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Throughout this document, references to lemmas, equations etc. which start with a “S” are

references to this document. Those which consist of just a number refer to the main text.

S1 Main proofs

In this section we provide our main proofs. Regarding notation: x := y means that x is

defined to be y. The Lebesgue measure on RK is denoted by λK with λ := λ1 and the

standard basis vectors in RK are e1, . . . , eK . We will make use of the empirical process

notation: Pf :=
∫
f dP , Pnf := 1

n

∑n
i=1 f(Yi) and Gnf :=

√
n(Pn − P )f . For any two

sequence of probability measures (Qn)n∈N and (Pn)n∈N (where Qn and Pn are defined on a

common measurable space for each n ∈ N), Qn / Pn indicates that (Qn)n∈N is contiguous

with respect to (Pn)n∈N. Qn / . Pn indicates that both Qn /Pn and Pn /Qn hold, see van der

Vaart (1998, Section 6.2) for formal definitions. X ⊥⊥ Y indicates that random vectors X

and Y are independent; X ' Y indicates that they have the same distribution. a . b means

that a is bounded above by Cb for some constant C ∈ (0,∞); the constant C may change

from line to line. clX means the closure of X. vec−1 is the inverse vec operator, i.e. if

b = vec(B) then B = vec−1(b). If S is a subset of an inner product space (V, 〈·, ·〉), S⊥ is its

orthogonal complement, i.e. S⊥ = {x ∈ V : 〈x, s〉 = 0 for all s ∈ S}. If S ⊂ V is complete

(hence a Hilbert space) the orthogonal projection of x ∈ V onto S is Π(x|S).

In this document we use notation which explicitly records the dependency of objects on

θ = (γ, η), including in cases where this was left implicit in the main text to prevent the

notation from becoming overly cumbersome. For instance, instead of Ak•, in the appendices

we write A(α, σ)k• or e′kA(α, σ).

S1.1 Score functions and local asymptotic normality

We first review a number of definitions and establish the semiparametric framework under-

lying the robust testing approach outlined in this paper.

Formally, the considered model (3) is the collection

PΘ = {Pθ : θ ∈ Θ} , (S1)

where each Pθ is the law of the data Wi = (Yi, X̃i) which lies in W ⊂ RK+d−1. The

parameter space Θ has the form Θ = A×B×H, where A ⊂ RLα , B ⊂ RLβ . H has the form

Z ×
∏K

k=1 H , where Z is the space of density functions η0 and H is the space of density

functions ηk such that if X̃ ∼ η0 and εk ∼ ηk then Assumption 2 parts 1, 3, 4 and 5 hold.S1

S1Part 2 of Assumption 2 serves to simplify the form of the effective score function derived in Lemma S3
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We write a typical element of Θ as θ = (α, β, η), where β = (b′, σ′)′ and it is understood

that α ∈ A, β ∈ B and η ∈ H. In what follows we will let Vθ,i := Yi − BXi be the reduced

form error so that A(α, σ)Vθ,i = εi. Each Pθ is absolutely continuous with respect to Lebesgue

measure on RK+d−1, with (Lebesgue) density given by

pθ(Wi) = | detA(α, σ)|
K∏
k=1

ηk(e
′
kA(α, σ)Vθ,i)× η0(X̃i) , (S2)

and hence log-density

`θ(Wi) = log | detA(α, σ)|+
K∑
k=1

log ηk(e
′
kA(α, σ)Vθ,i) + log η0(X̃i) . (S3)

We now define the scores of model (S1) following the definition in van der Vaart (2002).

Definition S1 (Cf. Definition 1.6 in van der Vaart, 2002). A differentiable path is a map

t 7→ Pt from a neighborhood of 0 ∈ [0,∞) to PΘ such that for some measurable function

s :W → R, ∫ [√
pt −

√
p

t
− 1

2
s
√
p

]2

dµ→ 0 , (S4)

as t → 0, where pt and p respectively denote the densities of Pt and P relative to a σ-finite

measure µ. The map t → √pt is the root density path and s is the score function of the

submodel {Pt : t ≥ 0} at t = 0.

In words, a differentiable path is a one-dimensional parametric submodel {Pt : t ≥ 0}
that is differentiable in quadratic mean at t = 0 with score function s. If we let t 7→ Pt range

over a collection of submodels, indexed by V , we will obtain a collection of score functions,

say sj for j ∈ V .

The differentiable paths we consider have the following form. Let Pt be the measure

corresponding to the density with form as in (S2) evaluated at θt := (γ + tg, ηt) where the

k-th coordinate of ηt is ηhkk,t := ηk(1 + thk) (k = 0, . . . , K), and (g, h) ∈ RL × H, where

H =
∏K

k=0Hk and each Hk is defined following (6).

That such t 7→ Pt paths are indeed differentiable paths as in Definition S1 is established

in the following lemma.

Lemma S1. Suppose Assumptions 1 and 2 hold and that (α, β) is an interior point of A×B.

For each (g, h) ∈ RL ×H := V, the map t 7→ Pθt is a differentiable path, with score function

and is not necessary to set up the model.
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g′ ˙̀θ + h̃0 +
∑K

k=1 h̃k, where ˙̀
θ := ∇γ log pθ, h̃0(W ) := h0(X̃) and h̃k(W ) := hk(e

′
kA(α, σ)Vθ).

˙̀
θ has the form ˙̀

θ = ( ˙̀′
θ,α,

˙̀′
θ,b,

˙̀′
θ,σ)′, with

˙̀
θ,α,l(W ) :=

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j(α, σ)φk(e
′
kA(α, σ)Vθ)e

′
jA(α, σ)Vθ

+
K∑
k=1

ζαl,k,k(α, σ)[φk(e
′
kA(α, σ)Vθ)e

′
kA(α, σ)Vθ + 1]

˙̀
θ,σ,l(W ) :=

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,j(α, σ)φk(e
′
kA(α, σ)Vθ)e

′
jA(α, σ)Vθ

+
K∑
k=1

ζσl,k,k(α, σ)[φk(e
′
kA(α, σ)Vθ)e

′
kA(α, σ)Vθ + 1],

and

˙̀
θ,b(W )′ := −

K∑
k=1

φk (e′kA(α, σ)Vθ) e
′
kA(α, σ)[X ′ ⊗ IK ].

Proof. Let g = (a, %, s) ∈ RLα × RLb × RLσ . The log density of W under θt is then

`θt(W ) = log pθt(W )

= log η0(X̃) + log(1 + th0(X̃)) + log | det(A(α + ta, σ + ts))|

+
K∑
k=1

log ηk
(
e′kA(α + ta, σ + ts)(Y −BX − t vec−1(%)X)

)
+

K∑
k=1

log
(
1 + thk

(
e′kA(α + ta, σ + ts)(Y −BX − t vec−1(%)X)

))
,

By Lemma S10, t 7→ √pθt is continuously differentiable (pointwise) in a neighbourhood V
of 0. Moreover, if we define qt(W ) :=

∂ log pθx (W )

∂x

∣∣
x=t

and Qt := Pθtqt(W )2, Qt is finite and

continuous in a neighbourhood of 0 by the uniformly integrability of {qt(W )2 : t ∈ V} along

with the pointwise continuity of t 7→ qt(W ), both of which follow from Lemma S10.

Hence, by Lemma 1.8 in van der Vaart (2002), t 7→ Pθt is a differentiable path with score
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function given by the derivative of `θt(W ) at t = 0, which is:

K∑
k=1

φk (e′kA(α, σ)Vθ) e
′
k

Lα∑
l=1

alDα,l(α, σ)Vθ +
Lα∑
l=1

al tr(A(α, σ)−1Dα,l(α, σ))

+
K∑
k=1

φk (e′kA(α, σ)Vθ) e
′
k

Lσ∑
l=1

slDσ,l(α, σ)Vθ +
Lσ∑
l=1

sl tr(A(α, σ)−1Dσ,l(α, σ))

−
K∑
k=1

φk (e′kA(α, σ)Vθ) e
′
kA(α, σ)[X ′ ⊗ IK ]%+ h0(X̃) +

K∑
k=1

hk (e′kA(α, σ)Vθ) ,

(S5)

with Dx,l(α, σ) = ∇xlA(α, σ) for any x ∈ {α, σ} and any l in {1, . . . , Lα} or {1, . . . , Lσ}
as appropriate. We can re-write the two expressions involving the trace as follows: for any

x ∈ {α, σ} and appropriate index l we have

K∑
k=1

φk(e
′
kA(α, σ)Vθ)e

′
kDx,l(α, σ)Vθ + tr(A(α, σ)−1Dx,l(α, σ))

=
K∑
k=1

φk(e
′
kA(α, σ)Vθ)e

′
kDx,l(α, σ)A(α, σ)−1ε+ tr(Dx,l(α, σ)A(α, σ)−1)

=
K∑
k=1

K∑
j=1,j 6=k

ζxl,k,j(α, σ)φk(e
′
kA(α, σ)Vθ)e

′
jA(α, σ)Vθ

+
K∑
k=1

ζxl,k,k(α, σ)[φk(e
′
kA(α, σ)Vθ)e

′
kA(α, σ)Vθ + 1],

for ζxl,k,j(α, σ) := e′kDx,l(α, σ)A(α, σ)−1ej. We may therefore write the derivative (S5) as

a′ ˙̀θ,α + %′ ˙̀θ,b + s′ ˙̀θ,σ + ˙̀
θ,η,h where

˙̀
θ,η,h(W ) := h0(X̃) +

K∑
k=1

hk (e′kA(α, σ)Vθ) = h̃0(W ) +
K∑
k=1

h̃k(W ). (S6)

An elementary calculation reveals that g′ ˙̀θ = a′ ˙̀θ,α + %′ ˙̀θ,b + s′ ˙̀θ,σ.

As shown in Lemma S1, the score functions corresponding to η are ˙̀
θ,η,h as defined in

(S6), for h ranging over H. These are collected in the set T , as defined in equation (6).

The next Lemma establishes a uniform local asymptotic normality result for (a localised

version of) our model. For this we need to specify the notion of convergence on V := RL×H.
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We equip the product space V with the normS2

‖(g, h)‖ :=

√√√√‖g‖2 + ‖h̃0‖2
L2(Pθ) +

K∑
k=1

‖h̃k‖L2(Pθ)}2 .

Lemma S2. Suppose that Assumptions 1 and 2 hold and that (α, β) is an interior point of

A× B. For (g, h) ∈ V let

θn(g, h) := θ + n−1/2(g, η0h0, . . . , ηKhK).

For any convergent sequence (gn, hn)→ (g, h) (all in V), define Rn as

Rn := log
n∏
i=1

pθn(gn,hn)(Wi)

pθ(Wi)
− 1√

n

n∑
i=1

[
g′ ˙̀θ(Wi) +

K∑
k=0

h̃k(Wi)

]
+

1

2
E

[
g′ ˙̀θ(Wi) +

K∑
k=0

h̃k(Wi)

]2

.

Then,

1. Rn
Pθ−→ 0,

2. Under Pθ,

1√
n

n∑
i=1

[
g′ ˙̀θ(Wi) +

K∑
k=0

h̃k(Wi)

]
 N

0,E

[
g′ ˙̀θ(Wi) +

K∑
k=0

h̃k(Wi)

]2
 ,

3. The (product) measures P n
θn

and P n
θ are mutually contiguous.

Proof. Part 2 follows from Lemma S1 in combination with the Lindenberg-Lévy central

limit theorem and Lemma 1.7 of van der Vaart (2002). For Part 1, we first note that in the

special case where (gn, hn) = (g, h) for all n ∈ N, Rn
Pθ−→ 0 follows by combining Lemma S1

with Lemma 1.9 in van der Vaart (2002). For the general case, note that by Lemma S11

(i) the functions (g, h) 7→ 1√
n

∑n
i=1

[
g′ ˙̀θ +

∑K
k=0 h̃k

]
(i.e. indexed by n) are equicontinuous

on compacts in L2(Pθ) and (ii) the functions (g, h) 7→ P n
θn(g,h) (i.e. indexed by n) are

equicontinuous on compacts in the total variation metric. By (i), the i.i.d. assumption and

S2Each h̃k is as defined in the statement of Lemma S1.
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Lemma 1.7 in van der Vaart (2002)

lim
n→∞

E

[
(g − gn)′ ˙̀θ(Wi) +

K∑
k=0

(
h̃k(Wi)− h̃n,k(Wi)

)]2

= lim
n→∞

E

[
1√
n

n∑
i=1

[
(g − gn)′ ˙̀θ(Wi) +

K∑
k=0

(
h̃k(Wi)− h̃n,k(Wi)

)]]2

= 0.

(S7)

By (ii) one has limn→∞ dTV (P n
θn(gn,hn), P

n
θn(g,h)) = 0 where dTV indicates the total variation

metric. This implies (cf. Theorem 80.13 in Strasser (1985))

log
n∏
i=1

pθn(gn,hn)(Wi)

pθ(Wi)
− log

n∏
i=1

pθn(g,h)(Wi)

pθ(Wi)
= oPnθ (1).

Combine the preceding two displays with the previously demonstrated result for the special

case where (gn, hn) = (g, h) for all n ∈ N to conclude. Part 3 then follows by combining

Parts 1 and 2 with Example 6.5 in van der Vaart (1998).

S1.2 Orthogonality and the effective score

We now derive the effective score for α, i.e. κ̃θ. By definition, this is the orthogonal projection

of the score function for the parameter of interest, i.e. ˙̀
θ,α, on the orthocomplement (in

L2(Pθ)) of the space spanned by the score functions for all nuisance parameters, i.e. ˙̀
θ,σ, ˙̀

θ,b

and ˙̀
θ,η,h.

S3 That is, collecting the scores for the nuisance parameters as

S := Span( ˙̀
θ,b) + Span( ˙̀

θ,σ) + T ⊂ L2(Pθ),

where T is defined in (6) and collects the scores corresponding to η, one has

κ̃θ,l := Π
(

˙̀
θ,α,l

∣∣∣S⊥) ,
for each l = 1, . . . , Lα.

It is convenient to calculate this projection in two steps (see Bickel et al., 1998, p.

74). Firstly we calculate the effective score for the Euclidean parameters γ, i.e. the or-

thogonal projection of ( ˙̀′
θ,α,

˙̀′
θ,σ,

˙̀′
θ,b)
′ onto the orthocomplement of the space spanned by

the score functions for the infinite dimensional parameter η, i.e. T ⊥. We denote this by

S3The terminology “effective score” is taken from Choi, Hall and Schick (1996); much of the semiparametric
literature calls this object the “efficient score” (e.g. Bickel et al., 1998; van der Vaart, 1998).
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˜̀
θ := (˜̀′

θ,α,
˜̀′
θ,σ,

˜̀′
θ,b)
′ = (˜̀′

θ,α,
˜̀′
θ,β)′, i.e. for any x ∈ {α, σ, b} and l in {1, . . . , Lx}

˜̀
θ,x,l = Π

(
˙̀
θ,x,l

∣∣∣T ⊥) . (S8)

For the second step, we may partition

˜̀
θ =

(
˜̀′
θ,α,

˜̀′
θ,β

)′
and Ĩθ =

[
Ĩθ,αα Ĩθ,αβ

Ĩθ,βα Ĩθ,ββ

]
, (S9)

with Ĩθ := Pθ[˜̀θ ˜̀′
θ]. If Ĩθ,ββ is nonsingular,S4 we can (orthogonally) project once more to

obtain the effective score function for α:S5

κ̃θ = ˜̀
θ,α − Ĩθ,αβ Ĩ−1

θ,ββ
˜̀
θ,β , (S10)

which has corresponding effective information matrix

Ĩθ := Ĩθ,αα − Ĩθ,αβ Ĩ−1
θ,ββ Ĩθ,βα . (S11)

Lemma S3. Suppose Assumptions 1 and 2 hold. Then the components of ˜̀
θ are as follows.

