triple (l, j, k) of indicies

and x ∈ {α, σ}. Note that each An,k(Yt −BnXt) ≂ ϵk,t ∼ ηk under Pn
θn
. Hence

ℓ̃θn,αl
(Yt, Xt) ≂

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕk(ϵk,t)ϵj,t +
K∑
k=1

ζαn,l,k,k [τk,1ϵk,t + τk,2κ(ϵk,t)] (S16)

ℓ̃θn,σl
(Yt, Xt) ≂

K∑
k=1

K∑
j=1,j ̸=k

ζσn,l,k,jϕk(ϵk,t)ϵj,t +

K∑
k=1

ζσl,k,k [τk,1ϵk,t + τk,2κ(ϵk,t)] (S17)

ℓ̃θn,bl(Yt, Xt) ≂
K∑
k=1

−An,k•Db,l [ϕk(ϵk,t)(Xt − EXt)− EXt (ςk,1ϵk,t + ςk,2κ(ϵk,t))] (S18)

By Assumption 2.1(iii), ζxn,l,k,j → ζα∞,l,k,j := [Dxl
(α, σ)]k•A(α, σ)

−1
•j for x ∈ {α, σ}. Note that

the entries of Db,l are all zero except for entry l (corresponding to bl) which is equal to one.

We verify (ii) for each component of the efficient score (S16) – (S18). For components (S16)

and (S17), we define for x either of α, σ

φ1,n,t :=

K∑
k=1

K∑
j=1,j ̸=k

ζxl,k,j,nϕk(An,k•Vn,t)An,j•Vn,t ,

and

φ̂1,n,t :=

K∑
k=1

K∑
j=1,j ̸=k

ζxl,k,j,nϕ̂k,n(An,k•Vn,t)An,j•Vn,t ,

with Vn,t = Yt − BnXt, and let ζn := maxl∈[L],j∈[K],k∈[K] |ζxl,j,k,n| which converges to ζ :=

maxl∈[L],j∈[K],k∈[K] |ζxl,j,k,∞| <∞. We have that

1√
n

n∑
t=1

(φ̂1,n,t−φ1,n,t) ≤
√
n

K∑
k=1

K∑
j=1,j ̸=k

ζn

∣∣∣∣∣ 1n
n∑

t=1

ϕ̂k,n(An,k•Vn,t)An,j•Vn,t − ϕk(An,k•Vn,t)An,j•Vn,t

∣∣∣∣∣ ,
Each

∣∣∣ 1n∑n
t=1 ϕ̂k,n(An,k•Vn,t)An,j•Vn,t − ϕk(An,k•Vn,t)An,j•Vn,t

∣∣∣ = oPθn
(n−1/2) by applying Lemma

A.1 with Wn,t = An,j•Vn,t (noting that An,k•Vn,s ≃ ϵk,s and An,j•Vn,t ≃ ϵj,t with are indepen-

dent for any s, t with Eθn(An,j•Vn,t)
2 = 1 by Assumption 2.1(ii)), and the outside summations

are finite, it follows that
1√
n

n∑
t=1

(φ̂1,n,t − φ1,n,t) = oPn
θ̃n
(1) . (S19)
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That τ̂k,n
Pn
θn−−→ τk follows from Lemma S2.16. Now, consider φ2,τ,n,t defined by

φ2,τ,n,t :=
K∑
k=1

ζzn,l,k,k [τk,1An,k•Vn,t + τk,2κ(An,k•Vn,t)] ,

for x equal to either α or σ. Since sum is finite and each |ζxn,l,k,k| → |ζx∞,l,k,k| <∞ it is sufficient

to consider the convergence of the summands. In particular we have that

1√
n

n∑
t=1

[τ̂k,n,1 − τk,1]An,k•Vn,t = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

An,k•Vn,t → 0,

1√
n

n∑
t=1

[τ̂k,n,2 − τk,2]κ(An,k•Vn,t) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

κ(An,k•Vn,t) → 0,

in probability, since An,k•Vn,t ≂ ϵk,t ∼ ηk and (ϵk,t)t≥1 and (κ(ϵk,t))t≥1 are i.i.d. mean-zero

sequences with finite second moments such that the central limit theorem holds.

Together these yield that

1√
n

n∑
t=1

(φ2,τ̂n,n,t − φ2,τ,n,t)
Pn
θn−−→ 0. (S20)

Combination of (S19) and (S20) yields (ii) for components of the type (S16), (S17).

For components (S18) let an,k,l := −An,k•Dbl , ς̃k,n := ς̂k,n − ςk, cn,t := Eθn Xt and c̄n :=

1
n

∑n
t=1 cn,t. Since an,k,l → a∞,k,l := A(α, σ)k•Dbl(α, σ), it suffices to show that

(i) 1
n

∑n
t=1

[
ϕk(An,k•Vn,t)− ϕ̂k,n(An,k•Vn,t)

]
(Xt − cn,t) = oPn

θn
(n−1/2);

(ii) 1
n

∑n
t=1

[
ϕk(An,k•Vn,t)− ϕ̂k,n(An,k•Vn,t)

] (
X̄n − c̄n

)
= oPn

θn
(n−1/2);

(iii) 1
n

∑n
t=1

[
ϕk(An,k•Vn,t)− ϕ̂k,n(An,k•Vn,t)

]
(c̄n − cn,t) = oPn

θn
(n−1/2);

(iv) 1
n

∑n
t=1 ϕk(An,k•Vn,t)

(
X̄n − c̄n

)
= oPn

θn
(n−1/2);

(v) 1
n

∑n
t=1 ϕk(An,k•Vn,t) (c̄n − cn,t) = oPn

θn
(n−1/2);

(vi) 1
n

∑n
t=1 X̄n [ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t)] = oPn

θn
(n−1/2);

(vii) 1
n

∑n
t=1(X̄n − c̄n) [ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t)] = oPn

θn
(n−1/2);

(viii) 1
n

∑n
t=1(c̄n − cn,t) [ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t)] = oPn

θn
(n−1/2)

(i) follows by (the first part of) Lemma A.1 applied withWn,t = Xt−cn,t. This is mean-zero,

independent of all An,k•Vn,s with s ≥ t and has uniformly bounded second moments (cf. (S6)).
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(ii) follows by Jensen’s inequality, (the second part of) Lemma A.1 applied with Wn,t = 1,

(S6), Lemma S2.14 and Corollary 3.1.

(iii) follows by Cauchy – Schwarz, (the second part of) Lemma A.1 applied with Wn,t = 1

and Lemma S2.17.

For (iv), 1√
n

∑n
t=1 ϕk(An,k•Vn,t) = OPn

θn
(1) by the central limit theorem and X̄n − c̄n =

1
n

∑n
t=1[Xt − cn,t]

Pθn−−→ 0, which follows by (S6), Lemma S2.14 and Corollary 3.1.

(v) follows by Cauchy – Schwarz, the fact that Eϕk(An,k•Vn,t)
2 = Eϕk(ϵk,t)2 is uniformly

bounded hence 1
n

∑n
t=1 ϕk(An,k•Vn,t)

2 = OPn
θn
(1) by Markov’s inequality and Lemma S2.17.

For (vi), X̄n = OPθn
(1) by e.g. Markov’s inequality and (S6). By the central limit theorem

also 1√
n

∑n
t=1 Ut = OPn

θn
(1) for Ut equal to either An,k•Vn,t or κ(An,k•Vn,t). The result therefore

follows from Lemma S2.16.

For (vii), as for (vi), 1√
n

∑n
t=1 Ut = OPn

θn
(1) for Ut equal to either An,k•Vn,t or κ(An,k•Vn,t).

Therefore it suffices to note that X̄n − c̄n
Pθn−−→ 0, as noted for (iv).

For (viii), for Ut equal to either ςk,1An,k•Vn,t or ςk,2κ(An,k•Vn,t), by Markov’s inequality

Pn
θn

(∥∥∥∥∥ 1√
n

n∑
t=1

(c̄n − cn,t)Ut

∥∥∥∥∥ > ε

)
≤ ε−2 EU2

t

1

n

n∑
t=1

∥c̄n − cn,t∥2 ≲
1

n

n∑
t=1

∥c̄n − cn,t∥2 → 0,

by Lemma S2.17.

To verify (iii) we note that

∥∥∥În,θn − Ĩθ

∥∥∥
2
≤
∥∥∥În,θn − Ĭn,θn

∥∥∥
2
+
∥∥∥Ĭn,θn − Ĩn,θn

∥∥∥
2
+
∥∥∥Ĩn,θn − Ĩθ

∥∥∥
2

(S21)

where Ĩθ := E[ℓ̃θ(Yt, Xt)ℓ̃θ(Yt, Xt)
′] = 1

n

∑n
t=1 E[ℓ̃θ(Yt, Xt)ℓ̃θ(Yt, Xt)

′] with the expectation taken

under Gθ, În,θ := 1
n

∑n
t=1 ℓ̂θ(Yt, Xt)ℓ̂θ(Yt, Xt)

′ and Ĭn,θ := 1
n

∑n
t=1 ℓ̃θ(Yt, Xt)ℓ̃θ(Yt, Xt)

′. We will

show each right hand side term is oPn
θn
(ν

1/2
n ).

For the first right hand side term in (S21) let r ∈ {α, σ, b} and let l denote an index, we

write Ûn,t,rl := ℓ̂θn,rl(Yt, Xt), Ũt,rl := ℓ̃θn,rl(Yt, Xt) and Dn,t,rl := ℓ̂θn,rl(Yt, Xt)− ℓ̃θn,rl(Yt, Xt).

Since it is the absolute value of the (r, l)− (s,m) component of În,θn − Ĭn,θn , it is sufficient

to show that
∣∣∣ 1n∑n

t=1 Ûn,t,rlDn,t,sm + 1
n

∑n
t=1Dn,t,rlŨt,sm

∣∣∣ = oPn
θn
(ν

1/2
n ) as n→ ∞ for any r, s ∈

{α, σ, b} and l,m. By Cauchy-Schwarz and Lemma S2.19

∣∣∣∣∣ 1n
n∑

t=1

Dn,t,rlŨt,sm

∣∣∣∣∣ ≤
(
1

n

n∑
t=1

Ũ2
t,sm

)1/2(
1

n

n∑
t=1

D2
n,t,rl

)1/2

= OPn
θn
(1)×oPn

θn
(ν1/2n ) = oPn

θn
(ν1/2n ),

∣∣∣∣∣ 1n
n∑

t=1

Ûn,t,rlDn,t,sm

∣∣∣∣∣ ≤
(
1

n

n∑
t=1

Û2
n,t,rl

)1/2(
1

n

n∑
t=1

D2
n,t,sm

)1/2

= OPn
θn
(1)×oPn

θn
(ν1/2n ) = oPn

θn
(ν1/2n ),
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for any (r, l)− (s,m). It follows that

[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm +Dn,t,rlŨt,sm

]2
≤ 2

[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm

]2
+2

[
1

n

n∑
t=1

Dn,t,rlŨt,sm

]2
= oPn

θn
(νn)

and hence ∥În,θn − Ĭn,θn∥2 ≤ ∥În,θn − Ĭn,θn∥F = oPn
θn
(ν

1/2
n )

For the second right hand side term in (S21), Let Qr,ls
l,m,t,n = ℓ̃θn,rl(Yt, Xt)ℓ̃θn,sm(Yt, Xt),

where r, s ∈ {α, σ, b} and l,m denote the indices of the components of the efficient scores. Fix

any r, s and l,m and note that by the fact that ℓ̃θn has uniformly bounded 2 + δ/2 moments

under Pn
θn
, Theorem 3 of Saikkonen (2007) and Theorem 1 of Kanaya (2017) together imply

that (cf. Lemma S2.14)

1

n

n∑
t=1

Qr,s
l,m,t,n − Eθn Q

r,s
l,m,t,n = OPn

θn

(
n(1/p−1)/2

)
= oPn

θn
(ν1/2n ), p ∈ (1, 1 + δ/4],

hence ∥Ĭn,θn − Ĩn,θn∥2 = oPn
θn
(ν

1/2
n ).

That the last right hand side term in (S21) is o(ν
1/2
n ) follows from the assumed local Lipschitz

continuity of the map defining the ζ’s, that of each β 7→ A(α, σ)k•, Theorem 11.11 of Kallenberg

(2021) and Lemma S2.18.

Lemma S2.16: If assumption 2.1 holds, then ∥ϱ̂k,n − ϱk,n∥2 = oPn
θ̃n
(νn,p) = oPn

θn
(ν

1/2
n ), where θ̃n

is as in Lemma S2.15 and ϱ ∈ {τ, ς}.

Proof. Under Pn
θn
, An,k•Vn,t ≂ ϵk,t ∼ ηk, for Vn,t := Yt − BnXt and An := A(θn). Let w ∈

{(0,−2)′, (1, 0)′} Since the map M 7→ M−1 is Lipschitz at a positive definite matrix M0, then

for large enough n, with probability approaching one

∥ϱ̂k,n − ϱk,n∥2 = ∥(M̂−1
k,n −M−1

k )w∥2 ≤ 2∥M̂−1
k,n −M−1

k ∥2 ≤ 2C∥M̂k,n −Mk∥2, (S22)

for some positive constant C. By Theorem 2.5.11 in Durrett (2019)

1

n

n∑
t=1

[(An,k•Vn,t)
3 − E(An,k•Vn,t)

3] = oPn
θn

(
n

1−p
p

)
1

n

n∑
t=1

[(An,k•Vn,t)
4 − E(An,k•Vn,t)

4] = oPn
θn

(
n

1−p
p

)
.

These together imply that

∥M̂k,n −Mk∥2 ≤ ∥M̂k,n −Mk∥F = oPn
θn

(
n

1−p
p

)
= oPn

θn
(νn,p).
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Combining these convergence rates with equation (S22) yields the result.

Lemma S2.17: In the setting of Lemma S2.15, let cn,t := Eθn Xt and c̄n := 1
n

∑n
t=1 cn,t. Then

1

n

n∑
t=1

∥c̄n − cn,t∥2 = O(n−1).

Proof. Since Xt = (1, Z ′
t−1)

′, it suffices to show that 1
n

∑n
t=1

∥∥c̃n,t − 1
n

∑n
t=1 c̃n,t

∥∥2 = O(n−1)

for c̃n,t := Eθn Zt−1. Let c̃n,∞ :=
∑∞

j=0 B
j
θn
Cθn . This converges uniformly in n since under

Assumption 2.1 parts (i) & (iii), the sets {∥Bθn∥2 : n ∈ N} ∪ {∥Bθ∥2} and {∥Cθn∥2 : n ∈

N} ∪ {∥Cθ∥2} are bounded above by ρ⋆ < 1 and C⋆ <∞ respectively. By Jensen’s inequality

1

n

n∑
t=1

∥∥∥∥∥c̃n,t − 1

n

n∑
t=1

c̃n,t

∥∥∥∥∥
2

≲
1

n

n∑
t=1

∥c̃n,t − c̃n,∞∥2 + 1

n

n∑
t=1

∥∥∥∥∥ 1n
n∑

t=1

[c̃n,∞ − c̃n,t]

∥∥∥∥∥
2

≤ 2

n

n∑
t=1

∥c̃n,t − c̃n,∞∥2

so it suffices to show that n/2 times the last term is uniformly bounded above. One has:

n∑
t=1

∥c̃n,t − c̃n,∞∥2 =
n∑

t=1

∥∥∥∥∥∥
∞∑

j=t−1

Bj
θn
Cθn − Bt−1

θn
Z0

∥∥∥∥∥∥
2

≲
n∑

t=1

∥∥∥∥∥∥
∞∑

j=t−1

Bj
θn
Cθn

∥∥∥∥∥∥
2

+
n∑

t=1

∥∥Bt−1
θn

Z0

∥∥2

≤
n∑

t=1

 ∞∑
j=t−1

∥Bθn∥
j
2∥Cθn∥2

2

+

n∑
t=1

∥Bθn∥
2(t−1)
2 ∥Z0∥2

≤ C2
⋆

n∑
t=1

[
ρt−1
⋆

1− ρ⋆

]2
+ ∥Z0∥2

n∑
t=1

ρ
2(t−1)
⋆

≤
[

C2
⋆

(1− ρ⋆)2
+ ∥Z0∥2

]
1

1− ρ2⋆
.

Lemma S2.18: In the setting of Lemma S2.15, let X̃t = (1, Ỹ ′
t−1, . . . , Ỹ

′
t−p)

′ where Ỹt is a sta-

tionary solution to (1). Then,

(i) 1
n

∑n
t=1 Eθn Xt − Eθ X̃t = o(ν

1/2
n ),

(ii) 1
n

∑n
t=1[Eθn Xt][Eθn Xt]

′ − [Eθ X̃t][Eθ X̃t]
′ = o(ν

1/2
n ).

(iii) 1
n

∑n
t=1 Eθn [Xt − Eθn Xt][Xt − Eθn Xt]

′ − Eθ[Xt − EθXt][Xt − EθXt]
′ = o(ν

1/2
n ).

Proof. Note that ∥Eθn Xt −Eθn X̃t∥2 ≤ ∥c̃n,t − c̃n,∞∥2 in the notation of (the proof of) Lemma
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S2.17, which shows that 1
n

∑n
t=1 ∥c̃n,t − c̃n,∞∥2 = O(n−1). Hence by Jensen’s inequality,

1

n

n∑
t=1

∥Eθn Xt − Eθn X̃t∥ = O(n−1/2) = o(ν1/2n ),

Since β 7→ Eθ X̃t = vec(ιK , (ιp ⊗ (IK −B1 − . . .−Bp)
−1c)) is locally Lipschitz,

1

n

n∑
t=1

∥Eθn X̃t − Eθ X̃t∥ = ∥Eθn X̃t − Eθ X̃t∥ = O(n−1/2) = o(ν1/2n ).