For x = α or x = σ,

˜̀
θ,x,l(W ) =

K∑
k=1

K∑
j=1,j 6=k

ζxl,k,j(α, σ)φk(e
′
kA(α, σ)Vθ)e

′
jA(α, σ)Vθ

+
K∑
k=1

ζxl,k,k(α, σ)(τk,1e
′
kA(α, σ)Vθ + τk,2κ(e′kA(α, σ)Vθ)),

S4 If Ĩθ,ββ is singular, we may drop components from ˜̀
θ,β until the remaining components form a linearly

independent collection which span the same subspace of L2(Pθ) as ˜̀
θ,β . The corresponding variance matrix

of this smaller vector will be non-singular and ˜̀
θ,β can be replaced throughout by this smaller vector.

S5For any l = 1, . . . , Lα, one has that

κθ,l = ˜̀
θ,α,l − e′lĨθ,αβ Ĩ−1θ,ββ ˜̀

θ,β = Π

(
˜̀
θ,α,l

∣∣∣∣[Span
(

˜̀
θ,β

)]⊥)
.

8



with l in {1, . . . , Lα} or {1, . . . , Lσ} (respectively); for x = b,

˜̀
θ,b(W ) = −

K∑
k=1

φk(e
′
kA(α, σ)Vθ)e

′
kA(α, σ) ([X ′ ⊗ IK ]− E[(X ′ ⊗ IK)])

+
K∑
k=1

e′kA(α, σ)E[(X ′ ⊗ IK)](ςk,1e
′
kA(α, σ)Vθ + ςk,2κ(e′kA(α, σ)Vθ));

where the expectations are taken under Pθ and

τk := M−1
k

(
0

−2

)
, ςk := M−1

k

(
1

0

)
, for Mk :=

(
1 E[ε3k]

E[ε3k] E[ε4k]− 1

)
.

Proof. For each hk ∈ Hk, define the corresponding h̃k as in the statement of Lemma S1 and

let H̃k collect all such h̃k formed with hk ranging over Hk.
S6 By the definition of ˜̀

θ in equation

(S8) and Theorem 4.11 in Rudin (1987) it suffices to show that each such component is (a)

in (H̃0 + · · · + H̃K)⊥ and (b) ˙̀
θ,x − ˜̀

θ,x ∈ cl(H̃0 + · · · + H̃K), the form of which is given in

Lemma S12.

Case 1: x = α, σ. For (a) note that if j 6= k, then

E
[
ζxl,k,j(α, σ)φk(εk)εjh0(X̃)

]
= E

[
ζxl,k,j(α, σ)φk(εk)h0(X̃)

]
E[εj] = 0

E
[
ζxl,k,j(α, σ)φk(εk)εjhm(εm)

]
= E

[
ζxl,k,j(α, σ)

]
E [φk(εk)εjhm(εm)] = 0

where the last equality follows from independence and the fact that m must differ from one

of k, j. Additionally, by independence and our moment assumptions (i.e. Assumption 2)

E
[(
ζxl,k,j(α, σ)[τk,1εk + τk,2κ(εk)]

)
h0(X̃)

]
= ζxl,k,j(α, σ)E [τk,1εk + τk,2κ(εk)]E[h0(X̃)] = 0,

and again using independence and the definition of Hk,

E
[
ζxl,k,j(α, σ)[τk,1εk + τk,2κ(εk)]hj(εj)

]
= ζxl,k,j(α, σ)E [(τk,1εk + τk,2κ(εk))hj(εj)] = 0.

Since εk = e′kA(α, σ)Vθ, these observations and the form of ˜̀
θ,x establish (a). For (b), it

suffices to show that

fk(εk) := φk(εk)εk + 1− τk,1εk − τk,2κ(εk) ∈ Hk.

S6 That is, for each h0 ∈ H0 define h̃0 : W → R acccording to h̃0(W ) := h0(X̃) and let H̃0 collect the
h̃0 functions so formed. Similarly, for each hk ∈ Hk (k = 1, . . . ,K), define h̃k : W → R according to
h̃k(W ) := hk(e′kA(α, σ)Vθ) and let let H̃k collect the h̃k functions so formed.
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That E[fk(εk)] = 0 and E[fk(εk)
2] < ∞ follows immediately from Assumption 2. That

additionally E[fk(εk)εk] = E[fk(εk)κ(εk)] = 0 is ensured by the choice of τk.

Case 2: x = b. For (a) let m(X) := A(α, σ)(X ′ ⊗ IK) and µ = E[m(X)]. Then,

E[φk(εk)e
′
k(m(X)− µ)h0(X̃)] = E[φk(εk)]E[e′k(m(X)− µ)h0(X̃)] = 0

E[φk(εk)e
′
k(m(X)− µ)hj(εj)] = E[φk(εk)hj(εj)]E[e′k(m(X)− µ)] = 0

E[e′kµ (ςk,1εk + ςk,2κ(εk))h0(X̃)] = e′kµE[ςk,1εk + ςk,2κ(εk)]E[h0(X̃)] = 0;

for k 6= j by independence

E[e′kµ (ςk,1εk + ςk,2κ(εk))hj(εj)] = e′kµE[ςk,1εk + ςk,2κ(εk)]E[hj(εj)] = 0

whilst for k = j, the definition of Hk ensures that

E[e′kµ (ςk,1εk + ςk,2κ(εk))hk(εk)] = e′kµE[ςk,1εkhk(εk) + ςk,2κ(εk)hk(εk)] = 0.

Since εk = e′kA(α, σ)Vθ, these observations and the form of ˜̀
θ,b establish (a). For (b) it

suffices to show that

qk(εk) := (φk(εk) + ςk,1εk + ςk,2κ(εk)) (−e′kµ) ∈ Hk.

That E[qk(εk)] = 0 and E[qk(εk)
2] < ∞ follows immediately from Assumption 2. That

additionally E[qk(εk)εk] = E[qk(εk)κ(εk)] = 0 is ensured by the choice of ςk.

S1.3 Proof of Theorem 1

S1.3.1 Log density score estimation

As discussed just prior to Assumption 3, the log density score estimator in (11) may be

replaced by an alternative estimator, provided it satisfies some high level conditions. These

are given in the following assumption.

Assumption S1. Let νn be as in Assumption 3. We have estimators φ̂k,n,γ such that for (a)

any sequence with elements θn = (α0, βn, η) ∈ Θ where (βn)n∈N is a deterministic sequence

with
√
n‖βn − β‖ = O(1) and (b) any array (Zn,i)n∈N,i≤n with i.i.d. rows and such that

EZn,i = 0, supn∈N EZ2
n,i <∞ and Zn,i ⊥⊥ εi,k for each n, i, and k,

1

n

n∑
i=1

[
φ̂k,n,γn(Ak,γnVθn,i)− φk(Ak,γnVθn,i)

]
Zn,i = oPnθn (n−1/2), (S12)

10



1

n

n∑
i=1

([
φ̂k,n,γn(Ak,γnVθn,i)− φk(Ak,γnVθn,i)

]
Zn,i

)2

= oPnθn (νn). (S13)

where Ak,γn := e′kA(α0, σn), Vθn,i := Yi − vec−1(bn)Xi.

The following Lemma verifies that, under Assumptions 2 and 3, the log density score

estimator in (11) satisfies Assumption S1. Its proof is given in Section S6.

Lemma S4. Suppose Assumptions 2 and 3 hold. Then, φ̂k,n,γ := φ̂k,n as defined in (11)

satisfies Assumption S1.

S1.3.2 Proof of Theorem 1

In order to prove Theorem 1, we first establish two results which give high level conditions

under which Theorem 1 holds. The proof of Theorem 1 then consists of verifying the required

high level conditions under our primitive assumptions. Let us first recall the definitions of

various objects which were introduced in Section 3.

We have that ˜̀
θ denotes the effective score for Euclidean parameter vector γ = (α, β),

evaluated at θ (as defined in (S8) and derived in Lemma S3). The effective information

for γ is denoted Ĩθ := Pθ[˜̀θ ˜̀′
θ]. Given a γ = (α, β), these objects are estimated by ˆ̀

n,γ =
ˆ̀
n,γ(W1, . . . ,Wn) and În,γ = În,γ(W1, . . . ,Wn), respectively. Each of these objects can be

partitioned conformally with (α, β):

˜̀
θ =

(
˜̀
θ,α

˜̀
θ,β

)
, ˆ̀

n,γ =

(
ˆ̀
n,γ,α

ˆ̀
n,γ,β

)
, Ĩθ =

(
Ĩθ,αα Ĩθ,αβ

Ĩθ,βα Ĩθ,ββ

)
, and În,γ =

(
În,γ,αα În,γ,αβ

În,γ,βα În,γ,ββ

)
.

The effective score for α is κ̃θ := ˜̀
θ,α− Ĩθ,αβ Ĩ−1

θ,ββ
˜̀
θ,β, with corresponding effective information

Ĩθ := Ĩθ,αα − Ĩθ,αβ Ĩ−1
θ,ββ Ĩθ,βα.S7 For a given γ, the estimator of κ̃θ is

κ̂n,γ := ˆ̀
n,γ,α − În,γ,αβ Î−1

n,γ,ββ
ˆ̀
n,γ,β.

The estimator of the effective information for α, Ĩθ, is formed in two steps. Firstly, the

preliminary estimate Ǐn,γ := În,γ,αα − În,γ,αβ Î−1
n,γ,ββ În,γ,ββ is formed by replacing population

quantities by their sample equivalents. Secondly, the regularized estimator În,γ is formed as

in (15): let Ǔn,γΛ̌n,γǓ
′
n,γ be the eigendecomposition of the initial estimator Ǐn,γ. Λ̌n,γ is a

diagonal matrix with (i, i)th element λ̌n,γ,i. Then the estimator is:

Îtn,γ = Ǔn,γΛ̂n,γ(ν
1/2
n )Ǔ ′n,γ ,

S7Here it is assumed that Ĩθ,ββ is non-singular; cf. footnote S4.
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where Λ̂n,γ(ν
1/2
n ) is a diagonal matrix with the ν

1/2
n -truncated eigenvalues of În,γ on the main

diagonal, i.e. the (i, i)–th element of Λ̂n(ν
1/2
n ) is 1(λ̌n,γ,i ≥ ν

1/2
n ). The rank estimator used is

r̂n,γ = rank(Îtn,γ). Finally, the effective score statistic (for a given γ) is given by

Ŝn,γ := n (Pnκ̂n,γ)′ Ît,†n,γ (Pnκ̂n,γ) ,

where Ît,†n,γ is the Moore – Penrose psuedoinverse of Îtn,γ.

Theorem S1. Suppose that for any deterministic sequence (θ̃n)n∈N in Θ with elements θ̃n =

(α, βn, η) such that
√
n‖βn − β‖ = O(1) the following conditions hold:

1. The functions ˜̀
θn satisfy

√
nPn

[
˜̀̃
θn
− ˜̀

θ

]
+
√
nĨθ

(
0

βn − β

)
= oPnθ (1); (S14)

2. The estimators ˆ̀
n,γn satisfy

√
nPn

[
ˆ̀
n,γn − ˜̀̃

θn

]
= oPn

θ̃n
(1);

3. The estimators În,γn satisfy ‖În,γn − Ĩθ‖2 = oPn
θ̃n

(ν
1/2
n ) for a non-negative sequence

(νn)n∈N with νn → 0;

where γn := (α, βn), θ := (α, β, η) and Ĩθ := Pθ[˜̀θ ˜̀′
θ]. Moreover, suppose that for (gn, hn)→

(g, h) (all in V) and some σ(g, h) ∈ (0,∞), under P n
θ(

√
nPn ˜̀

θ, log
n∏
i=1

pθn(gn,hn)

pθ

)
 N

((
0

−1
2
σ(g, h)

)
,

(
Ĩθ Ĩθg

g′Ĩθ σ(g, h)

))
, (S15)

where θn(g, h) is as in Lemma S2. Suppose that initial estimators β̂n are available with
√
n‖β̂n − β‖ = OPnθ

(1) and let β̄n be a discretised version of this which takes values in

Gn := n−1/2CZLβ for some C ∈ (0,∞).S8 Then, if γ̄n := (α, β̄n) and r := rank Ĩθ,

√
nPnκ̂n,γ̄n =

√
nPnκ̃θ + oPn

θn(gn,hn)
(1) N (0, Ĩθ), and Ŝn,γ̄n  χ2

r, (S16)

under any P n
θn(gn,hn) such that (gn, hn)→ (g, h) (all in V) with g = (0, (b, s)′)′ ∈ RLα × RLβ .

Additionally, under any P n
θn(gn,hn) such that (gn, hn)→ (g, h) (all in V),

r̂n,γ̄n
Pn
θn(gn,hn)−−−−−−→ r. (S17)

S8That is, β̄n is the nearest element in Gn to β̂n.
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Proof. Step 1: Let dn :=
√
n(βn − β). By arguing along subsequences if necessary we may

assume without loss of generality that dn → d. Hence for g�n := (0, d′n)′ → (0, d′)′ =: g�,

θ̃n = θn(g�n, 0). By condition (S15) and Example 6.5 in van der Vaart (1998), P n
θ̃n
/ . P n

θ and

so, given the assumed convergences in conditions 2 and 3, we have

√
nPn

[
ˆ̀
n,γn − ˜̀̃

θn

]
= oPnθ (1) and ‖În,γn − Ĩθ‖2 = oPnθ (ν1/2

n ).

Step 2: We show that the convergences in the preceding display and equation (S14)

continue to hold if γn (and θn = (γn, η)) is replaced by γ̄n (and θ̄n = (γ̄n, η)) as in the

statement of the theorem. Let γ? = (α, β?) and θ? = (γ?, η) and define

Rn,1(β?) :=
√
nPn

[
˜̀
θ? − ˜̀

θ

]
+
√
nĨθ

(
0

β? − β

)
Rn,2(β?) :=

√
nPn

[
ˆ̀
n,γ? − ˜̀

θ?

]
Rn,3(β?) := ν−1/2

n

[
În,γ? − Ĩθ

]
.

For any ε > 0 there is an M such that P n
θ (
√
n‖β̂n − β‖ > M) < ε. Moreover, whenever

√
n‖β̂n − β‖ ≤ M then β̄n ∈ GMn := {β ∈ Gn : ‖β − β‖ ≤ n−1/2M}. For fixed M , the

cardinality |GMn | <∞ of this set is bounded independently of n, say by GM . For any υ > 0,

P n
θ

(
‖Rn,i(β̄n)‖ > υ

)
≤ ε+

∑
β?n∈GMn

(
{‖Rn,i(β

?
n)‖ > υ} ∩ β̄n = β?n

)
≤ ε+

∑
β?n∈GMn

(‖Rn,i(β
?
n)‖ > υ)

≤ ε+ GMP n
θ (‖Rn,i(β

�
n)‖ > υ) ,

where β̆n ∈ GMn is the maximiser of β? 7→ P n
θ (‖Rn,i(β

?)‖ > υ). As β̆n ∈ GMn , θ̆n := (α, β̆n, η)

is a deterministic sequence with
√
n‖β̆n − β‖ = OPnθ

(1). Thus, by equation (S14) and Step

1,

√
nPn

[
˜̀̄
θn − ˜̀

θ

]
+
√
nĨθ

(
0

β̄n − β

)
= oPnθ (1);

√
nPn

[
ˆ̀
n,γ̄n − ˜̀̄

θn

]
= oPnθ (1);

‖În,γ̄n − Ĩθ‖2 = oPnθ (ν1/2
n ).

(S18)
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Step 3: Combine the first two lines of (S18) to obtain

√
nPn

[
ˆ̀
n,γ̄n − ˜̀

θ

]
= −
√
nĨθ

(
0

β̄n − β

)
+ oPnθ (1).

By the third line of (S18),

K̂n,γ̄n :=
[
I −În,γ̄n,αβ Î−1

n,γ̄n,ββ

]
Pnθ−→ K̃θ :=

[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
.