Combination of the above two displays yields that 1
n

∑n
t=1 ∥Eθn Xt − Eθ X̃t∥ = O(n−1/2) =

o(ν
1/2
n ) which implies (i). Moreover, combined with the uniform moment bounds given in (S6)

and Lemma S2.1 this yields

1

n

n∑
t=1

∥[Eθn Xt][Eθn Xt]
′ − [Eθ X̃t][Eθ X̃t]

′∥ ≲ 1

n

n∑
t=1

∥Eθn Xt − Eθ X̃t∥ = O(n−1/2) = o(ν1/2n ),

which implies (ii).

For (iii) let Uϑ,t := Xt − EϑXt and Ũϑ,t := X̃t − Eϑ X̃t. Note that as Uϑ,t =
∑t−2

j=0 B
j
ϑDϑϵt−j

and Ũϑ,t =
∑∞

j=0 B
j
ϑDϑϵt−j , Uθn,t−Ũθn,t and Uθn,t are independent. Additionally by Assumption

2.1 parts (i) and (iii) the sets the sets {∥Bθn∥2 : n ∈ N} and {∥Dθn∥2 : n ∈ N} are bounded

above by ρ⋆ < 1 and D⋆ <∞ respectively. Hence

1

n

n∑
t=1

∥∥∥Eθn

[
Uθn,tU

′
θn,t − Ũθn,tŨ

′
θn,t

]∥∥∥
≤ 1

n

n∑
t=1

∥∥∥Eθn

[(
Uθn,t − Ũθn,t

)
U ′
θn,t

]∥∥∥+ 1

n

n∑
t=1

∥∥∥Eθn

[(
Uθn,t − Ũθn,t

)
Ũ ′
θn,t

]∥∥∥
≤ 1

n

n∑
t=1

∥∥∥∥∥∥Eθn

∞∑
k=0

∞∑
j=t−1

Bj
θn
Dθnϵt−jϵ

′
t−kD

′
θn(B

j
θn
)′

∥∥∥∥∥∥
≤ 1

n

n∑
t=1

∞∑
j=t−1

∥Bθn∥
2j
2 ∥Dθn∥22

≤ D2
⋆ ×

1

n

n∑
t=1

∞∑
j=t−1

ρ2j⋆

≤ D2
⋆

1− ρ2⋆
× 1− ρ2n⋆

1− ρ2⋆
× 1

n

= O(n−1).

Additionally, we can write vec(Eϑ Ũϑ,tŨ
′
ϑ,t) = (I − Bϑ ⊗ Bϑ)

−1 vec(DϑD
′
ϑ), which is locally
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Lipschitz in β at θ. This implies that

1

n

n∑
t=1

Eθn Ũθn,tŨ
′
θn,t − Eθ Ũθ,tŨ

′
θ,t = O(n−1/2) = o(ν1/2n ).

The previous two displays suffice for (iii).

Lemma S2.19: In the setting of Lemma S2.15, for each r ∈ {α, σ, b} and l

1

n

n∑
t=1

(
ℓ̂θ̃n,rl(Yt, Xt)− ℓ̃θ̃n,rl(Yt, Xt)

)2
= oPn

θ̃n
(νn).

Proof. We start by considering elements in 1
n

∑n
t=1

(
ℓ̂θ̃n,αl

(Yt, Xt)− ℓ̃θ̃n,αl
(Yt, Xt)

)2
. Define

τ̃k,n,q := τ̂k,n,q − τk,q and Vn,t = Yt −BnXt. Since each |ζαn,l,k,j | <∞ and the sums over k, j are

finite, it is sufficient to demonstrate that for every k, j,m, s ∈ [K], with k ̸= j and s ̸= m,

1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

] [
ϕ̂s,n(An,s•Vn,t)− ϕs(An,s•Vn,t)

]
An,j•Vt,nAn,m•Vn,t

(S23)

1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

]
An,j•Vn,t [τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t)] (S24)

1

n

n∑
t=1

[τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t)] [τ̃k,n,1An,k•Vn,t + τ̃k,n,2κ(An,k•Vn,t)] (S25)

are each oPn
θ̃n
(νn).

For (S25), let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 4 parts, each of

which has the following form for some q, w ∈ {1, 2}

1

n

n∑
t=1

τ̃s,n,q τ̃k,n,wξq(An,s•Vn,t)ξw(An,k•Vn,t) = τ̃s,n,q τ̃k,n,w
1

n

n∑
t=1

ξq(An,s•Vn,t)ξw(An,k•Vn,t) = oPn
θ̃n
(νn),

since we have that each τ̃s,n,q τ̃k,n,w = oPn
θ̃n
(νn) by lemma S2.16.S12 For (S24) we can argue

similarly. Again let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 2 parts, each

S12The fact that 1
n

∑n
t=1 ξq(An,s•Vn,t)ξw(An,k•Vn,t) = OPn

θ̃n
(1) can be seem to hold using the moment and i.i.d.

assumptions from assumption 2.1 and Markov’s inequality, noting once more that An,k•Vn,t ≃ ϵk,t under P
n
θ̃n
.
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of which has the following form for some q ∈ {1, 2}

1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

]
An,j•Vn,tτ̃s,n,qξq(An,s•Vn,t)

≤ τ̃s,n,q

(
1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

]2
(An,j•Vn,t)

2

)1/2(
1

n

n∑
t=1

ξq(An,s•Vn,t)
2

)1/2

= oPn
θ̃n
(νn).

by Lemma A.1 applied with Wn,t = An,j•Vn,t and τ̃s,n,q = oPn
θ̃n
(ν

1/2
n ).S13 For (S23) use Cauchy-

Schwarz with Lemma A.1

1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

] [
ϕ̂s,n(An,s•Vn,t)− ϕs(An,s•Vn,t)

]
An,j•Vn,tAn,m•Vn,t

≤

(
1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

]2
(An,j•Vn,t)

2

)1/2

×

(
1

n

n∑
t=1

[
ϕ̂s,n(An,s•Vn,t)− ϕs(An,s•Vn,t)

]2
(An,m•Vn,t)

2

)1/2

= oPn
θ̃n
(νn).

This completes the proof for the components corresponding to αl. We note that the components

corresponding to σl follow analogously.

Finally, we consider the elements in 1
n

∑n
t=1

(
ℓ̂θn,bl(Yt, Xt)− ℓ̃θn,bl(Yt, Xt)

)2
. Let an,k,l :=

−An,k•Dbl , ς̃k,n := ς̂k,n − ςk, cn,t := Eθn Xt and c̄n := 1
n

∑n
t=1 cn,t. Since an,k,l → a∞,k,l :=

A(α, σ)k•Dbl(α, σ), it suffices to show that

(i) 1
n

∑n
t=1

[
ϕk(An,k•Vn,t)− ϕ̂k,n(An,k•Vn,t)

]2
∥Xt − cn,t∥2 = oPn

θn
(νn);

(ii) 1
n

∑n
t=1

[
ϕk(An,k•Vn,t)− ϕ̂k,n(An,k•Vn,t)

]2 ∥∥X̄n − c̄n
∥∥2 = oPn

θn
(νn);

(iii) 1
n

∑n
t=1

[
ϕk(An,k•Vn,t)− ϕ̂k,n(An,k•Vn,t)

]2
∥c̄n − cn,t∥2 = oPn

θn
(νn);

(iv) 1
n

∑n
t=1 ϕk(An,k•Vn,t)

2
∥∥X̄n − c̄n

∥∥2 = oPn
θn
(νn);

(v) 1
n

∑n
t=1 ϕk(An,k•Vn,t)

2 ∥c̄n − cn,t∥2 = oPn
θn
(νn);

(vi) 1
n

∑n
t=1 ∥X̄n∥2 [ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t)]

2 = oPn
θn
(νn);

(vii) 1
n

∑n
t=1 ∥X̄n − c̄n∥2 [ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t)]

2 = oPn
θn
(νn);

(viii) 1
n

∑n
t=1 ∥c̄n − cn,t∥2 [ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t)]

2 = oPn
θn
(νn).

S13See footnote S12.
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(i) follows from repeated application of Lemma A.1 with Wn,t = e′j(Xt − cn,t).

(ii) follows from application of Lemma A.1 with Wn,t = 1 and X̄n − c̄n = 1
n

∑n
t=1[Xt −

cn,t]
Pθn−−→ 0, which follows by (S6), Lemma S2.14 and Corollary 3.1.

(iii) follows by Lemma A.1 applied repeatedly with Wn,t = e′j(c̄n − cn,t).
S14

For (iv), 1
n

∑n
t=1 ϕk(An,k•Vn,t)

2 = OPn
θn
(1) since ϕk(An,k•Vn,t)

2 has uniformly bounded sec-

ond moments and X̄n − c̄n = OPn
θn
(n−1/2), by (S6), Lemma S2.14 and Corollary 3.1.

For (v) use Markov’s inequality and Lemma S2.17 to conclude

Pn
θn

(
1

n

n∑
t=1

ϕk(An,k•Vn,t)
2 ∥c̄n − cn,t∥2 > νnε

)
≤ ν−1

n ε−1 E
[
ϕk(ϵk)

2
] 1

n

n∑
t=1

∥c̄n − cn,t∥2 → 0.

For (vi), X̄n = OPθn
(1) by e.g. Markov’s inequality and (S6). Similarly, 1

n

∑n
t=1 Ut,iUt,j =

OPn
θn

(1) for i, j ∈ {1, 2} with Ut,1 = An,k•Vn,t and Ut,2 = κ(An,k•Vn,t). The result then follows

from Lemma S2.16.

For (vii), 1
n

∑n
t=1 Ut,iUt,j = OPn

θn
(1) for i, j ∈ {1, 2} with Ut,1 and Ut,2 as in the preceding

paragraph. Therefore it suffices to note that X̄n − c̄n = OPθn
(n−1/2), as noted for (iv).

For (viii), for Ut,1 and Ut,2 as in the preceding paragraph and i, j ∈ {1, 2},

Pn
θn

(∣∣∣∣∣ 1n
n∑

t=1

∥c̄n − cn,t∥2ςk,iUt,iςk,jUt,j

∣∣∣∣∣ > νnε

)
≤ ν−1

n ε−1|ςk,iςk,j |[EU2
t,i]

1/2[EU2
t,j ]

1/2 1

n

n∑
t=1

∥c̄n − cn,t∥2

≲ ν−1
n

1

n

n∑
t=1

∥c̄n − cn,t∥2 → 0,

by Markov’s inequality and Lemma S2.17.

S2.5 Assumption 2.1-(ii)-(b)

We provide a sufficient condition under which Assumption 2.1 part (ii)-(b) holds, given part

(ii)-(a). For convenience recall that part (ii) reads as

(ii) Conditional on the initial values (Y ′
−p+1, . . . , Y

′
0)

′, ϵt = (ϵ1,t, . . . , ϵK,t)
′ is independently and

identically distributed across t, with independent components ϵk,t. Each η = (η1, . . . , ηK) ∈

H is such that each ηk is nowhere vanishing, dominated by Lebesgue measure on R, con-

tinuously differentiable with log density scores denoted by ϕk(z) := ∂ log ηk(z)/∂z, and

for all k = 1, . . . ,K

(a) Eϵk,t = 0, Eϵ2k,t = 1, Eϵ4+δ
k,t < ∞, E(ϵ4k,t) − 1 > E(ϵ3k,t)2, and Eϕ4+δ

k (ϵk,t) < ∞ (for

some δ > 0);

S14That this is uniformly bounded follows from (S6).
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(b) Eϕk(ϵk,t) = 0, Eϕ2k(ϵk,t) > 0, Eϕk(ϵk,t)ϵk,t = −1, Eϕk(ϵk,t)ϵ2k,t = 0 and Eϕk(ϵk,t)ϵ3k,t =

−3;

In this assumption part (a) is standard — only imposes that the shocks are mean zero with unit

variance, and that certain 4 + δ moments are finite —. In contrast, part (b) may seem strong

at first sight.

An important observation is that (b) should not be understood independently from (a).

Indeed, the following lemma shows that given (a), condition (b) follows if the structural shocks

have densities that decays to zero at a polynomial rate.

Lemma S2.20: Let ak = inf{x ∈ R ∪ {−∞} : ηk(x) > 0} and bk = sup{x ∈ R ∪ {∞} : ηk(x) >

0}. Suppose that, for r = 0, 1, 2, 3: (i) if ak = −∞ then ηk(x) = o(x−3) as x → −∞, else

ark limx↓ak ηk(x) = 0, and (ii) if bk = ∞ then ηk(x) = o(x−3) as x→ ∞, else brk limx↑bk ηk(x) = 0.

Then, if part (a) of assumption 2.1-(ii) holds, part (b) is also satisfied.

Proof. Let r ∈ {0, 1, 2, 3}, bk = sup{x ∈ R : ηk(x) > 0} and ak = inf{x ∈ R : ηk(x) > 0}. We

have, by integration by parts, with Gk denoting the measure on R corresponding to ηk,∫
ϕk(z)z

r dGk =

∫
η′k(z)

ηk(z)
ηk(z)z

r dz =

∫
η′k(z)z

r dz = ηk(z)z
r

∣∣∣∣bk
ak

−
∫
ηk(z)

dzr

dz
dz.

Our hypothesis ensures that zrηk(z)
∣∣bk
ak

= 0. Therefore we have Gkϕk(z)z
r = −Gk

d
dz z

r. For

r = 0 this equals zero as d
dz z

0 = d
dz1 = 0. For r ∈ {1, 2, 3} we have dzr

dz = rzr−1 and hence

Gkϕk(z)z
r = −rGkz

r−1. Since Gk1 = 1, Gkz = 0, and Gkz
2 = 1, the result follows.

We now provide two examples. The first is a mixture of normals. We directly verify the

moment conditions in (a) and (b) are satisfied.

The second example is a normalised χ2
2 distribution. We show that this does satisfy the

moment conditions in (a) but not those in (b) (nor the conditions of Lemma S2.20).S15

Example S2.1 (Normal mixtures): Suppose that ϵk has the density function

ηk(z) =
M∑

m=1

pmfm(z, µm, σ
2
m), pm ≥ 0,

M∑
m=1

pm = 1,
M∑

m=1

pmµm = 0,
M∑

m=1

pm(σ2m + µ2m) = 1,

where fm(z, µm, σ
2
m) is the density function of a em ∼ N (µm, σ

2
m).

ϵk has mean zero and unit variance. We first establish that each of the conditions in (a) are

S15Additionally, the (normalised) χ2
2 distribution does not have a nowhere vanishing Lebesgue density.
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satisfied. In particular we first note that E [|ϵk|r] is finite for any positive integer r as

E [|ϵk|r] =
M∑

m=1

pm E [|em|r] <∞, (S26)

since the Normal distribution has finite moments of all orders. To establish that E[ϵ3k]2 <

E[ϵ4k]− 1 note that this is equivalent to the linear independence in L2 of 1, ϵk, ϵ
2
k (e.g. Horn and

Johnson, 2013, Theorem 7.2.10). This is equivalent to the condition that

a21 + 2a1a3 + a22 + a23 E[ϵ4k] = 0 =⇒ a1 = a2 = a3 = 0.

This holds since E[ϵ4k] ≥ 1 = E[ϵ2k] by the fact that Lp norms are increasing and so

a21 + 2a1a3 + a22 + a23 E[ϵ4k] ≥ a21 + 2a1a3 + a23 = (a1 + a3)
2 ≥ 0,

where equality is possible only if a1 = a2 = a3 = 0. Next, note that

ϕk(z) = −
∑M

m=1 pmσ
−2
m (z − µm)fm(z, µm, σ

2
m)

ηk(z)
, (S27)

and for any integer r and some µ ∈ R

|ϕk(z)|r ≲ |ϕk(z)|r−1

∣∣∣∣∣ηk(z)−1(|z|+ |µ|)
M∑

m=1

pmfm(z, µm, σ
2
m)

∣∣∣∣∣ = |ϕk(z)|r−1(|z|+ |µ|).

Recursively using this inequality from r = 0, yields (for some constant Cr ∈ (0,∞))

|ϕk(z)|r ≤ Cr(|z|r + |µ|r).

That E |ϕ(ϵk)|r <∞ for any integer r then follows from (S26).

For the conditions in (b), note that by (S27),

E [ϕk(ϵk)ϵ
r
k] = −

M∑
m=1

pm

∫
zr
σ−2
m (z − µm)fm(ϵk, µm, σ

2
m)

ηk(z)
ηk(z) dz

= −
M∑

m=1

pmσ
−2
m

∫
zr(z − µm)fm(ϵk, µm, σ

2
m) dz

= −
M∑

m=1

pmσ
−2
m

(
E
[
er+1
m

]
− E [erm]µm

)
.
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Taking r = 0, 1, 2, 3 in the right hand expression respectively gives:

E[ϕk(ϵk)] = −
M∑

m=1

pmσ
−2
m (µm − µm) = 0 ,

E[ϕk(ϵk)ϵk] = −
M∑

m=1

pmσ
−2
m

(
σ2m + µ2m − µ2m

)
= −1 ,

E[ϕk(ϵk)ϵ2k] = −
M∑

m=1

pmσ
−2
m

(
µ3m + 3µmσ

2
m − (σ2m + µ2m)µm

)
= 0 ,

E[ϕk(ϵk)ϵ3k] = −
M∑

m=1

pmσ
−2
m

(
µ4m + 6µ2mσ

2
m + 3σ4m − µ4m − 3µ2mσ

2
m

)
= −3 .

Example S2.2 (The normalised χ2
2 distribution): Suppose that ϵ̃k ∼ χ2

2 and let ϵk = (ϵ̃k − 2)/2.

Then ϵk has mean zero, variance one and density function ηk(z) = exp(−z − 1) on its support

[−1,∞) on which we also have that ϕk(z) = −1. The χ2
2 distribution has finite moments of all

orders and has moment generating function (e.g. Johnson et al., 1995, p. 420)

Mϵ̃(t) = (1− 2t)−1, t < 1/2.