By (S15) and Example 6.5 in van der Vaart (1998), P n
θn(gn,hn) / . P

n
θ . In combination with

the preceding two displays this gives

√
nPn [κ̂n,γ̄n − κ̃θ]

=
[
K̂n,γ̄n − K̃θ

]√
nPn

[
ˆ̀
n,γ̄n − ˜̀

θ

]
+ K̃θ

√
nPn

[
ˆ̀
n,γ̄n − ˜̀

θ

]
+
[
K̂n,γ̄n − K̃θ

]√
nPn ˜̀

θ

= −K̃θĨθ

(
0

√
n(β̄n − β)

)
+ oPn

θn(gn,hn)
(1)

= −
(
Ĩθ 0

)( 0
√
n(β̄n − β)

)
+ oPn

θn(gn,hn)
(1)

= oPn
θn(gn,hn)

(1).

By (S15) and Le Cam’s third Lemma (e.g. van der Vaart, 1998, Example 6.7),

√
nPnκ̃θ = Kθ

√
nPn ˜̀

θ  KθZ, where Z ∼ N (Ĩθg, Ĩθ)

under any P n
θn(gn,hn) with (gn, hn)→ (g, h) (all in V). KθĨθK′θ = Ĩ and with g = (0, (b, s)′)′,

KθĨθg =
(
Ĩθ 0

)( 0

(b, s)′

)
= 0.

We conclude that

κ̂n,γ̄n  N (0, Ĩθ) under P n
θn(gn,hn). (S19)

For the final part of the proof, note that since any submatrix has a smaller operator norm

than the original matrix and the matrix inverse is Lipschitz continuous at a non-singular

matrix, the third line of (S18) implies that

‖În,γ̄n − Ĩθ‖2 = oPnθ (ν1/2
n ).
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Therefore, by Proposition S1 and P n
θn(gn,hn) / . P

n
θ ,

Ît,†n,γ̄n
Pn
θn(gn,hn)−−−−−−→ Ĩ†θ and r̂n,γ̄n

Pn
θn(gn,hn)−−−−−−→ r,

which gives (S17). For the final part of (S16), combine the preceding display with the weak

convergence result in equation (S19) and Theorem 9.2.2 in Rao and Mitra (1971).

Corollary 1. In the setting of Theorem S1, let cn be the 1−a quantile of the χ2
rn distribution

for any a ∈ (0, 1) and

Θ0,n =
{

(α0, β + d/
√
n, η(1 + h/

√
n) : d ∈ D?, h ∈ H?

}
,

where D? is a bounded subset of RLβ and H? is a compact subset of H.S9 Then,

lim
n→∞

sup
ϑ∈Θ0,n

P n
ϑ

(
Ŝn,γ̄n > cn

)
≤ a,

with inequality only if r = 0.

Proof. Set Ŝn := Ŝn,γ̄n , r̂n := r̂n,γ̄n and ϕn := 1{Ŝn > cn}. Let g, h be such that g = (0, d),

d ∈ D? and h ∈ H?. Since r̂n
Pnθ−→ r (by Theorem S1), the events En := {r̂n = r} satisfy

P n
θ En → 1. Thus cn

Pnθ−→ c, the 1 − a quantile of a χ2
r random variable. We now split into

cases.

Case 1: r > 0. By Theorem S1

Ŝn − cn  Z − c under P n
θn(g,h) as n→∞,

with Z ∼ χ2
r. Since this is a continuous distribution

lim
n→∞

P n
θn(g,h)ϕn = a.

Case 2: r = 0. On En, r̂n = 0 =⇒ În,γ̄n = 0 =⇒ Ŝn = 0 =⇒ ϕn = 0, whilst

P n
θn(g,h)En → 1 by the contiguity which follows from (S15) and Example 6.5 in van der Vaart

(1998). Thus

lim
n→∞

P n
θn(g,h)ϕn = 0.

These two limiting statements continue to hold under any convergent sequence (gn, hn)→
(g, h), with each gn = (0, dn) for dn ∈ D? and hn ∈ H? and (g, h) ∈ clD? × H?, as

S9See the discussion immediately preceding Lemma S2 for the norm used on H.
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follows directly from dTV (P n
θn(gn,hn), P

n
θn(g,h))→ 0 as shown in Lemma S11. Considering such

convergent sequences is sufficient since each (gn, hn) ∈ {0}×clD?×H?, which is compact.

We next prove our main Theorem by verifying the conditions of Corollary 1.

Proof of Theorem 1. It suffices to show the conditions of Corollary 1 hold. There are 4

conditions which we verify in order: items 1, 2, 3 & equation (S15) of the statement of

Theorem S1.

Condition 1: Let dn :=
√
n(βn − β) and gn = (0, dn). Then θ̃n = θn(gn, 0). By arguing

along subsequences if necessary we may assume without loss of generality that dn → d. By

Theorem 12.14 in Rudin (1991),

Pθ

[
˜̀
θ

˙̀′
θ

]
g = Ĩθ

(
0

d

)
= Ĩθ

(
0

√
n(βn − b)

)
+ o(1). (S20)

Given this, condition 1 follows by Proposition A.10 in van der Vaart (1988), the hypotheses

of which are verified by Lemmas S1, S13 and S14.

Condition 2: This follows by repeated addition and subtraction along with the con-

vergence in probability and stochastic boundedness results of Lemma S15, Lemma S4,

the moment conditions in Assumption 2 and the boundedness of A(α, σn), A(α, σn)−1 and

Dx,l(α, σn) (for x ∈ {α, σ}), which follows as each of these functions is continuous by As-

sumption 1 and (σn)n∈N is a convergent sequence.

Condition 3: Let Ĭn,θn := 1
n

∑n
i=1

˜̀̃
θn

˜̀′
θ̃n

. By repeated addition and subtraction along

with the results of Lemmas S4, S17 and S18,

1

n

n∑
i=1

‖ ˜̀̃θn − ˆ̀
n,γn‖2 = oPn

θ̃n
(νn).
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This and Lemma S13 imply that

∥∥∥În,γn − Ĭn,θ̃n∥∥∥2
=

∥∥∥∥∥ 1

n

n∑
i=1

ˆ̀
n,γn

(
ˆ̀
n,γn − ˜̀̃

θn

)′
+
(

ˆ̀
n,γn − ˜̀̃

θn

)
˜̀′
θ̃n

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥∥∥ˆ̀
n,γn

(
ˆ̀
n,γn − ˜̀̃

θn

)′∥∥∥∥
2

+
1

n

n∑
i=1

∥∥∥(ˆ̀
n,γn − ˜̀̃

θn

)
˜̀′
θ̃n

∥∥∥
2

≤

(
1

n

n∑
i=1

∥∥∥ˆ̀
n,γn

∥∥∥2
)1/2(

1

n

n∑
i=1

∥∥∥ˆ̀
n,γn − ˜̀̃

θn

∥∥∥2
)1/2

+

(
1

n

n∑
i=1

∥∥∥ˆ̀
n,γn − ˜̀̃

θn

∥∥∥2
)1/2(

1

n

n∑
i=1

∥∥∥ ˜̀̃
θn

∥∥∥2
)1/2

= oPn
θ̃n

(ν1/2
n ).

To complete the demonstration of Condition 3, we show that the right hand side terms in

‖Ĭn,θ̃n − Ĩθ‖ ≤
∥∥∥Pn [ ˜̀̃

θn
˜̀′
θ̃n
− Pθ̃n

[
˜̀̃
θn

˜̀′
θ̃n

]]∥∥∥+
∥∥∥Pθ̃n [ ˜̀̃

θn
˜̀′
θ̃n

]
− Pθ

[
˜̀
θ
˜̀′
θ

]∥∥∥
are respectively oPn

θ̃n
(ν

1/2
n ) and o(ν

1/2
n ). Under P n

θ̃n
, each e′kA(α, σn)Vθ̃n,i has the same law as

εk,i (k = 1, . . . , K), whilst the same is true for A(α, σ)Vθ,i under P n
θ . This,

√
n‖βn−β‖ = O(1)

and the local Lipschitz continuity of each β 7→ ζxl,j,k(α, σ) and β 7→ A(α, σ) yield that the

rightmost term is O(n−1/2) = o(ν
1/2
n ). For the first term on the right hand side we note that

supn∈N Pθ̃n‖ ˜̀̃θn ˜̀′
θ̃n
‖2+δ/2 < ∞ by Lemma S13. This is sufficient as either 1 + δ/4 > p = 2,

in which case Pn
[
˜̀̃
θn

˜̀′
θ̃n
− Pθ̃n

[
˜̀̃
θn

˜̀′
θ̃n

]]
= OPn

θ̃n
(n−1/2) = oPn

θ̃n
(ν

1/2
n ) by Lindeberg’s CLT or

p = 1 + δ/4 ∈ (1, 2) whence Pn
[
˜̀̃
θn

˜̀′
θ̃n
− Pθ̃n

[
˜̀̃
θn

˜̀′
θ̃n

]]
= OPn

θ̃n
(n(1−p)/p) = oPn

θ̃n
(ν

1/2
n ) by a

Marcinkiewicz – Zygmund style weak law of large numbers for triangular arrays.S10

Condition 4: By Lemma S1, Lemma 1.7 of van der Vaart (2002) and Theorem I.2.7 of

Conway (1985), the random vector(
˜̀
θ(Wi), g

′ ˙̀
θ(Wi) +

K∑
k=0

h̃k(Wi)

)

is zero mean and has a finite variance matrix under Pθ. By the definition of ˜̀
θ as an

S10A formal statemement is as follows: Let (Xn,i)n∈N,1≤i≤n be a triangular array of zero-mean random
variables, i.i.d. along rows. Let Sn :=

∑n
i=1Xn,i. If supn∈N E|Xn,1|p < ∞ for p ∈ (1, 2), then Sn/n

1/p

converges to zero in probability as n→∞. For the case of an i.i.d. sequence (in place of a triangular array)
this result is recorded as, for example, Theorem 6.3.2 of Gut (2005); the proof given there extends essentially
verbatim to the case considered here.
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orthogonal projection and Theorem 12.14 in Rudin (1991), one has

Pθ

[
˜̀
θ

(
g′ ˙̀θ +

K∑
k=0

h̃k

)]
= Pθ

[
˜̀
θ

˙̀′
θ

]
g = Ĩθg.

Therefore, by the central limit theorem, under P n
θ

√
nPn

(
˜̀
θ, g

′ ˙̀
θ +

K∑
k=0

h̃k

)
 N

((
0

0

)
,

(
Ĩθ Ĩθg

g′Ĩθ σ(g, h)

))
, (S21)

where

σ(g, h) := Pθ

[
g′ ˙̀θ +

K∑
k=0

h̃k

]2

.

Combination of this with Lemma S2 and equation (S7) verifies (S15).

S2 A more general model

S2.1 Model setup, ULAN and the effective score

In this section we extend the approach in the main paper to the more general model:

Yi = B(b,Xi) + A(α, σ,Xi)
−1εi , i = 1, . . . , n , (S22)

under Assumptions S2 and S3 below, which are weakened versions of Assumptions 1 and 2

respectively. This version of the model allows (a) (parametric) conditional heteroskedasticity

in the reduced form error A(α, σ,Xi)
−1εi and (b) the conditional mean E[Yi|Xi] = B(b,Xi)

to be a non-linear function of Xi, known up to a finite dimensional parameter b.

Assumption S2. Suppose that for all (α, β) ∈ A× B,

1. A(α, σ,X) is non-singular for all X;

2. (α, σ) 7→ A(α, σ,X) and b 7→ B(b,X) are continuously differentiable for all X.

Define the partial derivative matrices Dα,l(α, σ,X) = ∂A(α, σ,X)/∂αl, for l = 1, . . . , Lα

Dσ,l(α, σ,X) = ∂A(α, σ,X)/∂σl, for l = 1, . . . , Lσ and Db,l := ∂B(b,X)/∂bl for l = 1, . . . , Lb.

Further, for each k, j ∈ {1, . . . , K}, l ∈ {1, . . . , Lα} and m ∈ {1, . . . , Lσ} define ζαl,k,j(α, σ,X) :=

e′kDα,l(α, σ,X)A(α, σ,X)−1ej and ζσm,k,j := e′kDσ,m(α, σ,X)A(α, σ,X)−1ej. With this nota-

tion, for all (α, β) ∈ A× B
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3. (α, σ)→ ζαl,k,j(α, σ,X) and (α, σ)→ ζσm,k,j(α, σ,X) are locally Lipschitz continuous for

all j, k, l,m considered and all X.

4. ‖A(α, σ,X)‖, ‖A(α, σ,X)−1‖, ‖Dα,l(α, σ,X)‖ and ‖Dσ,l(α, σ,X)‖ are locally (in (α, σ))

bounded.

Assumption S3. For εi = (εi,1, . . . , εi,K)′ in model (S22), each component εi,k has a con-

tinuously differentiable root density (with respect to Lebesgue measure on R). We write

the density as ηk with log density score φk(x) = ∂ log ηk(x)/∂x. We assume that for all

k = 1, . . . , K and some δ > 0

1. Eεi,k = 0, Eε2i,k = 1, Eε4+δ
i,k <∞, E(ε4i,k)− 1 > E(ε3i,k)

2, and Eφ4+δ
k (εi,k) <∞;

2. Eφk(εi,k) = 0, Eφk(εi,k)εi,k = −1, Eφk(εi,k)ε2i,k = 0 and Eφk(εi,k)ε3i,k = −3;

3. εi,k is independent of εi,l for all k 6= l;

4. η0 ∈ Z is a density function (with respect to Lebesgue measure on Rd−1) such that if

X̃i ∼ η0, E[‖Db,l(b + %,Xi)‖4+δ] ≤ Db,l(b) <∞ for all b ∈ B, all % in a neighbourhood

of zero and all l = 1, . . . , Lb;

5. εi and X̃i are independent.

Remark 1. If A(α, σ,X) = A(α, σ) and B(b,X) = vec−1(b)X then Assumptions S2 and S3

are implied by Assumptions 1 and 2 respectively.

Formally, the considered model is the collection

PΘ = {Pθ : θ ∈ Θ} , (S23)

where each Pθ is the law of the data Wi = (Yi, X̃i) which lies in W ⊂ RK+d−1. The

parameter space Θ has the form Θ = A × B × H, where A ⊂ RLα , B ⊂ RLβ . H has the

form Z ×
∏K

k=1 H , where Z is the space of density functions η0 and H is the space of

density functions ηk such that if X̃ ∼ η0 and εk ∼ ηk then Assumption S3 parts 1, 3, 4 and

5 hold.S11.

We write a typical element of Θ as θ = (α, β, η), where β = (b′, σ′)′ and it is understood

that α ∈ A, β ∈ B and η ∈ H. In what follows we will let Vθ,i := Yi − B(b,Xi) be

S11Part 2 of Assumption S3 serves to simplify the form of the effective score function derived in Lemma S7
and is not necessary to set up the model.
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the reduced form error so that A(α, σ,Xi)Vθ,i = εi. Each Pθ is absolutely continuous with

respect to Lebesgue measure on RK+d−1, with (Lebesgue) density given by

pθ(Wi) = | detA(α, σ,Xi)|
K∏
k=1

ηk(e
′
kA(α, σ,Xi)Vθ,i)× η0(X̃i) , (S24)

and hence log-density

`θ(Wi) = log | detA(α, σ,Xi)|+
K∑
k=1

log ηk(e
′
kA(α, σ,Xi)Vθ,i) + log η0(X̃i) . (S25)

The differentiable paths we consider have the following form.

Let H = H0 ×
∏K

k=1Hk, where each Hk is as defined following (6). Given a direction

(g, h) ∈ RL × H, the measures Pt are those corresponding to the density with form as in

(S24) evaluated at θt := (γ + tg, ηt) where the k-th coordinate of ηt is ηhkk,t := ηk(1 + thk)

(k = 0, . . . , K).