Hence ϵk has finite moments of all orders. The same is evidently true of ϕk(ϵk) = −1. Using

the above display, we have

Mϵ(t) = e−t(1− t)−1, t < 1,

and therefore may directly calculate E[ϵ3k] = 2 and E[ϵ4k] = 9, hence E[ϵ3k]2 < E[ϵ4k] − 1 holds.

The moment conditions in part (a) are therefore all satisfied.

However, Eϕk(z) = −1 ̸= 0, hence part (b) does not hold. Note also that this example does

not satisfy the requirements of Lemma S2.20: we have ak = −1, bk = ∞ and

lim
z↓ak

ηk(x) = lim
z↓−1

exp(−z − 1) = 1 ̸= 0,

and hence the required condition is violated for r = 0.

S3 Technical tools

This section records some technical tools used in the proofs for ease of reference.

Lemma S3.1 (Discretisation): Suppose that Pn is a sequence of probability measures and fn :
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Γ → R , Γ ⊂ RL, is a sequence of functions which satisfy

fn(γn)
Pn−−→ 0 (S28)

for any γn := γ + gn/
√
n, gn → g ∈ RL. Suppose that the estimator sequence γ̄n satisfies

√
n∥γ̄n− γ∥ = OPn(1) and γ̄n takes values in Sn := {CZ/

√
n : Z ∈ RL} for some L×L matrix

C. Then

fn(γ̄n)
Pn−−→ 0.

Proof. Since γ̄n is
√
n-consistent there is an M > 0 such that Pn (

√
n∥γ̄n − γ∥ > M) < ε. If

√
n∥γ̄n−γ∥ ≤M then γ̄ is equal to one of the values in the finite set S c

n = {γ∗ ∈ Sn : ∥γ∗−γ∥ ≤

n−1/2M}. For each M this set has finite number of elements bounded independently of n, call

this upper bound B. For any υ > 0

Pn (|fn(γ̄n)| > υ) ≤ ε+
∑

γn∈S c
n

Pn ({|fn(γn)| > υ} ∩ {γ̄n = γn})

≤ ε+
∑

γn∈S c
n

Pn (|fn(γn)| > υ)

≤ ε+BPn(|fn(γ⋆n)| > υ),

where γ⋆n ∈ S c
n maximises γ 7→ Pn (|fn(γ)| > υ). As γ⋆n ∈ S c

n , ∥γ⋆ − γ∥ ≤ n−1/2M . Hence

letting gn :=
√
n(γ⋆n−γ), ∥gn∥ ≤M . Arguing along subsequences if necessary, we may therefore

assume that gn → g ∈ RL and hence fn(γ
⋆
n)

Pn−−→ 0 by (S28). The proof is complete on combining

this with the previously established bound on Pn (|fn(γ̄n)| > υ).

Lemma S3.2: Let (X,B(X)) be a measurable space, and Qn a sequence of probability measures

on (X,B(X)) which converges to a probability measure Q in total variation. Let (Y,B(Y ), λ)

be a measure space and suppose that pn : X × Y → [0,∞) is a sequence of functions and

p : X × Y → [0,∞) a function such that (i)
∫
pn(x, y) dλ(y) = 1 =

∫
p(x, y) dλ(y) for each

n ∈ N and each x ∈ X and (ii) pn → p pointwise. Then, if Gn and Gn are defined according to

Gn(A) :=

∫
A
pn(x, y) d(λ(y)⊗Qn(x));

G(A) :=

∫
A
p(x, y) d(λ(y)⊗Q(x)),

it follows that Gn
TV−−→ G.

Proof. For any x, pn(x, ·) → p(x, ·) pointwise and since each pn(·, x), p(·, x) has integral one
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under λ, by Proposition 2.29 in van der Vaart (1998),

Qn(x) :=

∫
|pn(x, y)− p(x, y)|dλ(y) → 0,

pointwise. Let (ψn)n∈N be a sequence of measurable functions on X ×Y with ψn ∈ [0, 1]. Then

∣∣∣∣∫ ∫ ψn(x, y)(pn(x, y)− p(x, y)) dλ(y) dQn(x)

∣∣∣∣ ≤ ∫ Qn(x) dQn(x).

Since Qn(x) ≤
∫
pn(x, y) dλ(y) +

∫
p(x, y) dλ(y) = 2, the Qn(x) are uniformly Qn – integrable

and uniformly Q – integrable. By Theorem 2.8 of Serfozo (1982),
∫

Qn(x) dQn(x) → 0.

Lemma S3.3: Suppose that Pn and Qn are probability measures (each pair (Pn, Qn) is defined

on a common measurable space) with corresponding densities pn and qn (with respect to some

σ-finite measure νn). Let ln = log qn/pn be the log-likelihood ratio.S16 If

ln = oPn(1),

then dTV (Pn, Qn) → 0.

Proof. By the continuous mapping theorem

qn
pn

= exp (ln)
Pn−−→ 1.

Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4) then implies that Qn ◁ Pn. Let ϕn

be arbitrary measurable functions valued in [0, 1]. Since the ϕn are uniformly tight, Prohorov’s

theorem ensures that for any arbitrary subsequence (nj)j∈N there exists a further subsequence

(nm)m∈N such that ϕnm ⇝ ϕ ∈ [0, 1] under Pnm . Therefore,

(ϕnm , exp(lnm))⇝ (ϕ, 1) under Pnm .

By Le Cam’s third Lemma (e.g. van der Vaart, 1998, Theorem 6.6), under Qmn the law of ϕnm

converges weakly to the law of ϕ. Since each ϕn ∈ [0, 1]

lim
m→∞

[Qnmϕnm − Pnmϕnm ] = 0.

As (nj)j∈N was arbitrary, the preceding display holds also along the original sequence.

S16ln may be defined arbitrarily when pn = 0.
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Proposition S3.1 (Cf. Proposition 2.29 in van der Vaart, 1998): Suppose that on a mea-

sureable space (S,S), (µn)n∈N is a sequence of measures and µ a measure such that µ(A) ≤

lim infn→∞ µn(A) for each A ∈ S. If (fn)n∈N and f are (real-valued) measurable functions such

that fn → f in µ-measure and lim supn→∞
∫
|fn|p dµn ≤

∫
|f |p dµ < ∞ for some p ≥ 1, then∫

|fn − f |p dµn → 0.

Proof. (a+ b)p ≤ 2p(ap + bp) for any a, b ≥ 0 and hence, under our hypotheses,

0 ≤ 2p|fn|p + 2p|f |p − |fn − f |p → 2p+1|f |p in µ - measure.

By Lemma 2.2 of Serfozo (1982) and lim supn→∞
∫
|fn|p dµn ≤

∫
|f |p dµ <∞,

∫
2p+1|f |p dµ ≤ lim inf

n→∞

∫
2p|fn|p + 2p|f |p − |fn − f |p dµn

≤ 2p+1

∫
|f |p dµ− lim sup

n→∞

∫
|fn − f |p dµn.

Remark S3.1: The condition that µ(A) ≤ lim infn→∞ µn(A) for each A ∈ S in Propositions

S3.1 is clearly satisfied if µn → µ setwise or in total variation.

S4 Log density score estimation and optimal knot selection

In this section we provide more details for the estimation of the log density scores. Further, we

discuss a data-driven way for selecting the number of knots following the approach of Chen and

Bickel (2006). We evaluate the size and power of the test under optimal knot selection in some

additional simulations that are presented below.

S4.1 B-spline based log density score estimation

For ξ1 < · · · < ξN a knot sequence, the first order B-splines are defined according to b
(1)
i (x) :=

1[ξi,ξi+1)(x). Subsequent order B-splines can be computed according to the recurrence relation

b
(l)
i (x) =

x− ξi
ξi+l−1 − ξi

b
(l−1)
i (x) +

ξi+l − x

ξi+l − ξi+1
b
(l−1)
i+1 (x), (S29)

for l > 1 and i = 1, . . . , N − l. A l-th order B-spline is l − 2 times differentiable in x with first

derivative

c
(l)
i (x) =

l − 1

ξi+l−1 − ξi
b
(l−1)
i (x)− l − 1

ξi+l − ξi+1
b
(l−1)
i+1 (x). (S30)

See de Boor (2001) for more details on B-splines.
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Let bk,n = (bk,n,1, . . . , bk,n,Bk,n
)′ be a collection of Bk,n cubic (i.e. 4-th order) B-splines

and let ck,n = (ck,n,1, . . . , ck,n,Bk,n
)′ be their derivatives: ck,n,i(x) :=

dbk,n,i(x)
dx for each i ∈

{1, . . . , Bk,n}. The knots of the splines, ξk,n = (ξk,n,i)
Kk,n

i=1 are equally spaced in [ΞL
k,n,Ξ

U
k,n] with

δk,n := ξk,n,i+1 − ξk,n,i > 0.S17 For each (k, n) pair the relationships between the number of

knots (Kk,n), the number of spline functions (Bk,n) and δk,n are given by Bk,n = Kk,n − 4 and

Kk,n = 1 + (ΞU
k,n − ΞL

k,n)/δk,n.