We have the following analogues of Lemmas S1, S2 and S3.

Lemma S5. Suppose Assumptions S2 and S3 hold and that (α, β) is an interior point of

A × B. For each (g, h) ∈ RL × H := V, the map t 7→ Pθt is a differentiable path, with

score function g′ ˙̀θ + h̃0 +
∑K

k=1 h̃k, where ˙̀
θ := ∇γ log pθ, h̃0(W ) := h0(X̃) and h̃k(W ) :=

hk(e
′
kA(α, σ,X)Vθ). ˙̀

θ has the form ˙̀
θ = ( ˙̀′

θ,α,
˙̀′
θ,b,

˙̀′
θ,σ)′, with

˙̀
θ,α,l(W ) :=

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j(α, σ,X)φk(e
′
kA(α, σ,X)Vθ)e

′
jA(α, σ,X)Vθ

+
K∑
k=1

ζαl,k,k(α, σ,X)[φk(e
′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1];

˙̀
θ,b,l(W ) := −

K∑
k=1

φk (e′kA(α, σ,X)Vθ) e
′
kA(α, σ,X)Db,l(b,X);

˙̀
θ,σ,l(W ) :=

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,j(α, σ,X)φk(e
′
kA(α, σ,X)Vθ)e

′
jA(α, σ,X)Vθ

+
K∑
k=1

ζσl,k,k(α, σ,X)[φk(e
′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1].
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Proof. Let g = (a, %, s) ∈ RLα × RLb × RLσ . The log density of W under θt is then

`θt(W ) = log pθt(W )

= log η0(X̃) + log(1 + th0(X̃)) + log | det(A(α + ta, σ + ts,X))|

+
K∑
k=1

log ηk (e′kA(α + ta, σ + ts,X)(Y −B(b+ t%,X)))

+
K∑
k=1

log (1 + thk (e′kA(α + ta, σ + ts,X)(Y −B(b+ t%,X)))) .

By Lemma S10, t 7→ √pθt is continuously differentiable (pointwise) in a neighbourhood V
of 0. Moreover, if we define qt(W ) :=

∂ log pθx (W )

∂x

∣∣
x=t

and Qt := Pθtqt(W )2, Qt is finite and

continuous in a neighbourhood of 0 by the uniformly integrability of {qt(W )2 : t ∈ V} along

with the pointwise continuity of t 7→ qt(W ), both of which follow from Lemma S10.

K∑
k=1

φk (e′kA(α, σ,X)Vθ) e
′
k

Lα∑
l=1

alDα,l(α, σ,X)Vθ +
Lα∑
l=1

al tr(A(α, σ,X)−1Dα,l(α, σ,X))

+
K∑
k=1

φk (e′kA(α, σ,X)Vθ) e
′
k

Lσ∑
l=1

slDσ,l(α, σ,X)Vθ +
Lσ∑
l=1

sl tr(A(α, σ,X)−1Dσ,l(α, σ,X))

−
K∑
k=1

φk (e′kA(α, σ,X)Vθ) e
′
kA(α, σ,X)

Lb∑
l=1

%lDb,l(b,X)

+ h0(X̃) +
K∑
k=1

hk (e′kA(α, σ,X)Vθ) .

(S26)

We can re-write the two expressions involving the trace as follows: for any x ∈ {α, σ} and

appropriate index l we have

K∑
k=1

φk(e
′
kA(α, σ,X)Vθ)e

′
kDx,l(α, σ,X)Vθ + tr(A(α, σ,X)−1Dx,l(α, σ,X))

=
K∑
k=1

φk(e
′
kA(α, σ,X)Vθ)e

′
kDx,l(α, σ,X)A(α, σ,X)−1ε+ tr(Dx,l(α, σ,X)A(α, σ,X)−1)

=
K∑
k=1

K∑
j=1,j 6=k

ζxl,k,j(α, σ,X)φk(e
′
kA(α, σ,X)Vθ)e

′
jA(α, σ,X)Vθ

+
K∑
k=1

ζxl,k,k(α, σ,X)[φk(e
′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1],
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for ζxl,k,j(α, σ,X) := e′kDx,l(α, σ,X)A(α, σ,X)−1ej. We may therefore write the derivative

(S26) as a′ ˙̀θ,α + %′ ˙̀θ,b + s′ ˙̀θ,σ + ˙̀
θ,η,h where

˙̀
θ,η,h := h0(X̃) +

K∑
k=1

hk (e′kA(α, σ,X)Vθ) = h̃0(W ) +
K∑
k=1

h̃k(W ).

An elementary calculation reveals that g′ ˙̀θ = a′ ˙̀θ,α + %′ ˙̀θ,b + s′ ˙̀θ,σ.

Lemma S6. Suppose that Assumptions S2 and S3 hold and that (α, β) is an interior point

of A× B. For (g, h) ∈ V let

θn(g, h) := θ + n−1/2(g, η0h0, . . . , ηKhK).

For any convergent sequence (gn, hn)→ (g, h) (all in V), define Rn as

Rn := log
n∏
i=1

pθn(gn,hn)(Wi)

pθ(Wi)
− 1√

n

n∑
i=1

[
g′ ˙̀θ(Wi) +

K∑
k=0

h̃k(Wi)

]
+

1

2
E

[
g′ ˙̀θ(Wi) +

K∑
k=0

h̃k(Wi)

]2

.

Then,

1. Rn
Pθ−→ 0,

2. Under Pθ,

1√
n

n∑
i=1

[
g′ ˙̀θ(Wi) +

K∑
k=0

h̃k(Wi)

]
 N

0,E

[
g′ ˙̀θ(Wi) +

K∑
k=0

h̃k(Wi)

]2
 ,

3. The (product) measures P n
θn

and P n
θ are mutually contiguous.

Proof. The proof proceeds verbatim as that of Lemma S2 on replacing Lemma S1 with

Lemma S5.

Lemma S7. Suppose Assumptions S2 and S3 hold. Then the components of ˜̀
θ are as follows.
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For x = α or x = σ,

˜̀
θ,x,l(W ) =

K∑
k=1

K∑
j=1,j 6=k

ζxl,k,j(α, σ,X)φk(e
′
kA(α, σ,X)Vθ)e

′
jA(α, σ,X)Vθ

+
K∑
k=1

(
ζxl,k,k(α, σ,X)− E

[
ζxl,k,k(α, σ,X)

])
[φk(e

′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1]

+
K∑
k=1

E
[
ζxl,k,k(α, σ,X)

]
(τk,1e

′
kA(α, σ,X)Vθ + τk,2κ(e′kA(α, σ,X)Vθ)),

with l in {1, . . . , Lα} or {1, . . . , Lσ} (respectively); for l = 1, . . . , Lb,

˜̀
θ,b,l(W ) = −

K∑
k=1

φk(e
′
kA(α, σ,X)Vθ)e

′
k (A(α, σ,X)Db,l(b,X)− E[A(α, σ,X)Db,l(b,X)])

+
K∑
k=1

e′kE[A(α, σ,X)Db,l(b,X)](ςk,1e
′
kA(α, σ,X)Vθ + ςk,2κ(e′kA(α, σ,X)Vθ));

where the expectations are taken under Pθ and

τk := M−1
k

(
0

−2

)
, ςk := M−1

k

(
1

0

)
, for Mk :=

(
1 E[ε3k]

E[ε3k] E[ε4k]− 1

)
.

Proof. For each hk ∈ Hk, define the corresponding h̃k as in the statement of Lemma S5

and let H̃k collect all such h̃k formed with hk ranging over Hk.
S12 By the definition of ˜̀

θ in

equation (S8) and Theorem 4.11 in Rudin (1987) it suffices to show that each such component

is (a) in (H̃0 + · · ·+ H̃K)⊥ and (b) ˙̀
θ,x− ˜̀

θ,x ∈ cl(H̃0 + · · ·+ H̃K), the form of which is given

in Lemma S12.

Case 1: x = α or x = σ. For (a) note that if j 6= k, then

E
[
ζxl,k,j(α, σ,X)φk(εk)εjh0(X̃)

]
= E

[
ζxl,k,j(α, σ,X)φk(εk)h0(X̃)

]
E[εj] = 0

E
[
ζxl,k,j(α, σ,X)φk(εk)εjhm(εm)

]
= E

[
ζxl,k,j(α, σ,X)

]
E [φk(εk)εjhm(εm)] = 0

where the last equality follows from independence and the fact that m must differ from

one of k, j. Additionally, writing ζ̃xl,k,j(X) := ζxl,k,j(α, σ,X) − E[ζxl,k,j(α, σ,X)] and ζ̄xl,k,j :=

S12 That is, for each h0 ∈ H0 define h̃0 : W → R acccording to h̃0(W ) := h0(X̃) and let H̃0 collect the
h̃0 functions so formed. Similarly, for each hk ∈ Hk (k = 1, . . . ,K), define h̃k : W → R according to
h̃k(W ) := hk(e′kA(α, σ,X)Vθ) and let let H̃k collect the h̃k functions so formed.
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E[ζxl,k,j(α, σ,X)], by independence and our moment assumptions (i.e. Assumption S3)

E
[(
ζ̃xl,k,j(X)[φk(εk)εk + 1] + ζ̄xl,k,j[τk,1εk + τk,2κ(εk)]

)
h0(X̃)

]
= E

[
ζ̃xl,k,j(X)h0(X̃)

]
E [φk(εk)εk + 1] + ζ̄xl,k,jE [τk,1εk + τk,2κ(εk)]E[h0(X̃)]

= 0,

and again using independence and the definition of Hk,

E
[(
ζ̃xl,k,j(X)[φk(εk)εk + 1] + ζ̄xl,k,j[τk,1εk + τk,2κ(εk)]

)
hj(εj)

]
= E

[
ζ̃xl,k,j(X)

]
E [(φk(εk)εk + 1)hj(εj)] + ζ̄xl,k,jE [(τk,1εk + τk,2κ(εk))hj(εj)]

= 0.

Since εk = e′kA(α, σ,X)Vθ, these observations and the form of ˜̀
θ,x establish (a). For (b), it

suffices to show that

fk(εk) := φk(εk)εk + 1− τk,1εk − τk,2κ(εk) ∈ Hk.

That E[fk(εk)] = 0 and E[fk(εk)
2] < ∞ follows immediately from Assumption S3. That

additionally E[fk(εk)εk] = E[fk(εk)κ(εk)] = 0 is ensured by the choice of τk.

Case 2: x = b. For (a) let m(X) := A(α, σ,X)Db,l(b,X) and µ = E[m(X)]. Then,

E[φk(εk)e
′
k(m(X)− µ)h0(X̃)] = E[φk(εk)]E[e′k(m(X)− µ)h0(X̃)] = 0

E[φk(εk)e
′
k(m(X)− µ)hj(εj)] = E[φk(εk)hj(εj)]E[e′k(m(X)− µ)] = 0

E[e′kµ (ςk,1εk + ςk,2κ(εk))h0(X̃)] = e′kµE[ςk,1εk + ςk,2κ(εk)]E[h0(X̃)] = 0;

for k 6= j by independence

E[e′kµ (ςk,1εk + ςk,2κ(εk))hj(εj)] = e′kµE[ςk,1εk + ςk,2κ(εk)]E[hj(εj)] = 0

whilst for k = j, the definition of Hk ensures that

E[e′kµ (ςk,1εk + ςk,2κ(εk))hk(εk)] = e′kµE[ςk,1εkhk(εk) + ςk,2κ(εk)hk(εk)] = 0.

Since εk = e′kA(α, σ,X)Vθ, these observations and the form of ˜̀
θ,b establish (a). For (b) it
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suffices to show that

qk(εk) := (φk(εk) + ςk,1εk + ςk,2κ(εk)) (−e′kµ) ∈ Hk.

That E[qk(εk)] = 0 and E[qk(εk)
2] < ∞ follows immediately from Assumption S3. That

additionally E[qk(εk)εk] = E[qk(εk)κ(εk)] = 0 is ensured by the choice of ςk.

S2.2 Log density score estimation

We work with a high level condition analagous to Assumption S1, adapted to the more

general setting of equation (S22).

Assumption S4. Let νn be as in Assumption 3. We have estimators φ̂k,n,γ such that for (a)

any sequence with elements θn = (α0, βn, η) ∈ Θ where (βn)n∈N is a deterministic sequence

with
√
n‖βn − β‖ = O(1) and (b) any array (Zn,i)n∈N,i≤n with i.i.d. rows and such that

EZn,i = 0, supn∈N EZ2
n,i <∞ and Zn,i ⊥⊥ εi,k for each n, i, and k,

1

n

n∑
i=1

[
φ̂k,n,γn(Ak,γn,iVθn,i)− φk(Ak,γn,iVθn,i)

]
Zn,i = oPnθn (n−1/2), (S27)

1

n

n∑
i=1

([
φ̂k,n,γn(Ak,γn,iVθn,i)− φk(Ak,γn,iVθn,i)

]
Zn,i

)2

= oPnθn (νn). (S28)

where Ak,γn,i := e′kA(α0, σn, Xi), Vθn,i := Yi −B(bn, Xi).

We additionally impose the following condition, which is necessary in this more general

setup, due to the term

K∑
k=1

(
ζxl,k,k(α, σ,X)− E

[
ζxl,k,k(α, σ,X)

])
[φk(e

′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1] ,

which appears in ˜̀
θ,x for x ∈ {α, σ} when A(α, σ,X) depends on X.S13

Assumption S5. In the context of Assumption S4, additionally

1

n

n∑
i=1

([
φ̂k,n,γn(Ak,γn,iVθn,i)− φk(Ak,γn,iVθn,i)

]
Ak,γn,iVθn,i

)2

= oPnθn (νn). (S29)

Lemmas S8 and S9 below demonstrate that the estimator defined in (11) satisfies the

high-level conditions in Assumptions S4 and S5 provided Assumption S3 holds along with

S13Compare the forms of the effective scores given in Lemmas S3 and S7.
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Assumption 3 and some additional conditions given in the statement of Lemma S9. The

proofs of these Lemmas are given in Section S6 below.

Lemma S8. Suppose Assumptions S3 and 3 hold. Then, φ̂k,n,γ as defined in (11) satisfies

Assumption S4.

Lemma S9. Suppose Assumptions S3 and 3 hold. Additionally suppose that for some Mk,n ≥
max{|ΞL

k,n|, |ΞU
k,n|},

1. δ−3
k,n∆k,nE

[
ε2i,k1{|εi,k| > Mk,n}

]
= o(νn);

2. E
[
ε4i,k1{|εi,k| > Mk,n}

]
= o(ν2

n);

3. M2
k,n‖φ

(3)
k,n‖2

∞δ
6
k,n = o(νn).

Then, φ̂k,n,γ as defined in (11) satisfies Assumption S5.

Remark 2. For % < ρ where E|εk|ρ <∞, one has

E[|εk|%1{|εk| > Mk,n}] = E
[
|εk|ρ|εk|%−ρ1{|εk| > Mk,n}

]
≤ E|εk|ρM%−ρ

k,n ,

and thus the speed at which Mk,n is required to increase to satisfy conditions 1, 2 in Lemma

S9 decreases with the number of finite moments of εk.