Since the B-splines vanish at infinity for any n ∈ N, integration by parts gives that∫
(ϕk(z)− ψ′

k,nbk,n(z))
2ηk(z) dz

=

∫
ϕk(z)

2ηk(z) dz +

∫
(ψ′

k,nbk,n)
2ηk(z) dz + 2

∫
ψ′
k,nck,n(z)ηk(z) dz

= Eϕk(ϵk)2 + ψ′
k,n E[bk,n(ϵk)bk,n(ϵk)′]ψk,n + 2ψ′

k,n E ck,n(ϵk),

(S31)

where we integrate over the support of ϕk,n (which is also the support of bk,n and ck,n). This

mean-squared error is minimized by:S18

ψk,n := −E[bk,n(ϵk)bk,n(ϵk)′]−1 E[ck,n(ϵk)]. (S32)

Replace the population expectations with sample counterparts to define the estimator of ψk,n

ψ̂k,n := −

[
1

n

n∑
t=1

bk,n(Ak•Vγ,t)bk,n(Ak•Vγ,t)
′

]−1
1

n

n∑
t=1

ck,n(Ak•Vγ,t) .

Our estimate for the log density score ϕk is given by

ϕ̂k,n(z) := ψ̂′
k,nbk,n(z) . (S33)

As discussed in the main text, the knots of the splines, ξk,n = (ξk,n,i)
Kk,n

i=1 are taken as equally

spaced in [ΞL
k,n,Ξ

U
k,n]. In practice we take these points as the 95th and 5th percentile of the

samples {Ak•Vt}ni=1 adjusted by log(log(n)), where A = A(α, σ) and Vt = Yt −BXt for a given

parameter choice γ = (α, β). In our main simulations we used Bk,n = 12 splines.

S4.2 Data driven B-spline selection

The number of B-spline basis functions Bk,n is a tuning parameter. In practice we can use

cross-validation to choose Bk,n for each k. A possible approach is as follows

S17For each k = 1, . . . ,K the sequences (ΞL
k,n)n∈N, (Ξ

U
k,n)n∈N, (Bk,n)n∈N and (δk,n)n∈N are deterministic.

S18This differs from the expression in Chen and Bickel (2006) by a factor of −1 as they estimate −ϕk.
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(i) Split the sample Ak•Vγ,t randomly into two halves, say n1 and n2.

(ii) For Bk,n = 1, 2, . . ., use n1 to estimate γ based on (S33), say ϕ̂k,n1(z), and use n2 to eval-

uate (S31) empirically, but omitting the first term Eϕk(ϵk)2, say cn2|n1
(Bk,n). Similarly

calculate cn1|n2
(Bk,n).

(iii) Select the optimal Bk,n as the largest value such that 1
2(cn2|n1

(Bk,n)+cn1|n2
(Bk,n)) strictly

decreases until Bk,n.

This method is taken from Jin (1992) and Chen and Bickel (2006). Jin (1992) proved its validity

under an iid assumption. In the additional simulations of Section S5 we experiment with this

cross-validation algorithm.

S5 Additional simulation results

S5.1 Alternative parametrizations

We show that the parametrization of A(α, σ) does not affect the size of the score test nor

the alternative tests considered. Specifically, we repeat Tables 2 and 3 from the main text,

respectively, for an upper triangular parameterization of A. Tables S1 and S2 below show that

rejection rates are not affected by the change in parameterization.

S5.2 Data driven B-spline selection

In this section we evaluate the performance of the score test when the number of B-splines is

selected using cross-validation following the approach of Jin (1992), see the discussion in Section

S4. All specifications are the same as in the main text and we use the one-step efficient estimates

to estimate the nuisance parameters β. The results are shown in Table S3.

We find that with cross validation the test becomes slight conservative. The empirical

rejection frequencies for n = 200, 500 are nearly always below the nominal level. Only when

n = 1000 the correct size is reached. A possible reason for this result is that the selection

criteria from Jin (1992); Chen and Bickel (2006) is based on minimizing the mean squared error

of the log density score estimate which may not be optimal for the size of the test. In future

work it may be attractive to modify the selection criteria to directly target the size of the test.

S5.3 Size for larger SVARs

In the main text we presented simulation results for SVAR models of dimensions K = 2 and

K = 3. Here we explore higher dimensional SVAR models. In such settings two bottlenecks
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Table S1: Empirical rejection frequencies: Triangular A

K p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

One-Step Efficient Estimates

2 1 200 5.0 5.8 5.8 6.0 5.2 7.2 4.2 4.6 4.6 4.6
2 1 500 7.2 5.8 6.0 5.9 5.1 6.1 4.8 5.1 6.2 5.0
2 1 1000 6.9 6.2 6.1 6.2 4.8 5.3 4.8 4.8 5.2 5.3

2 4 200 4.7 4.8 5.4 5.8 5.7 5.8 4.9 5.6 4.8 3.8
2 4 500 7.0 5.6 6.8 6.1 4.6 5.2 4.0 4.7 4.6 4.6
2 4 1000 6.1 6.5 6.4 5.8 5.0 5.1 4.3 4.6 4.5 5.3

2 12 200 6.1 5.6 5.2 6.4 5.8 4.5 4.4 4.7 4.7 4.2
2 12 500 6.6 7.0 6.2 7.1 6.2 5.3 4.7 5.1 5.6 4.6
2 12 1000 7.0 6.0 5.8 6.4 5.4 5.5 4.6 5.8 6.2 4.9

3 1 200 5.6 6.8 7.0 8.0 7.2 9.9 5.1 5.5 6.1 4.6
3 1 500 7.6 6.8 7.0 7.1 5.9 6.6 4.2 5.1 6.0 4.9
3 1 1000 7.5 7.2 6.1 6.2 5.0 6.2 4.8 5.2 4.9 5.2

3 4 200 5.4 7.4 8.2 8.9 7.1 6.8 4.1 4.6 5.7 3.8
3 4 500 8.0 6.4 7.2 8.8 6.8 7.7 6.4 6.1 5.8 4.9
3 4 1000 7.9 6.6 8.0 6.7 5.8 6.2 6.0 5.8 5.3 6.3

3 12 200 3.1 3.9 3.0 4.2 2.5 3.6 3.0 2.0 2.8 2.6
3 12 500 8.5 9.4 8.8 10.2 9.6 6.2 3.8 4.1 6.0 2.3
3 12 1000 8.8 7.8 8.2 8.7 7.4 6.6 5.4 5.5 6.2 4.7

OLS Estimates

2 1 200 3.6 4.2 4.2 6.5 4.8 7.2 3.2 2.8 5.6 3.2
2 1 500 4.4 4.1 4.5 6.3 4.7 7.5 3.7 4.1 5.6 4.3
2 1 1000 4.5 5.0 4.8 6.0 4.8 6.2 4.2 4.1 5.0 5.1

2 4 200 3.6 5.4 6.1 6.4 5.2 4.6 3.6 2.9 5.0 3.1
2 4 500 4.8 4.5 5.5 6.6 4.8 4.6 3.4 3.2 4.3 3.5
2 4 1000 4.1 5.2 5.2 5.2 5.3 4.8 3.1 3.2 4.8 4.7

2 12 200 7.2 7.4 8.4 9.4 6.4 4.8 4.5 3.0 6.6 4.4
2 12 500 5.6 7.3 6.1 8.3 6.9 3.7 4.3 3.3 4.9 3.8
2 12 1000 5.2 5.1 5.2 6.4 8.2 4.2 3.4 2.6 5.5 3.4

3 1 200 3.6 5.2 6.0 9.5 6.0 7.4 2.8 2.4 6.0 2.5
3 1 500 3.8 5.0 5.3 9.4 5.2 6.8 3.2 3.0 5.5 3.2
3 1 1000 3.6 4.9 4.5 7.6 5.9 7.1 3.6 3.6 4.4 3.9

3 4 200 7.1 8.8 8.4 12.2 7.0 5.0 2.8 0.8 4.9 2.2
3 4 500 5.0 5.4 6.7 10.9 7.0 4.9 2.2 1.4 5.6 1.2
3 4 1000 4.7 4.8 6.0 7.8 7.6 4.7 3.6 2.8 4.2 2.8

3 12 200 15.6 14.6 17.1 21.6 11.1 10.7 8.2 6.3 14.4 6.7
3 12 500 9.7 10.4 11.5 16.0 11.0 3.5 2.8 1.5 7.5 2.8
3 12 1000 6.4 6.8 8.2 10.5 10.4 3.3 3.2 1.6 5.4 3.3

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α ̸= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameter
estimates β̂ are either one-step efficient or OLS estimates. The columns correspond to the dimension K, the
number of lags p, the sample size n and the different choices for the distributions of the structural shocks, ϵk,t
for k = 1, . . . ,K. The distributions are reported in Table 1. Rejection rates are computed based on M = 2, 500
Monte Carlo replications.
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Table S2: Empirical rejection frequencies for alternative tests: Triangular A