S2.3 The test and its asymptotic properties

Since ˜̀
θ has a slightly different form in the setting considered in this section (compared to

that considered in the main text; compare Lemmas S3 and S7), we amend our estimator ˆ̀
n,γ

accordingly. First let τ̂k,n,γ and ς̂k,n,γ be given by

τ̂k,n,γ = M̂−1
k,n,γ

(
0

−2

)
, ς̂k,n,γ = M̂−1

k,n,γ

(
1

0

)
, M̂k,n,γ =

1

n

n∑
i=1

(
1 (Ak,γ,iVγ,i)

3

(Ak,γ,iVγ,i)
3 (Ak,γ,iVγ,i)

4 − 1

)
.
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The estimators for the components corresponding to α and σ are:

ˆ̀
n,γ,α,l(Wi) :=

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,γ,iφ̂k,n,γ(Ak,γ,iVγ,i)Aj,γ,iVγ,i

+
K∑
k=1

(
ζαl,k,k,γ,i − ζ̄αl,k,k,n,γ

) (
φ̂k,n,γ(Ak,γ,iVγ,i)Ak,γ,iVγ,i + 1

)
+

K∑
k=1

ζ̄αl,k,k,n,γ (τ̂k,n,γ,1Ak,γ,iVγ,i + τ̂k,n,γ,2κ(Ak,γ,iVγ,i)) ;

ˆ̀
n,γ,σ,l(Wi) :=

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,j,γ,iφ̂k,n,γ(Ak,γ,iVγ,i)Aj,γ,iVγ,i

+
K∑
k=1

(
ζσl,k,k,γ,i − ζ̄σl,k,k,n,γ

) (
φ̂k,n,γ(Ak,γ,iVγ,i)Ak,γ,iVγ,i + 1

)
+

K∑
k=1

ζ̄σl,k,k,n,γ (τ̂k,n,γ,1Ak,γ,iVγ,i + τ̂k,n,γ,2κ(Ak,γ,iVγ,i)) ;

, (S30)

with ζαl,k,j,γ,i := ζαl,k,j(α, σ,Xi), ζ̄
α
l,k,j,n,γ := 1

n

∑n
i=1 ζ

α
l,k,j,γ,i, Ak,γ,i := e′kA(α, σ,Xi), Vγ,i := Vθ,i :=

Yi −BXi, X̄n := 1
n

∑n
i=1Xi. For the components corresponding to b,

ˆ̀
n,γ,b(Wi) := −

K∑
k=1

φ̂k,n,γ(Ak,γ,iVγ,i)

(
Ak,γ,i(X

′
i ⊗ IK)− 1

n

n∑
i=1

[Ak,γ,i(X
′
i ⊗ IK)]

)

+
K∑
k=1

(
1

n

n∑
i=1

[Ak,γ,i(X
′
i ⊗ IK)]

)
(ς̂k,n,γ,1Ak,γ,iVγ,i + ς̂k,n,γ,2κ (Ak,γ,iVγ,i)) .

(S31)

The estimator În,γ is given by

În,γ :=
1

n

n∑
i=1

ˆ̀
n,γ(Wi)ˆ̀

n,γ(Wi)
′.

Remark 3. If A(α, σ,X) = A(α, σ) and B(b,X) = vec−1(b)X (as considered in the main

text), the estimators given in (S30) and (S31) are numerically identical to those in (9).

Ŝγ is then defined as in (14) and we have the following Theorem (cf. Theorem 1), the

proof of which is analogous to that of Theorem 1.

Theorem S2. Suppose that Assumptions S2, S3, S4 and S5 hold and suppose that β is

an interior point of B. Let rn = rank(Îtγ̄) and denote by cn the 1 − a quantile of the χ2
rn
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distribution, for any a ∈ (0, 1). Then

lim sup
n→∞

sup
θ∈Θ0,n

Pθ(Ŝγ̄ > cn) ≤ a,

with inequality only if rank(Ĩθ0) = 0 where θ0 = (α0, β, η).

Proof. It suffices to show the conditions of Corollary 1 hold. There are 5 conditions which

we verify in order: items 1, 2, 3 & equation (S15) of the statement of Theorem S1.

Condition 1: This follows verbatim as the demonstration of Condition 1 in the proof of

Theorem 1 on replacing Lemma S1 with Lemma S5.

Condition 2: This follows by repeated addition and subtraction along with the conver-

gence in probability and stochastic boundedness results of Lemma S15, the moment condi-

tions in Assumption S3 and the local boundedness given by Assumption S2 Part 4.

Condition 3: This follows verbatim as the demonstration of Condition 3 in the proof

of Theorem 1 on replacing “the local Lipschitz continuity of each β 7→ ζxl,j,k(α, σ) and β 7→
A(α, σ)” with “the local Lipschitz continuity of each β 7→ ζxl,j,k(α, σ,X) and β 7→ A(α, σ,X)”

and removing the reference to Lemma S4.S14

Condition 4: This follows verbatim as the demonstration of Condition 4 in the proof of

Theorem 1 on replacing Lemmas S1 and S2 with Lemmas S5 and S6.

S3 Supporting results for the main Theorems

The following supporting results apply to the model introduced in Section S2. The model

considered in the main text is a special case of this model with A(α, σ,X) = A(α, σ) and

B(b,X) = vec−1(b)X, for which Assumptions 1, 2 and S1 imply S2, S3 and S4 respectively.

In consequence the results in this section apply a fortiori to the case considered in the main

text.

Lemma S10. Suppose that Assumptions S2 and S3 hold and that (α, β) is an interior point

of A× B. Let ϕ(g, h) = (g, η0h0, . . . , ηKhK). Then

1. t 7→
√
pθ+tϕ(g,h)(w) is (pointwise) continuously differentiable in a neighbourhood U ⊂

[0,∞) of zero.S15

Moreover, if we define qθ,(g,h),u(w) :=
∂ log pθ+tϕ(g,h)(w)

∂t
|t=u, then

S14Lemmas S8 and S9 are not necessary here since the high level Assumptions S4 and S5 are directly
assumed.
S15If θ + tϕ(g, h) ∈ Θ for all t ∈ [0, 1], U may be taken to include [0, 1].
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2. {qθ,(g,h),u(W )2 : u ∈ V} is uniformly Pθ+uϕ(g,h) – integrable for some neighbourhood of

zero V ⊂ U .

Proof. For all sufficiently small t, θ + tϕ(g, h) ∈ Θ; in such an interval, the continuous

differentiability follows directly from Assumptions S2 and S3 along with the definition of H.

Under Pθ+uϕ(g,h), qθ,(g,h),u(W ) has the same law as

Zu :=
h0(X̃)

1 + uh0(X̃)
+

K∑
k=1

hk(εk) + uh′k(εk)e
′
k[D1,uVθ+uϕ(g,h) + D2,u]

1 + uhk(εk)

+ tr(A(α + ua, σ + us,X)−1D1,u) +
K∑
k=1

φk(εk)e
′
k[D1,uVθ+uϕ(g,h) + D2,u].

(S32)

where

D1,u :=
Lα∑
l=1

alDα,l(α + ua, σ + us,X) +
Lσ∑
l=1

slDσ,l(α + ua, σ + us,X)

and

D2,u := A(α + ua, σ + us,X)

Lb∑
l=1

%lDb,l(b+ u%,X).

The definition of H ensures that for all sufficiently small u (i.e. u ∈ V), the denominators

1 + uh0(X̃) and 1 + uhk(εk) are bounded, as are h0(X̃), hk(εk) and uh′k(εk). Assumption

S2 ensures the same is true of D1,u, the trace term, A(α + ta, σ + ts,X) and its inverse.

These bounds, along with the finite moments given by Assumption S3 allow the application

of Jensen’s and Hölder’s inequalties to obtain that supu∈V E|Zu|2+δ/2 < ∞, implying the

claimed uniform integrability.

Lemma S11. Suppose that Assumptions S2 and S3 hold and let V = RL × H be equipped

with the normS16

‖(g, h)‖ :=

√√√√‖g‖2 +
K∑
k=0

‖h̃k‖2
L2(Pθ) .

Then, the functions (g, h) 7→ 1√
n

∑n
i=1

[
g′ ˙̀θ +

∑K
k=0 h̃k

]
(i.e. indexed by n) are equicon-

tinuous on compacts in L2(Pθ) and the functions (g, h) 7→ P n
θn(g,h) (i.e. indexed by n) are

equicontinuous on compacts in the total variation metric.

Proof. For any (g, h), (g?, h?) ∈ V , by the fact the observations are i.i.d. and any h ∈ H is

S16 Each h̃k is as defined in the statement of Lemma S5.
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mean zero, as is ˙̀
θ,∥∥∥∥∥ 1√

n

n∑
i=1

[
(g? − g)′ ˙̀θ +

K∑
k=0

(h̃?k − h̃k)

]∥∥∥∥∥
2

L2(Pnθ )

=

∥∥∥∥∥(g? − g)′ ˙̀θ +
K∑
k=0

(h̃?k − h̃k)

∥∥∥∥∥
2

L2(Pθ)

.

Therefore, left hand side in the display above can be made arbitrarily small, uniformly in

n, by taking ‖(g?, h?) − (g, h)‖ sufficiently small and hence the first claim holds. For the

second claim we note that each (g, h) 7→ P n
θn(g,h) is continuous by the pointwise continuity of

the densities and Scheffé’s Lemma. Then, let K ⊂ V = RL ×H be compact. We will now

show that for any convergent sequence (gn, hn) → (g, h) in K, dTV (P n
θn(gn,hn), P

n
θn(g,h)) → 0

as n → ∞.S17 For this, by Lemma S21 and the triangle inequality, it is sufficient to show

that

log
pnθn(gn,hn)

pθn(gn,h)

= oPn
θn(gn,h)

(1), log
pnθn(gn,h)

pθn(g,h)

= oPn
θn(g,h)

(1). (S33)

For these we first note that since hk is bounded,∥∥∥h̃k,n − h̃k∥∥∥2

L2(Pn
θn(gn,h)

)
=

∫
[hn,k(x)− hk(x)]2 ηk(x)(1 + hk(x)/

√
n) dx

≤ ‖hn,k − hk‖L2(Pnθ ) + ‖hn,k − hk‖L2(Pnθ )‖hk‖L∞(Pnθ )/
√
n.

(S34)

Next introduce the notation:S18

uk,n,i :=

e′kA(θn(gn, h), X)Vθn(gn,h),i = e′kA(θn(gn, hn), X)Vθn(gn,hn),i if k = 1, . . . , K

X̃i if k = 0
.

Equation (S34) implies that (h̃k,n)n∈N is uniformly square P n
θn(gn,h) integrable, and hence the

Lindeberg condition holds for hk,n(uk,n,i)/
√
n. In particular, under P n

θn(gn,h),

lim
n→∞

n∑
i=1

E
[
hk,n(uk,n,i)

2

n
1
{
|hk,n(uk,n,i)| > δ

√
n
}]

= lim
n→∞

1

n

n∑
i=1

E
[
hk,n(uk,n,i)

21
{
|hk,n(uk,n,i)| > δ

√
n
}]

= lim
n→∞

E
[
hk,n(uk,n,i)

21
{
|hk,n(uk,n,i)| > δ

√
n
}]

= 0,

S17That this convergence holds for any convergent sequence in a compact subset K is equivalent to equicon-
tinuity on K, given the continuity of (g, h) 7→ Pnθn(g,h) already noted.
S18A(θ,X) := A(α, σ,X).
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for any δ > 0. This implies uniform asymptotic negligability (e.g. Gut, 2005, Remark 7.2.4):

max
1≤i≤n

|hk,n(uk,n,i)|√
n

Pn
θn(gn,h)−−−−−→ 0. (S35)

Then, to prove the first claim in (S33) observe

log
pnθn(gn,hn)

pnθn(gn,h)

=
K∑
k=0

n∑
t=1

log(1 + hk,n(uk,n,i)/
√
n)− log(1 + hk(uk,n,i)/

√
n),

hence it suffices to show that each

ln,k :=
n∑
t=1

log(1 + hk,n(uk,n,i)/
√
n)− log(1 + hk(uk,n,i)/

√
n)

Pn
θn(gn,h)−−−−−→ 0.

Let ε ∈ (0, 1) be fixed and define

En :=

{
max
1≤i≤n

|hk,n(uk,n,i)|/
√
n ≤ ε

}
;

Fn :=

{
max
1≤i≤n

|hk(uk,n,i)|/
√
n ≤ ε

}
.

Since hk is bounded, P n
θn(gn,h)Fn → 1; P n

θn(gn,h)En → 1 follows from equation S35. Hence

P n
θn(gn,h)Fn ∩En → 1. On En ∩Fn we can perform a two-term Taylor expansion of log(1 +x)

to obtain

log(1+hk,n(uk,n,i)/
√
n)− log(1 + hk(uk,n,i)/

√
n)

=
hk,n(uk,n,i)√

n
− 1

2

hk,n(uk,n,i)
2

n
− hk(uk,n,i)√

n
+

1

2

hk(uk,n,i)
2

n

+R

(
hk,n(uk,n,i)√

n

)
−R

(
hk(uk,n,i)√

n

)
,

where |R(x)| ≤ |x|3. It follows that

ln,k =
1√
n

n∑
i=1

hk,n(uk,n,i)− hk(uk,n,i)−
1

2

1

n

n∑
i=1

[hk,n(uk,n,i)
2 − hk(uk,n,i)2]

+
n∑
i=1

R

(
hk,n(uk,n,i)√

n

)
−R

(
hk(uk,n,i)√

n

)
.
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We will show that the remainder terms vanish. In particular, one has

n∑
i=1

∣∣∣∣R(hk,n(uk,n,i)√
n

)∣∣∣∣ ≤ n∑
i=1

∣∣∣∣hk,n(uk,n,i)√
n

∣∣∣∣ ∣∣∣∣hk,n(uk,n,i)
2

n

∣∣∣∣ ≤ max
1≤i≤n

|hk,n(uk,n,i)|√
n

1

n

n∑
i=1

hk,n(uk,n,i)
2.

By Markov’s inequality and equations (S34), (S35), this converges to zero in P n
θn(gn,h) prob-

ability. The same evidently holds for the case where hk,n = hk for each n ∈ N. Thus,

ln,k =
1√
n

n∑
i=1

hk,n(uk,n,i)− hk(uk,n,i)−
1

2

1

n

n∑
i=1

[hk,n(uk,n,i)
2 − hk(uk,n,i)2] + oPn

θn(gn,h)
(1),

and it remains to show that 1√
n

∑n
i=1 hk,n(uk,n,i)−hk(uk,n,i) and 1

n

∑n
i=1[hk,n(uk,n,i)

2−hk(uk,n,i)2]

also converge to zero in probability under P n
θn(gn,h). The second of these follows directly from

(S34), Markov’s inequality and the reverse triangle inequality since

P n
θn(gn,h)

(∣∣∣∣∣ 1n
n∑
i=1

[hk,n(uk,n,i)
2 − hk(uk,n,i)2]

∣∣∣∣∣ > ε

)
≤ ε−1 1

n

n∑
i=1

E
[
hk,n(uk,n,i)

2 − hk(uk,n,i)2
]

= ε−1E
[
hk,n(uk,n,i)

2 − hk(uk,n,i)2
]

→ 0.

For the remaining term, we start by noting that

E[hk,n(uk,n,i)− hk(uk,n,i)] =
E[(hk,n(εk)− hk(εk))hk(εk)]√

n

so ∣∣∣∣∣ 1√
n

n∑
i=1

E[hk,n(uk,n,i)]− E[hk(uk,n,i)]

∣∣∣∣∣ ≤ 1

n

n∑
i=1

‖hk,n − hk‖L2(Pnθ )‖hk‖L2(Pnθ ) → 0.

Thus it suffices to show that

1√
n

n∑
i=1

hk,n(uk,n,i)− hk(uk,n,i)
Pn
θn(gn,h)−−−−−→ 0,

for hk,n(uk,n,i) := hk,n(uk,n,i)− E [hk,n(uk,n,i)] and hk(uk,n,i) := hk,n(uk,n,i)− E [hk(uk,n,i)]. By

the reverse triangle inequality and (S34),

E
[
(hk,n(uk,n,i)− hk(uk,n,i))2]→ 0, uniformly in i.
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Using this, the independence of the Wi and Markov’s inequality:

P n
θn(gn,h)

(∣∣∣∣∣ 1√
n

n∑
i=1

hk,n(uk,n,i)− hk(uk,n,i)

∣∣∣∣∣ > ε

)
≤ 1

ε2

1

n

n∑
i=1

E
[
(hk,n(uk,n,i)− hk(uk,n,i))2]→ 0.