Test N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

ϵ1,t ∼ ϵ2,t

Ŝols 4.8 4.9 5.4 7.1 4.2 7.1 3.7 3.9 6.3 4.7

Ŝonestep 8.0 6.7 6.9 6.9 4.7 6.3 4.9 5.5 7.1 5.3
SDW 4.2 3.8 4.0 6.6 4.7 3.7 3.2 3.8 4.1 4.0
BKRDW 4.4 4.1 4.4 4.2 5.8 28.4 5.1 5.7 6.5 5.2

LMPML,t 5.1 4.9 4.9 6.5 9.1 8.3 66.7 81.4 5.9 85.0
LMGMM,LL 1.7 1.6 3.6 11.1 6.9 7.2 6.4 6.1 1.9 5.1
LMGMM,Kew 1.4 2.1 3.8 17.2 9.9 8.0 6.1 5.9 1.2 5.2

LRPML,t 25.9 11.3 6.5 4.8 4.9 1.6 100.0 100.0 11.5 100.0
LRGMM,LL 3.5 7.4 8.9 15.9 12.4 9.8 5.9 5.8 7.5 4.6
LRGMM,Kew 6.3 7.7 12.3 22.2 16.3 12.9 6.4 6.2 6.8 4.9

WPML,t 4.5 7.4 9.2 10.4 11.2 8.0 66.2 69.9 8.3 69.6
WGMM,LL 12.0 17.9 18.8 22.5 17.5 14.6 6.6 6.8 15.3 5.6
WGMM,Kew 19.3 21.8 25.1 23.0 16.5 15.8 7.1 7.0 19.1 5.8

Note: The table reports empirical rejection frequencies for tests of the hypothesis H0 : α = α0 vs. H1 : α ̸= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500, and α0 = 0.5594. Ŝols denotes the semi-
parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient estimates. LMPML,t, WPML,t and
LRPML,t denote the pseudo-maximum likelihood tests based on Gouriéroux et al. (2017), assuming t-distributed
shocks. LMGMM,LL, WGMM,LL and LRGMM,LL denote the GMM-based tests based on Lanne and Luoto (2021)
with one co-kurtosis condition based on ϵ31tϵ2t. LM

GMM,Kew, WGMM,Kew and LRGMM,Kew denote the correspond-
ing GMM-based tests of Keweloh (2021) using both co-kurtosis conditions. Finally, SDW and BKRDW denote
the bootstrapped GMM-based and non-parametric test of Drautzburg and Wright (2023), respectively. The
columns correspond to different choices for the distributions of the structural shocks, ϵk,t for k = 1, . . . ,K. The
distributions are reported in Table 1. The tests of Drautzburg and Wright (2023) use 500 bootstrap replications
to simulate the null distribution of the test statistics. Rejection rates are computed based on M = 1, 000 Monte
Carlo replications.
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Table S3: Empirical rejection frequencies: optimal knot selection

K p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

2 1 200 5.2 4.6 5.8 6.1 4.4 5.5 5.9 6.6 5.0 7.3
2 1 500 4.7 4.1 5.0 5.7 4.7 5.6 5.5 6.4 4.9 7.5
2 1 1000 4.6 4.9 4.4 3.7 4.6 5.7 5.3 6.7 4.6 8.3

2 4 200 5.0 5.9 5.7 5.6 3.7 5.1 4.6 4.6 4.6 5.3
2 4 500 4.8 4.8 4.8 5.6 4.4 5.7 5.8 5.8 4.2 6.0
2 4 1000 4.2 5.0 5.0 4.5 4.8 5.2 5.1 6.1 4.8 6.4

2 12 200 7.0 6.5 7.4 7.8 5.2 4.8 4.6 4.0 6.8 3.5
2 12 500 5.7 6.6 6.4 6.2 4.6 4.9 4.1 4.8 5.3 4.5
2 12 1000 5.4 5.2 5.5 5.0 5.6 4.9 4.3 4.7 5.7 5.4

3 1 200 5.3 6.5 7.1 9.8 7.6 6.9 4.8 5.2 4.9 5.6
3 1 500 5.0 5.3 5.9 7.3 5.0 6.1 5.8 7.6 5.2 6.8
3 1 1000 5.0 5.8 5.3 5.9 4.7 5.8 6.3 9.1 4.9 9.0

3 4 200 6.1 8.4 9.2 11.0 6.2 6.0 2.9 2.3 5.8 3.1
3 4 500 5.7 5.7 6.8 8.6 5.6 5.0 4.6 4.7 4.6 3.9
3 4 1000 5.4 5.2 5.7 5.7 5.2 5.2 5.0 6.1 4.4 6.1

3 12 200 13.0 14.0 14.8 15.6 12.7 8.3 7.0 5.5 12.8 5.8
3 12 500 9.4 10.3 10.2 12.4 8.3 4.5 3.3 2.5 6.8 3.2
3 12 1000 6.8 7.3 7.7 8.2 7.3 5.1 4.2 4.3 5.6 4.4

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α ̸= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameter
estimates β̂ are OLS estimates. For each density score the number of B-splines is determined by cross-validation.
The columns correspond to the dimension K, the number of lags p, the sample size n and the different choices
for the distributions of the structural shocks, ϵk,t for k = 1, . . . ,K. The distributions are reported in Table 1.
Rejection rates are computed based on M = 2, 500 Monte Carlo replications.
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can arise. First, the computational costs for constructing the confidence sets in Algorithm

1 increase substantially as one must evaluate the test at each point of the grid. Even in the

most parsimonious specification for K = 5 such a grid is 10 dimensional. We note that this

bottleneck is not specific to our approach but arises for most weak identification robust tests

when constructing confidence sets.

Second the number of finite dimensional nuisance parameters β increases rapidly when the

dimension of the SVAR model increases. For instance for K = 5 and p = 12 the number

of nuisance parameters Lβ is around 300. This has several consequences. First, when n is

smaller than the number of nuisance parameters the test does not exist anymore as the inverse

of În,γ,ββ is not defined. Second, even when the number of nuisance parameters is proportional

(but smaller) than the sample size the asymptotic theory of our paper may not provide a good

approximation to the finite sample performance. The reason is that our theory is developed for

Lβ fixed (hence Lβ/n→ 0). Extending the theory to the case where Lβ may increase with n is

an interesting topic for future work.

That said, it is of interest to explore the finite sample performance of the test in these

settings. Table S4 reports the empirical rejection frequencies for the score test for larger SVARs

with K = 5. All other settings for the simulation design are similar as above. We exclude

n = 200 as the test is not defined for all specifications for this sample size. We find that the

test based on one-step efficient estimates behaves well when p = 1, reasonably well when p = 4

and quite erratic when p = 12. We therefore recommend keeping the lag length modest when

considering larger SVAR models.
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Table S4: Empirical rejection frequencies for larger SVARs

K p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

One-Step Efficient Estimates

5 1 500 14.1 14.6 14.0 13.6 7.8 8.7 6.2 5.5 7.0 4.4
5 1 1000 10.9 10.9 11.2 10.7 6.0 7.4 6.3 5.3 5.5 4.5

5 4 500 14.9 18.2 17.2 17.9 9.8 8.4 5.0 4.0 7.0 2.3
5 4 1000 14.3 14.9 14.9 12.8 6.8 8.9 6.4 5.6 7.6 5.1

5 12 500 0.4 0.3 0.4 0.5 0.6 0.4 0.0 0.0 0.4 0.0
5 12 1000 17.6 18.8 18.6 15.1 9.1 7.1 2.8 1.9 5.6 1.1

OLS Estimates

5 1 500 9.4 11.2 11.7 16.1 6.6 4.5 1.9 1.0 4.0 1.2
5 1 1000 6.8 8.3 9.1 12.4 6.1 4.8 3.2 2.0 4.2 1.7

5 4 500 16.4 20.7 21.1 25.2 7.4 1.6 0.5 0.0 4.2 0.0
5 4 1000 11.8 13.5 14.7 13.6 7.2 2.4 1.1 0.3 3.2 0.6

5 12 500 56.4 60.5 59.9 55.0 16.4 8.6 2.2 0.2 26.7 0.6
5 12 1000 28.5 27.8 30.7 27.6 10.8 2.3 0.9 0.1 5.5 0.4

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α ̸= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameters
β are estimated using either one-step efficient estimates or OLS. For each density score the number of B-splines
is fixed at B = 6. The columns correspond to different choices for the distributions of the structural shocks, ϵk,t
for k = 1, . . . ,K. The distributions are reported in Table 1. Rejection rates are computed based on M = 2, 500
Monte Carlo replications.
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S5.4 Coverage and length of confidence sets

In this section, we consider evaluating our methodology for constructing confidence sets for

smooth functions of the SVAR parameters as discussed in Section 5. We focus on evaluating

the coverage and length of the confidence sets for structural impulse response functions, see

Example 5.1 for the details.

We consider a similar simulation set up as above and discuss the results for the SVAR(1)

model with K = 2, T = 500, and two independent shocks drawn from the same distribution,

as listed in Table 1. In each case, the confidence set is calculated using Algorithm 2 for the

structural impulse response of the first variable to the second shock and we report the coverage

rate and length for horizons 0-12. Further, we compare our approach to the identification robust

methods of Drautzburg and Wright (2023), for which we change step (i) in Algorithm 2 and

replace the efficient score test by the tests of Drautzburg and Wright (2023).