This establishes that
∑K

k=1 ln,k
Pn
θn(gn,h)−−−−−→ 0, as required.

For the second condition in (S33), by Lemma S6 part 3 P n
θn(g,h)/. P

n
θ .S19 Hence it suffices

to show that log
pn
θn(gn,h)

pθn(g,h)
= oPnθ (1). We first show that,

log
pnθn(gn,0)

pnθ
=

1√
n

n∑
t=1

g′ ˙̀θ(Wi)− E

(
1√
n

n∑
t=1

g′ ˙̀θ(Wi)

)2

+ oPnθ (1)

log
pnθn(g,0)

pnθ
=

1√
n

n∑
t=1

g′ ˙̀θ(Wi)− E

(
1√
n

n∑
t=1

g′ ˙̀θ(Wi)

)2

+ oPnθ (1)

where the expectations are taken under P n
θ . Here we may proceed analogously to Lemma

S5. In particular, by an argument analogous to that showing condition 1 in Lemma S10,

g 7→ √pθn(g,0) is continuously differentiable, whilst an argument analogous to that showing

condition 2 in Lemma S10 yields that {qθ,(g,0)(W )2 : g ∈ U} is uniformly Pθ+ϕ(g,0) – integrable

for some neighbourhood U ⊂ RL of 0. Application of Lemma 7.6 and Theorem 7.2 in van der

Vaart (1998) then yields the two likelihood expansions in the display above. To complete

the proof set

ũk,n,i := e′kA(θn(gn, h), X)Vθn(gn,h),i, uk,n,i := e′kA(θn(g, h), X)Vθn(g,h),i,

and observe that

log
pnθn(gn,h)

pnθn(g,h)

−
[
log

pnθn(gn,0)

pnθ
− log

pnθn(g,0)

pnθ

]

=
K∑
k=1

n∑
i=1

log

(
1 +

hk(ũk,n,i)√
n

)
− log

(
1 +

hk(uk,n,i)√
n

)
,

where the bracketed term is oPnθ (1) by the preceding argument. Hence it suffices to show

that an arbitrary k-th element of the outer sum on the right hand side is also oPnθ (1). Let

S19The present Lemma is used in the proof of Lemma S6, but is used only to handle the case where (gn, hn)
are not constant in n, which is the relevant case here.
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ε ∈ (0, 1) be fixed and define

En :=

{
max
1≤i≤n

|hk(ũk,n,i)|/
√
n ≤ ε

}
, Fn :=

{
max
1≤i≤n

|hk(uk,n,i)|/
√
n ≤ ε

}
.

Since hk is bounded P n
θ (En ∩ Fn) → 1. On this set we may perform a two-term Taylor

expansion of log(1 + x) to obtain

log

(
1 +

hk(ũk,n,i)√
n

)
− log

(
1 +

hk(uk,n,i)√
n

)
=
hk(ũk,n,i)− hk(uk,n,i)√

n
− 1

2

hk(ũk,n,i)
2 − hk(uk,n,i)2

n
+R

(
hk(ũk,n,i)√

n

)
−R

(
hk(uk,n,i)√

n

)
,

where |R(x)| ≤ |x|3. For the remainder terms one has for any ui,

n∑
i=1

∣∣∣∣R(hk(ui)√
n

)∣∣∣∣ ≤ max
1≤i≤n

hk(ui)√
n

1

n

n∑
i=1

hk(ui)
2 .

1√
n
,

since hk is bounded. For the first term in Taylor expansion, note that the derivative (in θ, σ)

of A(θ, σ,X) is bounded on a neighbourhood of (θ, σ) (by Assumption S2). Combine this

with the boundedness of h′k and the mean value theorem to conclude that

|hk(ũk,n,i)− hk(uk,n,i)| . n−1/2‖gn − g‖

‖εi‖+

√√√√ Lb∑
l=1

Db,l(b+ %l,n, Xi)2

 ,
for some %l,n with ‖%l,n‖ ≤ ‖gn − g‖. Since hk is bounded,

|hk(ũk,n,i)2 − hk(uk,n,i)2| . n−1/2‖gn − g‖

‖εi‖+

√√√√ Lb∑
l=1

Db,l(b+ %l,n, Xi)2

 .
Therefore, using the moment bounds in Assumption S3 parts 1 and 4

n∑
i=1

∣∣∣∣hk(ũk,n,i)− hk(uk,n,i)√
n

− 1

2

hk(ũk,n,i)
2 − hk(uk,n,i)2

n

∣∣∣∣
. ‖gn − g‖

(
1 +

1√
n

)
1

n

n∑
i=1

‖εi‖+

√√√√ Lb∑
l=1

Db,l(b+ %l,n, Xi)2

 = oPnθ (1).

This completes the demonstration of (S33) and hence the proof.

Lemma S12. Suppose that Assumptions S2 and S3 hold. Then,
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1. clH0 is the space of functions h0 : Rd−1 → R such that Eh0(X̃i)
2 <∞, Eh0(X̃) = 0;

2. For k = 1, . . . , K, clHk is the space of functions hk : R→ R such that Ehk(εk)2 <∞,

E[hk(εk)] = E[εkhk(εk)] = E[κ(εk)hk(εi,k)] = 0.

Additionally, define H?
0 as the space of functions h̃0(W ) := h0(X̃) for h0 ∈ cl H̃0 and H?

k as

the space of functions h̃k(W ) := hk(e
′
kA(α, σ,X)Vθ) for hk ∈ cl H̃k (k = 1, . . . , K). Then

H? := H?
0 + · · ·+H?

K ⊂ L2(Pθ) and H? = cl(H̃0 + · · ·+ H̃K).

Proof. For 1 & 2 let H∗k denote the set of functions described in the statement (for k =

0, . . . , K). Clearly any convergent sequence in this space has a limit also in this space and

hence H∗k is closed. For any hk ∈ H̃∗k there is a sequence (hk,n)n∈N such that each hk,n ∈ Hk

and hk,n → hk in squared mean (e.g. Newey, 1991, Lemma C.7) and hence clHk = H∗k .S20

For the second part, the first claim follows since e′kA(α, σ,X)Vθ has the same law as

εk under Pθ and hence each Pθ[h̃k(W )2] < ∞. For the second claim, as X̃, ε1, . . . , εK are

independent, H̃?
0 , . . . , H̃

?
K are pairwise orthogonal. As the (finite) sum of closed pairwise

orthogonal subspaces is closed (e.g. Conway, 1985, p. 39) we have that cl(H̃0 + . . .+ H̃K) ⊂
H?. For the reverse inclusion let h̃ =

∑K
k=0 h̃k ∈ H?. By the definition of H? there are

h̃0,n(W ) := h0,n(X̃) such that h̃0,n ∈ H̃0 and Pθ

[
h̃0,n(W )− h̃0(W )

]2

→ 0 and h̃k,n(W ) :=

hk,n(e′kA(α, σ,X)Vθ) such that h̃k,n ∈ Hk and Pθ

[
h̃0,k(W )− h̃k(W )

]2

→ 0. Hence h̃n :=∑K
k=0 h̃k,n ∈ H̃0 + . . .+ H̃K and converges to h̃, implying that h̃ ∈ cl(H̃0 + · · ·+ H̃K).

Lemma S13. Suppose that Assumptions S2 and S3 hold. Then supn∈N Pθ̃n‖ ˜̀̃θn‖
2+δ/2 < ∞

and hence (‖ ˜̀̃θn‖
2)n∈N is uniformly Pθ̃n–integrable.

Proof. As each component of ˜̀̃
θn

lies in L2(Pθ̃n) by its definition as an orthogonal projection,

it suffices to show that lim supn∈N Pθ̃n

[
‖ ˜̀̃θn‖

2+δ/2
]
< ∞. Let dn := (bn, sn) :=

√
n(βn − β),

with bn ∈ RLb and sn ∈ RLσ , so that θ̃n = θn(gn, 0) with gn = (0, bn, sn). Then, under

Pθ̃n , e′kA(α, σ + sn/
√
n,X)Vθ̃n has the same law as εk. This, along with the observations

that E[|φk(εk)|4+δ] < ∞, E|εk|4+δ (both for k = 1, . . . , K), E[‖Db,l(b,X)‖4+δ] < ∞ and the

local boundedness conditions in Assumption S2 part 4 allow the application of Jensen’s and

Hölder’s inequalities to conclude that lim supn∈N Pθ̃n

[
‖ ˜̀̃θn‖

2+δ/2
]
<∞ as desired.

S20The required non-singularity condition for q(εk) = (1, εk, κ(εk))′ is satisfied under the condition E(ε4k)−
1 > E(ε3k)2 imposed in Assumption S3.
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Lemma S14. Suppose that Assumptions S2 and S3 hold. Then,

lim
n→∞

∫ ∥∥∥ ˜̀̃
θn

√
pθ̃n − ˜̀

θ
√
pθ

∥∥∥2

dλ = 0.

Proof. Re-write the integral as

∫ ∥∥∥ ˜̀̃
θn

√
pθ̃n − ˜̀

θ
√
pθ

∥∥∥2

dλ =
L∑
l=1

∫ [
˜̀̃
θn,l

√
pθ̃n − ˜̀

θ,l
√
pθ

]2

dλ. (S36)

It is evidently sufficient to show that each of the integrals in the sum on the rhs converges to

zero. For this note that inspection of the forms of ˜̀
θ and pθ reveals that ˜̀̃

θn
→ ˜̀

θ and pθ̃n → pθ

pointwise. Hence each ˜̀̃
θn,l
√
pθ̃n → ˜̀

θ,l
√
pθ pointwise and, by Scheffé’s Lemma, Pθ̃n

TV−−→ Pθ.

Combine this observation with Lemma S13 and Corollary 2.9 in Feinberg, Kasyanov and

Zgurovsky (2016) to obtain limn→∞
∫
| ˜̀̃θn,l
√
pθ̃n|

2 dλ =
∫
|˜̀θ,l
√
pθ|2 <∞. Apply Proposition

2.29 in van der Vaart (1998) to conclude.

Lemma S15. Suppose that Assumptions S2, S3 and S4 hold. Then, for each (k, j) with

k 6= j, each l, each x ∈ {α, σ} and each % ∈ {τ, ς}, the following terms are oPn
θ̃n

(1):

1. ζ̄xl,k,k,n,γn − Pθ̃n
[
ζxl,k,k,γn,i

]
;

2. 1√
n

∑n
i=1

(
φk(Ak,γniVγn,i)− φ̂k,n,γn(Ak,γniVγn,i)

)
ζxl,k,j,iAj,γn,iVγn,i;

3. 1√
n

∑n
i=1

(
φk(Ak,γniVγn,i)− φ̂k,n,γn(Ak,γniVγn,i)

)
Ak,γn,iVγn,i

(
ζxl,k,j,γn,i − ζ̄

x
l,k,j,n,γn

)
;

4. 1√
n

∑n
i=1 ([%̂k,n,γn,1 − %k,1]Ak,γn,iVγn,i + [%̂k,n,γn,2 − %k,2]κ(Ak,γn,iVγn,i));

5. 1
n

∑n
i=1 [Ak,γn,iDb,l(bn, Xi)]− Pθ̃n [Ak,γn,iDb,l(bn, Xi)];

6. 1√
n

∑n
i=1

(
φk(Ak,γniVγn,i)− φ̂k,n,γn(Ak,γniVγn,i)

) (
[Ak,γn,iDb,l(bn, Xi)]− 1

n

∑n
i=1 [Ak,γn,iDb,l(bn, Xi)]

)
;

and the following terms are OPn
θ̃n

(1):

7. 1√
n

∑n
i=1(φk(Ak,γniVγn,i)Ak,γniVγn,i + 1);

8. 1√
n

∑n
i=1 %k,1Ak,γn,iVγn,i + %k,2κ(Ak,γn,iVγn,i);

9. 1√
n

∑n
i=1 φk (Ak,γniVγn,i).

Proof. Under Pθ̃n , X̃ is distributed according to the density η0 whilst Ak,γn,iVγn,i has the

same law as εk. We will use these facts without explicit reference in the rest of the proof.
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1. The triangular array (ζxl,k,k,γn,i)n∈N,i=1,...,n has i.i.d. rows and the variance of ζxl,k,k,γn,i
is bounded above uniformly in n by Assumption S2. The claim then follows from a

WLLN for triangular arrays (e.g. Durrett, 2019, Theorem 2.2.6).

2. Let Zn,i := ζxl,k,j,iAj,γn,iVγn,i. The triangular array (Zn,i)n∈N,i=1,...,n has i.i.d. rows,

Zn,i ⊥⊥ εi,k, Zn,i is mean zero and the variance of Zn,i is bounded above uniformly in n

by Assumptions S2 and S3. The claim then follows by Assumption S4.

3. By Cauchy – Schwarz one has

1√
n

n∑
i=1

(
φk(Ak,γniVγn,i)− φ̂k,n,γn(Ak,γniVγn,i)

)
Ak,γn,iVγn,i

(
ζxl,k,j,γn,i − ζ̄

x
l,k,j,n,γn

)
≤

[
1

n

n∑
i=1

(
φk(Ak,γniVγn,i)− φ̂k,n,γn(Ak,γniVγn,i)

)2 (
ζxl,k,j,γn,i − ζ̄

x
l,k,j,n,γn

)2

]1/2

×

[
1

n

n∑
i=1

(Ak,γn,iVγn,i)
2

]1/2

.

Take Zn,i := ζxl,k,j,γn,i − ζ̄
x
l,k,j,n,γn

. The triangular array (Zn,i)n∈N,i=1,...,n has i.i.d. rows,

Zn,i ⊥⊥ εi,k, Zn,i is mean zero and the variance of Zn,i is bounded above uniformly in

n by Assumption S2. Therefore, the first factor on the right hand side is oPn
θ̃n

(1) by

Assumption S4. The second right hand side factor is OPn
θ̃n

(1) by Assumption S3.

4. %k,n,γn
Pn
θ̃n−−→ %k by Lemma S16. Assumption S3 and the central limit theorem imply

that 1√
n

∑n
i=1Ak,γn,iVγn,i and 1√

n

∑n
i=1 κ(Ak,γn,iVγn,i) are OPθ̃n

(1).

5. Let Un,i := vec(Ak,γn,iDb,l(bn, X)). Then for each component Un,i,l, (Un,i,l)n∈N,i=1,...,n is

a triangular array with i.i.d. rows and the variance of Un,i,l is bounded above uniformly

in n by Assumptions S2 and S3. The claim then follows from a WLLN for triangular

arrays (e.g. Durrett, 2019, Theorem 2.2.6).

6. Put Zn,i := [Ak,γn,iDb,l(bn, X)]− 1
n

∑n
i=1 [Ak,γn,iDb,l(bn, X)]. Then, the triangular array

(Zn,i)n∈N,i=1,...,n has i.i.d. rows, Zn,i ⊥⊥ εi,k, Zn,i is mean zero and the variance of Zn,i

is bounded above uniformly in n by Assumptions S2 and S3. The claim follows by

Assumption S4.