Figure S1 shows the empirical coverage rates. Not surprising we generally find that the two-

step Bonferroni approach is conservative; all empirical coverage rates are above the nominal

90% level. This holds for all horizons, densities and methods considered.

That said, we find that if the efficient score test, based on one-step efficient estimates, is

used as the first step in the Bonferroni method the coverage becomes much closer to the nominal

size. This holds for nearly all densities, the exception being the t densities that are very close

to Gaussian, where there is generally very low power.

Figure S2 shows the length of the confidence intervals. We find that efficient score approach

gives the smallest length among all procedures considered and for all densities. The differences

between the methods varies; for some densities all methods give comparable intervals, but for

others the efficient score approach can give intervals that are up to 30% shorter in length. This

holds especially at longer horizons.

We conclude that the two-step Bonferroni method, where the first step is based on the effi-

cient score test, gives substantial efficiency improvements when compared to existing methods.
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Figure S1: Coverage rates of Ĉn,g,α,0.9
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Note: The figure reports empirical coverage rates of confidence intervals at individual horizons for the impulse
response of the first variable to the second shock with 90% nominal coverage for the SVAR(1) model with K = 2
and T = 500. Ŝols denotes the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step
efficient estimates. GMMDW denotes the GMM-based test of Drautzburg and Wright (2023) and BKRDW

denotes the non-parametric test of Drautzburg and Wright (2023). The tests of Drautzburg and Wright (2023)
use 500 bootstrap replications to obtain critical values. Coverage is computed using M = 1, 000 Monte Carlo
replications.
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Figure S2: Average length of Ĉn,g,α,0.9
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Note: The figure reports average length of confidence intervals at individual horizons for the impulse response
of the first variable to the second shock with 90% nominal coverage for the SVAR(1) model with K = 2 and
T = 500. Ŝols denotes the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient
estimates. GMMDW denotes the GMM-based test of Drautzburg and Wright (2023) and BKRDW denotes
the non-parametric test of Drautzburg and Wright (2023). The tests of Drautzburg and Wright (2023) use 500
bootstrap replications to obtain critical values. Average length is computed using M = 1, 000 Monte Carlo
replications.
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S5.5 Point estimation results

Table S5 shows the Root Mean Squared Errors (RMSEs) for parameter estimates α̂ in the

K-variable SVAR(1) model with K = 2, T = 500. We compare the performance of different

estimators and their one-step efficient counterparts as discussed in Section 6. Specifically, we

consider the psuedo maximum likelihood estimator of Gouriéroux et al. (2017) and the moment

estimators of Lanne and Luoto (2019) and Keweloh (2021) as initial estimators. For each of

these we compute the corresponding one-step efficient estimate from (29).

The results show that if the true density is Gaussian or close to Gaussian there is no

advantage in doing a one-step efficient update. Intuitively, in these settings the efficient scores

are noisy and add little additional information to the initial estimate, implying that the mean

squared errors do not improve. In contrast, when the underlying density is away from the

Gaussian (as imposed asymptotically by Assumption 6.1) the one-step efficient estimates always

have lower RMSEs. The gains can be large, and appear to outweigh the small relative losses

that are sometimes incurred for densities close to Gaussian.

Table S5: Efficiency of one-step updated estimates α̂

PMLt GMMLL GMMKew

η α̂n α̂onestep
n α̂n α̂onestep

n α̂n α̂onestep
n

N(0,1) 0.207 0.235 0.188 0.194 0.194 0.194
t(15) 0.137 0.146 0.156 0.147 0.154 0.148
t(10) 0.103 0.108 0.129 0.113 0.120 0.114
t(5) 0.051 0.056 0.082 0.061 0.070 0.061
SKU 0.042 0.032 0.071 0.037 0.058 0.035
KU 0.041 0.026 0.082 0.041 0.068 0.038
BM 0.250 0.070 0.030 0.016 0.016 0.015
SPB 0.250 0.090 0.027 0.012 0.013 0.012
SKB 0.138 0.067 0.163 0.074 0.160 0.074
TRI 0.250 0.113 0.025 0.012 0.012 0.012

Note: The table reports Root Mean Squared Errors (RMSEs) for parameter estimates α̂ in the K-variable
SVAR(1) model with K = 2, T = 500. The rows correspond to different choices for the distributions of the
structural shocks, ϵk,t for k = 1, . . . ,K. The distributions are reported in Table 1. RMSEs are computed based
on M = 2, 500 Monte Carlo replications.
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S6 Additional empirical results

S6.1 Alternative parametrization of Baumeister and Hamilton (2015) model

This section presents results from an alternative parametrization of the Baumeister and Hamil-

ton (2015) model where A−1 is expressed as follows:

A−1(ξ, σ) =

A−1
11 A−1

12

A−1
21 A−1

22

 =

σ1 0

σ2 σ3

cos(ξ) − sin(ξ)

sin(ξ) cos(ξ)

 , ξ ∈ [0, 2π) (S34)

The sign restrictions of the original model, which are formulated on demand and supply

elasticities as well as scaling parameters (see Example S1.1), imply that A−1
11 ≥ 0, A−1

12 ≤

0, A−1
21 ≥ 0 and A−1

22 ≥ 0. The parametrization in (S34) translates the sign restrictions into

constraints imposed on (ξ, σ). For the alternative parameterization, we assume that σ1, σ2, σ3 >

0, which corresponds to imposing the identification restriction ξ ∈ (0, π/2).S19 Hence, for

Algorithm 1, we set up a grid of 500 grid-points in ξ ∈ (0, π/2). Note that there is a direct

mapping between the two parametrizations that given (ξ, σ) lets us recover the elasticities

(αd, αs) from the main parametrization discussed in the paper. Specifically, we can define

g(ξ, σ) as the following (smooth) vector-valued function which recovers the structural elasticities

(αd, αs) from the rotation angle α.

g(ξ, σ) =
(
αd, αs

)′
:=
(
σ2·sin(ξ)−σ3·cos(ξ)

σ1·sin(ξ) , σ2·cos(ξ)+σ3·sin(ξ)
σ1·cos(ξ)

)′
(S35)

Since g(ξ, σ) is a smooth function, we can use Algorithm 2 to recover confidence sets for

the structural elasticities (αd, αs). To this purpose, we define a grid with 250,000 equally-spaced

grid points for (αd, αs) ∈ [−3, 0)× (0, 3], similar to the grid used in the main parametrisation.

Similarly, we can useAlgorithm 2 to directly recover confidence bands for the impulse response

functions.

Figures S3 and S4 report the confidence sets for labor demand and labor supply elasticities,

as well as confidence bands for the impulse response functions, respectively, obtained using the

alternative parametrization. Overall, the results are very close to the ones reported for the main

parametrization. Due to the Bonferroni procedure of Algorithm 2, the confidence set for the

elasticites is slightly wider than the one reported in the main text of the paper based on the

alternative parametrization. For the IRF bands, there are also slight differences in the widths

of the impulse response bands.

S19σ1, σ3 > 0 is trivial, since these capture standard deviations of the reduced form SVAR residuals. σ2 > 0 can
be verified from a Cholesky decomposition of the estimated reduced-form errors of the SVAR.
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Figure S3: Confidence Sets for Labor Demand and Supply Elasticities
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Note: 95% (light blue) and 67% (dark blue) confidence regions for labor demand and supply elasticities obtained
using Algorithm 2 with 250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].

Figure S4: IRF confidence bands for labor demand and supply shocks
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Note: 95% (light blue) and 67% (dark blue) confidence bands for impulse responses to labor supply and labor
demand shocks, obtained using using Algorithm 2 with 500 equally-spaced grid points for ξ ∈ [0, π/2].
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S6.2 Distributions of recovered structural shocks

In this section, we present kernel density estimates for the structural errors recovered from the

empirical studies in the paper. To obtain estimates of the structural shocks, we require an

estimate of α, which we obtained using a GMM estimator employing the moment conditions

of Keweloh (2021). Using the estimate, we can recover the structural shocks ϵ̂k,t(α̂, β̂) for

k = 1, . . . ,K. We plot histograms of the structural errors in Figure S6.2 for the model of

Baumeister and Hamilton (2015) and on Figure S6.2 for the model of Kilian and Murphy

(2012), together with their kernel density estimates and an overlaid standard gaussian density.

Figure S5: Distributions of Shocks – Baumeister and Hamilton (2015) model
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Note: Histogram (light gray) and kernel density estimates (black solid) of the recovered structural shocks ϵ̂k,t for
k = 1, 2 from the Baumeister and Hamilton (2015) model, overlaid with a standard normal density (red dashed).

Figure S6: Distributions of Shocks – Kilian and Murphy (2012) model
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Note: Histogram (light gray) and kernel density estimates (black solid) of the recovered structural shocks ϵ̂k,t for
k = 1, 2, 3 from the Kilian and Murphy (2012) model, overlaid with a standard normal density (red dashed).
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