Each of the remaining items follow from the central limit theorem given Assumption S3.
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Lemma S16. If Assumption S3 holds, ‖%k,n,γn − %k‖ = oPn
θ̃n

(νn,p) for % ∈ {τ, ς}.S21

Proof. Under Pθ̃n , M̂k,n,γn has the same law as Mk,n := 1
n

∑n
i=1

(
1 ε3i,k
ε3i,k ε4i,k − 1

)
. Therefore,

it suffices to show that ‖M−1
k,nw −M

−1
k w‖ = oPn

θ̃n
(νn,p) for any fixed w ∈ R2. Since the map

M 7→M−1 is Lipschitz continuous at a positive definite matrix,

‖M−1
k,nw −M

−1
k w‖2 ≤ ‖w‖‖M−1

k,n −M
−1
k ‖2 . ‖Mk,n −Mk‖2,

and thus it suffices to show that ‖Mk,n −Mk‖2 = oPn
θ̃n

(νn,p). If υ := δ/4 ≥ 1, we have that

by Theorem 2.5.11 in Durrett (2019)

1

n

n∑
i=1

[ε3i,k − E(ε3i,k)] = oPn
θ̃n

(
n−1/2 log(n)1/2+ρ

)
1

n

n∑
i=1

[ε4i,k − E(ε4i,k)] = oPn
θ̃n

(
n−1/2 log(n)1/2+ρ

)
for any ρ > 0, which implies that

‖Mk,n −Mk‖2 ≤ ‖Mk,n −Mk‖F = oPn
θ̃n

(
n−1/2 log(n)1/2+ρ

)
.

If 0 < υ < 1, by Theorems 2.5.11 & 2.5.12 in Durrett (2019), for any ρ > 0,

1

n

n∑
i=1

[(εi,k)
3 − E(εi,k)

3] =

oPnθ̃n
(
n−1/2 log(n)1/2+ρ

)
if υ ∈ [1/2, 1)

oPn
θ̃n

(
n

1−p
p

)
if υ ∈ (0, 1/2)

,

1

n

n∑
i=1

[(εi,k)
4 − E(εi,k)

4] = oPn
θ̃n

(
n

1−p
p

)
.

which together imply that

‖Mk,n −Mk‖2 ≤ ‖Mk,n −Mk‖F = oPn
θ̃n

(
n

1−p
p

)
.

Lemma S17. Suppose that Assumptions S2, S3 and S4 hold. Then, for each (k, j) with

k 6= j, each l, each x ∈ {α, σ} and each % ∈ {τ, ς}, the following terms are oPn
θ̃n

(νn):

1. 1
n

∑n
i=1

(
φk(Ak,γn,iVγn,i)− φ̂k,n,γn(Ak,γn,iVγn,i)

)2 (
Aj,γn,iVγn,iζ

x
l,k,j,γn,i

)2
;

S21νn,p is as defined in Assumption 3: p := min{1 + δ/4, 2} and νn,p :=

{
n(1−p)/p for p ∈ (1, 2)

n−1/2 log(n)1/2+ρ for p = 2
,

for some ρ > 0.
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2.
(
Pθ̃n [ζxl,k,k,γn,i]− ζ̄

x
l,k,k,n,γn

)2
;

3. 1
n

∑n
i=1 (φk(Ak,γn,iVγn,i)Ak,γn,iVγn,i + 1)2 (Pθ̃n [ζxl,k,k,γn,i]− ζ̄

x
l,k,k,n,γn

)2
;

4. 1
n

∑n
i=1 (%k,1Ak,γn,iVγn,i + %k,2κ(Ak,γn,iVγn,i))

2 (Pθ̃n [ζxl,k,k,γn,i]− ζ̄
x
l,k,k,n,γn

)2
;

5. 1
n

∑n
i=1

(
ζ̄xl,k,k,n,γn ([%̂k,n,γn,1 − %k,1]Ak,γn,iVγn,i + [%̂k,n,γn,2 − %k,2]κ(Ak,γn,iVγn,i))

)2
;

6.
(
Pθ̃n [Ak,γn,iDb,l(bn, Xi)]− [ADbX]n

)2
;

7. 1
n

∑n
i=1 (%k,1Ak,γn,iVγn,i + %k,2κ(Ak,γn,iVγn,i))

2 (Pθ̃n [Ak,γn,iDb,l(bn, Xi)]− [ADbX]n
)2

;

8. 1
n

∑n
i=1 ([ADbX]n ([%̂k,n,γn,1 − %k,1]Ak,γn,iVγn,i + [%̂k,n,γn,2 − %k,2]κ(Ak,γn,iVγn,i)))

2

9. 1
n

∑n
i=1

(
φk(Ak,γn,iVγn,i)− φ̂k,n,γn(Ak,γn,iVγn,i)

)2

(Ak,γn,iDb,l(bn, Xi)− [ADbX]n)2;

10. 1
n

∑n
i=1 (φk(Ak,γn,iVγn,i))

2 (Pθ̃n [Ak,γn,iDb,l(bn, Xi)]− [ADbX]n
)2

,

where [ADbX]n := 1
n

∑n
i=1Ak,γn,iDb,l(bn, Xi).

Proof. Under Pθ̃n , X̃ is distributed according to the density η0 whilst Ak,γn,iVγn,i has the

same law as εk. We will use these facts without explicit reference in the rest of the proof.

1. Let Zn,i := Aj,γn,iVγn,iζ
x
l,k,j,γn,i

. This is independent of εi,k, is mean-zero and has variance

bounded above uniformly in n by Assumptions S2 and S3. The claim then follows by

Assumption S4.

2. Let Zn,i :=
(
ζxl,k,k,γn,i − Pθ̃n [ζxl,k,k,γn,i]

)
and note that supn∈N EZ2+ε

n,i <∞ for a ε > 0 (by

Assumption S2). By the Lindeberg CLT one then has that
∑n

i=1 Zn,i = OPn
θ̃n

(
√
n) and

hence
(
Pθ̃n [ζxl,k,k,γn,i]− ζ̄

x
l,k,k,n,γn

)2
= oPn

θ̃n
(νn).

3. By Assumption S3, 1
n

∑n
i=1 (φk(Ak,γn,iVγn,i)Ak,γn,iVγn,i + 1)2 = OPθ̃n

(1). Use 2.

4. By Assumption S3, 1
n

∑n
i=1 (%k,1Ak,γn,iVγn,i + %k,2κ(Ak,γn,iVγn,i))

2 = OPθ̃n
(1). Use 2.

5. By Assumption S2, ζ̄xl,k,k,n,γn is bounded uniformly for all sufficiently large n. By

Assumption S3, 1
n

∑n
i=1(Ak,γn,iVγn,i)

2 and 1
n

∑n
i=1 κ(Ak,γn,iVγn,i)

2 are OPn
θ̃n

(1). Combine

with Lemma S16.

6. Let Zn,i :=
(
Ak,γn,iDb,l(bn, Xi)− Pθ̃n [Ak,γn,iDb,l(bn, Xi)]

)
and note that supn∈N EZ2+ε

n,i <

∞ for a ε > 0 (by Assumptions S2 and S3). By the Lindeberg CLT one then has that∑n
i=1 Zn,i = OPn

θ̃n
(
√
n) and hence

(
Pθ̃n [Ak,γn,iDbn,l(bn, Xi)]− [ADbX]n

)2
= oPn

θ̃n
(νn).

7. By Assumption S3, 1
n

∑n
i=1 (%k,1Ak,γn,iVγn,i + %k,2κ(Ak,γn,iVγn,i))

2 = OPθ̃n
(1). Use 6.
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8. Take [ADbXn] out of the summation. By Assumption S3 and 6. this is OPn
θ̃n

(1). By

Assumption S3, 1
n

∑n
i=1(Ak,γn,iVγn,i)

2 and 1
n

∑n
i=1 κ(Ak,γn,iVγn,i)

2 are OPn
θ̃n

(1). Combine

with Lemma S16.

9. For Zn,i := Ak,γn,iDb,l(bn, Xi)− [ADbX]n, Zn,i is independent of εi,k, mean-zero and has

variance bounded uniformly in n by Assumptions S2 and S3. The claim follows from

Assumption S4.

10. 1
n

∑n
i=1 (φk(Ak,γn,iVγn,i))

2 = OPn
θ̃n

(1) by Assumption S3. Use 6.

Lemma S18. Suppose that Assumptions S2 and S5 hold. Then, for each k, each l, each

x ∈ {α, σ},

1

n

n∑
i=1

(
φk(Ak,γn,iVγn,i)− φ̂k,n,γn(Ak,γn,iVγn,i)

)2 (
Ak,γn,iVγn,i

[
ζxl,k,k,γn,i − ζ̄

x
l,k,k,n,γn

])2
= oPn

θ̃n
(νn).

Proof. By Assumption S2,
[
ζxl,k,k,γn,i − ζ̄

x
l,k,k,n,γn

]2
is uniformly bounded for all large enough

n. Hence it suffices that by Assumption S5,

1

n

n∑
i=1

(
φk(Ak,γn,iVγn,i)− φ̂k,n,γn(Ak,γn,iVγn,i)

)2

(Ak,γn,iVγn,i)
2 = oPn

θ̃n
(νn).

S4 Additional auxillary results

We present a few additional results that explicitly prove some claims made in the main

text. First, we show that if two errors εi,k and εi,j are Gaussian Ĩθ,αα becomes singular,

which implies the singularity of Ĩθ if Ĩθ,ββ is non-singular (cf. Propositions 8.2.4 and 8.2.8

in Bernstein (2009)). Second, we provide an explicit example of a density which satisfies

the first part of the Assumption 2 but not the second. Third we prove that if Assumption 2

part 1 holds then a sufficient condition for part 2 is that ηk has tails that decay to zero at a

polynomial rate.

Lemma S19. Consider the LSEM model (3) and suppose that Assumptions 1 and 2 hold.

Define the random vector Q in RK2
as

Q = (Q′1, . . . , Q
′
K)′,
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where the j-th element of Qk for j ∈ [K] is given by

Qk,j =

φk(εk)εj if k 6= j

τk,1εk + τk,2κ(εk) if k = j
.

Next define the matrix ζ ∈ RK2×Lα according to

ζ = (vec([Dα,1(α, σ)A(α, σ)−1]′), . . . , vec([Dα,Lα(α, σ)A(α, σ)−1]′)).

Then where ˜̀
θ is the effective score function as defined in lemma S3, the law of ˜̀

θ,1 under

Pθ is equal to that of ζ ′Q. Moreover,

(i) EQQ′ is non-singular if and only if for each pair (k, j) with k 6= j and each k, j ∈ [K]

we have that [Eφ2
k(εk)][Eφ2

j(εj)] 6= 1.

(ii) Ĩθ,αα is non-singular if rank(ζ) = Lα and EQQ′ is non-singular.

(iii) If rank(ζ) < Lα then Ĩθ,αα is singular.

(iv) If Lα = K2 and EQQ′ is singular then Ĩθ,αα is singular.

(v) If EQQ′ is singular, Ĩθ,αα may be singular when rank(ζ) = Lα < K2.

In particular, if both εk and εj (k 6= j) have a Gaussian distribution and Lα = K2, Ĩθ,αα is

singular.

Proof. For (i), let j, k,m, i all be in [K]. We will consider the entries of the matrix EQQ′,
which are of the form E[Qk,jQm,i]. In particular, the s, t-th element of the matrix is given

by the form E[Qk,jQm,i] where (k− 1)K + j = s and (m− 1)K + i = t. If k = j = m = i we

have s = t and E[Qk,jQm,i] = E[τk,1εk + τk,2κ(εk)]
2. The other diagonal entries occur when

k = m 6= j = i, and have the form E[Qk,jQm,i] = E[φ2
k(εk)]. Inspection of the other possible

cases reveals that the only other case with non-zero entries is k = i 6= m = j which has value

E[Qk,jQm,i] = E[φk(εk)εk]E[φk(εm)εm] = 1 by assumption 2.

Therefore for any k, j ∈ [K], column (k−1)K+j has non-zero entries in row (k−1)K+j

only if k = j and otherwise in rows (k − 1)K + j and (j − 1)K + k, with values Eφ2
k(εk)

and 1 respectively. There are therefore no columns that can be linearly related to column

(k − 1)K + j if k = j. If k 6= j, then column (k − 1)K + j has zeros everywhere except row

(k− 1)K + j where it has Eφ2
k(εk) and row (j − 1) + k where it has 1. Column (j − 1)K + k

has zeros everywhere except row (j − 1)K + k where it has Eφ2
j(εj) and row (k − 1)K + j

where it has 1. Since no other columns have entries in these rows, it follows that column
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(k − 1)K + j is linearly independent of all the other columns if and only if it is linearly

independent of column (j − 1)K + k, which occurs if and only if [Eφ2
k(εk)][Eφ2

j(εj)] 6= 1.

For (ii), suppose that rank(ζ) = Lα and EQQ′ is non-singular. Then there is a (unique)

positive definite [EQQ′]1/2 and we have Ĩθ,αα =
(
[EQQ′]1/2ζ

)′ (
[EQQ′]1/2ζ

)
which has full

rank, since
(
[EQQ′]1/2ζ

)
has full column rank.

For the remaining parts note first that

Ĩθ,αα = E˜̀
θ,1

˜̀′
θ,1 = ζ ′ [EQQ′] ζ,

and so rank(Ĩθ,αα) ≤ min{rank(ζ ′EQQ′), rank(ζ)}. Hence if rank(ζ) < Lα, rank(Ĩθ,αα) < Lα

implying (iii).

For (iv), suppose that rank(EQQ′) < K2 = Lα. Then, there is a non-zero x ∈ RLα such

that EQQ′x = 0 and hence ζ ′EQQ′x = 0. Hence dim(ker(ζ ′EQQ′)) ≥ 1. It follows that

rank(ζ ′EQQ′) ≤ Lα − 1 < Lα and hence rank(Ĩθ,αα) ≤ min{rank(ζ ′EQQ′), rank(ζ)} < Lα.

For (v) suppose that K = 2, ε1 and ε2 are both Gaussian and A(α) =
[

cos(α) − sin(α)
sin(α) cos(α)

]
.

We have for l ∈ {1, 2}, φl(z) = −z, hence φ2
l (z) = z2 and so Eφ2

l (εl) = 1. Dα,1(γ) =[
− sin(α) − cos(α)
cos(α) − sin(α)

]
and hence

Dα,1(α)A(α)−1 = Dα,1(α)A(α)′ =

[
0 −1

1 0

]
,

which implies ζ = (0,−1, 1, 0)′ and hence rank(ζ) = 1 = Lα < K2 = 4. Explicit calculation

reveals that

EQQ′ =


8/9 0 0 0

0 1 1 0

0 1 1 0

0 0 0 8/9

 ,
which is clearly singular with rank 3. We have

Ĩθ,αα = ζ ′ [EQQ′] ζ = ζ ′


8/9 0 0 0

0 1 1 0

0 1 1 0

0 0 0 8/9




0

−1

1

0

 = ζ ′


0

0

0

0

 = 0.

For the last part, suppose that k 6= j and εk and εj are both Gaussian. Since both have

zero mean and unit variance, we have for l ∈ {k, j}, φl(z) = −z, hence φ2
l (z) = z2 and so

Eφ2
l (εl) = 1. EθQQ

′ is singular by (i) and hence by (iv) Ĩθ,αα is singular.
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Example S1 (Necessity of part 2 of assumption 2). Suppose that ε̃k ∼ χ2
2 and let εk =

(ε̃k − 2)/2. Then εk has mean zero, variance one and density function ηk(z) = exp(−z − 1)

on its support [−1,∞) on which we also have that φk(z) = −1. Explicit calculation reveals

that part 1 of assumption 2 is satisfied. However, Eφk(z) = −1 6= 0 as would be required by

part 2 of assumption 2.

Note also that this example does not satisfy the requirements of lemma S20: we have

ak = −1, bk =∞ and

lim
z↓ak

ηk(x) = lim
z↓−1

exp(−z − 1) = 1 6= 0,

and hence the required condition is violated for r = 0.

Lemma S20. Let ak = inf{x ∈ R ∪ {−∞} : ηk(x) > 0} and bk = sup{x ∈ R ∪ {∞} :

ηk(x) > 0}. Suppose that, for r = 0, 1, 2, 3: (i) if ak = −∞ then ηk(x) = o(x−3) as

x→ −∞, else ark limx↓ak ηk(x) = 0, and (ii) if bk =∞ then ηk(x) = o(x−3) as x→∞, else

brk limx↑bk ηk(x) = 0. Then, if part 1 of assumption 2 holds, part 2 is also satisfied.

Proof. Let r ∈ {0, 1, 2, 3}, bk = sup{x ∈ R : ηk(x) > 0} and ak = inf{x ∈ R : ηk(x) > 0}.
We have, by integration by parts, with Gk denoting the measure on R corresponding to ηk,∫

φk(z)zr dGk =

∫
η′k(z)

ηk(z)
ηk(z)zr dz =

∫
η′k(z)zr dz = ηk(z)zr

∣∣∣∣bk
ak

−
∫
ηk(z)

dzr

dz
dz.

Our hypothesis ensures that zrηk(z)
∣∣bk
ak

= 0. Therefore we have Gkφk(z)zr = −Gk
d
dz
zr. For

r = 0 this equals zero as d
dz
z0 = d

dz
1 = 0. For r ∈ {1, 2, 3} we have dzr

dz
= rzr−1 and hence

Gkφk(z)zr = −rGkz
r−1. Since Gk1 = 1, Gkz = 0, and Gkz

2 = 1, the result follows.

Lemma S21. Suppose that Pn and Qn are probability measures (with each pair (Pn, Qn)

defined on a common measurable space) with corresponding densities pn and qn (with respect

to some σ-finite measure νn). Let ln = log qn/pn be the log-likelihood ratio.S22 If

ln = oPn(1),

then dTV (Pn, Qn)→ 0.

Proof. By the continuous mapping theorem

qn
pn

= exp (ln)
Pn−→ 1.

S22ln may be defined arbitrarily when pn = 0.
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Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4) then implies that Qn / Pn.

Let φn be arbitrary measurable functions valued in [0, 1]. Since the φn are uniformly tight,

Prohorov’s theorem ensures that for any arbitrary subsequence (nj)j∈N there exists a further

subsequence (nm)m∈N such that φnm  φ ∈ [0, 1] under Pnm . Therefore by Slutsky’s Theorem

(φnm , exp(lnm)) (φ, 1) under Pnm .

By Le Cam’s third Lemma (e.g. van der Vaart, 1998, Theorem 6.6), under Qmn the law of

φnm converges weakly to the law of φ. Since each φn ∈ [0, 1]

lim
m→∞

[Qnmφnm − Pnmφnm ] = 0.

As (nj)j∈N was arbitrary, the preceding display holds also along the original sequence.

S5 A consistent estimator of the Moore – Penrose psue-

doinverse

As is well known, the Moore – Penrose psuedoinverse of a matrix is not a continuous function

on the space of positive semi-definite matrices (see e.g. Ben-Israel and Greville, 2003, Section

6.6). In consequence, if one has a consistent estimator M̌n of some matrix M , it need not

follow that M̌ † is consistent for M †. A necessary and sufficient condition for this convergence

in probability to occur is that rank(M̌n) = rank(M) with probability approaching one as

n→∞ (Andrews, 1987, Theorem 2).

Here we provide a simple construction, based on the knowledge of the speed of conver-

gence of M̌n to M , which results in an estimator M̂n which is consistent for M and satisfies

rank M̂n = rankM with probability approaching one as n→∞ and, in consequence, M̂ †
n is

consistent for M †.

The construction proposed here is very similar to a special case of that considered by

Dufour and Valéry (2016). We provide a direct proof for this construction rather than relying

on Proposition 9.1 in Dufour and Valéry (2016) as the latter would require the introduction

of an additional rate term (bn in their notation) which satisfies a given condition (their

Assumption 2.2). For our purposes we need only a single rate term (essentially the equivalent

of cn in their notation) and thus there are fewer conditions to verify.

In particular, suppose that the sequence of (random) positive semi-definite (symmetric)
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matrices (M̌n)n∈N (of fixed dimension L× L) satisfy

Pn
(
‖M̌n −Mn‖2 < νn

)
→ 1, (S37)

for a sequence (Pn)n∈N of probability measures, a known non-negative sequence νn → 0 and

a sequence of deterministic matrices Mn →M with rank(Mn) = rank(M) for all sufficiently

large n.S23 Let M̌n = ǓnΛ̌nǓ
′
n be the corresponding eigendecompositions and define

M̂n := ǓnΛn(νn)Ǔ ′n , (S38)

where Λn(νn) is a diagonal matrix with the νn-truncated eigenvalues of M̌n on the main

diagonal and Ǔn is the matrix of corresponding orthonormal eigenvectors. That is, if

(λ̌n,i)
L
i=1 denote the non-increasing eigenvalues of M̌n, then the (i, i)-th element of Λn(νn) is

λ̌n,i1(λ̌n,i ≥ νn).

Proposition S1. If (S37) holds, Mn → M and for all n greater than some N ∈ N
rank(Mn) = rank(M), then M̂n

Pn−→M and

Pn

(
rank(M̂n) = rank(M)

)
→ 1,

where M̂n is defined as in (S38). In consequence,

M̂ †
n

Pn−→M †.

Proof. Throughout let r̂n := rank(M̂n), r := rank(M), Rn := {r̂n = r} and λl, λn,l, λ̌n,l and

λ̂n,l respectively the l-th largest eigenvalue of M , Mn, M̌n and M̂n.

Start with the case r = 0. By Weyl’s perturbation theorem (e.g. Bhatia, 1997, Corollary

III.2.6) and the fact that Mn = 0 for all n larger than some N ∈ N,

Pn(Rn) = Pn

(
max
l=1,...,L

|λ̌n,l| < νn

)
≥ Pn(‖M̌n −Mn‖2 < νn)→ 1.

On the sets Rn we have that M̂n = 0 = M and so M̂n
Pn−→M as P (Rn)→ 1.

Now suppose that r > 0. let ν := λr/2 > 0 and note that (S37) implies that ‖M̌n −
Mn‖2 = oPn(1) and so, by Weyl’s perturbation theorem, maxl=1,...,L |λ̌n,l − λn,l| ≤ ‖M̌n −
Mn‖2 = oPn(1). Hence, defining En := {λ̌n,r ≥ νn}, for n large enough such that νn < ν

S23 (S37) is implied by ‖M̌n −Mn‖ = oPn(νn) for any matrix norm. Moreover, the existence of such a
sequence (νn)n∈N is guaranteed if ‖M̌n −Mn‖2 → 0 in Pn-probability, however its explicit knowledge is
necessary to perform the subsequent construction. In most cases Mn = M for all n ∈ N.
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and ‖Mn −M‖2 < ν/2 we have

Pn(En) = Pn
(
λ̌n,r ≥ νn

)
≥ Pn

(
λ̌n,r ≥ ν

)
≥ Pn

(
|λ̌n,r − λn,r| < ν/2

)
→ 1.

If r = L we have that Rn ⊃ En and therefore Pn(Rn) → 1. Additionally, if λ̌n,L ≥ νn

then λ̂n,l = λ̌n,l for each l = 1, . . . , L and hence M̂n = M̌n, implying ‖M̂n −M‖2 ≤ ‖M̌n −
Mn‖2 + ‖Mn −M‖2 = oPn(1).

Now suppose instead that r < L and define Fn := {λ̌n,r+1 < νn}. It follows by Weyl’s

perturbation theorem and the fact that λn,l = 0 for l > r and n ≥ N that as n→∞

Pn(Fn) = Pn(λ̌n,r+1 < νn) ≥ Pn(‖M̌n −Mn‖2 < νn)→ 1.

Since Rn ⊃ En ∩ Fn, this implies that Pn(Rn) → 1 as n → ∞. Additionally, if λ̌n,r ≥ νn,

λ̌n,r+1 < νn and ‖M̌n −M‖2 ≤ υ, we have that λ̂n,k = λ̌n,k for k ≤ r and λ̂n,l = 0 = λl for

l > r and so

‖Λn(νn)− Λ‖2 = max
l=1,...,r

|λ̂n,l − λl| = max
l=1,...,r

|λ̌n,l − λl| ≤ ‖Λ̌n − Λ‖2 ≤ ‖M̌n −M‖2 ≤ υ,

and hence {‖M̌n −M‖2 ≤ υ} ∩En ∩ Fn ⊂ {‖Λn(νn)− Λ‖2 ≤ υ}, from which it follows that

Λn(νn)
Pn−→ Λ as ‖M̌n −M‖2 ≤ ‖M̌n −Mn‖2 + ‖Mn −M‖2

Pn−→ 0. Suppose that (λ1, . . . , λr)

consists of s distinct eigenvalues with values λ1 > λ2 > · · · > λs and multiplicities m1, . . . ,ms

(each at least one).S24 λs+1 = 0 is an eigenvalue with multiplicity ms+1 = L − r. Let lki

for k = 1, . . . , s + 1 and i = 1, . . . ,mk denote the column indices of the eigenvectors in U

corresponding to each λk. For each λk, the total eigenprojection is Πk :=
∑mk

i=1 ulki u
′
lki

.S25

Total eigenprojections are continuous.S26 Therefore, if we construct Πn,k in in an analogous

fashion to Πk but replace columns of U with columns of Ǔn, we have Πn,k
Pn−→ Πk for each

k = 1, . . . , s + 1 since M̌n
Pn−→ M . Spectrally decompose M as M =

∑s
k=1 λ

kΠk, where the

sum runs to s rather than s+ 1 since λs+1 = 0. Then,

M̂n =
s+1∑
k=1

mk∑
i=1

λ̂n,lki un,lki u
′
n,lki

=
s+1∑
k=1

mk∑
i=1

(λ̂n,lki − λ
k)un,lki u

′
n,lki

+
s∑

k=1

λkΠn,k,

S24The superscripts on the λs are indices, not exponents.
S25See e.g Chapter 8.8 of Magnus and Neudecker (2019).
S26E.g. Theorem 8.7 of Magnus and Neudecker (2019).
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whence

‖M̂n −M‖2 ≤
s+1∑
k=1

mk∑
i=1

|λ̂n,lki − λ
k|‖un,lki u

′
n,lki
‖2 +

s∑
k=1

|λk|‖Πn,k − Πk‖2
Pn−→ 0,

by Π̂n,k
Pn−→ Πk, Λ̂n(νn)

Pn−→ Λ and since we have ‖un,lki u
′
n,lki
‖2 = 1 for any i, k, n. Combine

this with Pn(Rn)→ 1 and Lemma 1 in Andrews (1987) to conclude.

S6 Log density score estimation

In this section we discuss the details for the estimation of the log density scores φk. We first

provide a detailed description of the construction of the estimator (11). Secondly we provide

a proofs of Lemma S4, i.e. we show that this estimate satisfies Assumption S1. Thirdly

we provide proofs of Lemmas S8 and S9. The analysis here (in addition to the proposed

estimator) is based on Chen and Bickel (2006) and Jin (1992), with small tweaks to fit the

setup of the present paper.

S6.1 B-spline based log density score estimation

For ξ1 < · · · < ξN a knot sequence, the first order B-splines are defined according to b
(1)
i (x) :=

1[ξi,ξi+1)(x). Subsequent order B-splines can be computed according to the recurrence relation

b
(l)
i (x) =

x− ξi
ξi+l−1 − ξi

b
(l−1)
i (x) +

ξi+l − x
ξi+l − ξi+1

b
(l−1)
i+1 (x), (S39)

for l > 1 and i = 1, . . . , N − l. A l-th order B-spline is l − 2 times differentiable in x with

first derivative

c
(l)
i (x) =

l − 1

ξi+l−1 − ξi
b

(l−1)
i (x)− l − 1

ξi+l − ξi+1

b
(l−1)
i+1 (x). (S40)

See de Boor (2001) for more details on B-splines.

Let bk,n = (bk,n,1, . . . , bk,n,Bk,n)′ be a collection of Bk,n cubic (i.e. 4-th order) B-splines

and let ck,n = (ck,n,1, . . . , ck,n,Bk,n)′ be their derivatives: ck,n,i(x) :=
dbk,n,i(x)

dx
for each i ∈

{1, . . . ,Bk,n}. The knots of the splines, ξk,n = (ξk,n,i)
Kk,n
i=1 are equally spaced in [ΞL

k,n,Ξ
U
k,n]

with δk,n := ξk,n,i+1− ξk,n,i > 0.S27 For each (k, n) pair the relationships between the number

of knots (Kk,n), the number of spline functions (Bk,n) and δk,n are given by Bk,n = Kk,n − 4

and Kk,n = 1 + (ΞU
k,n − ΞL

k,n)/δk,n.S28

S27For each k = 1, . . . ,K the sequences (ΞLk,n)n∈N, (ΞUk,n)n∈N, (Bk,n)n∈N and (δk,n)n∈N are deterministic.
S28Implicitly we choose Kk,n and the endpoints and δk,n adjusts such that these formulae hold; this way
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Since the B-splines vanish at infinity for any n ∈ N, integration by parts gives that∫
(φk(z)− ψ′k,nbk,n(z))2ηk(z) dz

=

∫
φk(z)2ηk(z) dz +

∫
(ψ′k,nbk,n)2ηk(z) dz + 2

∫
ψ′k,nck,n(z)ηk(z) dz

= Eφk(εk)2 + ψ′k,nE[bk,n(εk)bk,n(εk)
′]ψk,n + 2ψ′k,nEck,n(εk),

(S41)

where we integrate over the support of φk,n (which is also the support of bk,n and ck,n). This

mean-squared error is minimsed by:S29

ψk,n := −E[bk,n(εk)bk,n(εk)
′]−1E[ck,n(εk)]. (S42)

Replace the population expectations with sample counterparts to define the estimate of ψk,n

ψ̂k,n,γ := −

[
1

n

n∑
i=1

bk,n(An,k,iVθn,i)bk,n(An,k,iVθn,i)
′

]−1
1

n

n∑
i=1

ck,n(An,k,iVθn,i), (S43)

where An,k,i and Vθn,i are defined as in Assumption S1. The estimate for φk is

φ̂k,n,γ(z) := ψ̂′k,n,γbk,n(z) . (S44)

We note that computing (S44) effective only requires computing the B-spline regression

coefficients ψ̂k,n,γ in (S43). To implement the score test we need to estimate K density

scores, hence the computational cost is quite modest.

S6.2 Proof of Lemmas S4, S8 & S9

Proof of Lemma S4. Under Pθn , Ak,γn,iVθn,i ' εk ∼ ηk. We start by showing that φ̂k,n :=

φ̂k,n,γn (where γn = (α0, βn)) satisfies equation (S12). We have∣∣∣∣∣ 1n
n∑
i=1

φ̂k,n(εi,k)Zn,i − φk(εi,k)Zn,i

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

[
φ̂k,n(εi,k)− φ̃k,n(εi,k)

]
Zn,i

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k,n(εi,k)− φk,n(εi,k)

]
Zn,i

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εi,k)− φk(εi,k)]Zn,i

∣∣∣∣∣ ,
(S45)

we do not need to adjust anything to ensure these are integers.
S29This differs from the expression in Chen and Bickel (2006) by a factor of −1 as they estimate −φk.
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where φk,n := φk1[ΞLk,n,Ξ
U
k,n] as in Assumption 3, φ̃k,n(z) := ψ′k,nbk,n(z) and φ̂k,n(z) := ψ̂′k,n,γnbk,n(z).

To establish (S12) it suffices to show that each of these three terms on the right hand side

are oP(n−1/2).S30

For the last term in (S45), by assumption E1{εi,k /∈ [ΞL
k,n,Ξ

U
k,n]} ↓ 0 and hence by

independence, Cauchy-Schwarz and supn∈N EZ2
n,i <∞,

E
(
[φk,n(εi,k)− φk(εi,k)]2Z2

n,i

)
= E

[
φk(εi,k)

21{εi,k /∈ [ΞL
k,n,Ξ

U
k,n]}

]
EZ2

n,i

≤
[
Eφk(εi,k)4

]1/2 [E1{εi,k /∈ [ΞL
k,n,Ξ

U
k,n]}

]1/2 EZ2
n,i

→ 0.

(S46)

By Markov’s inequality it follows that for any υ > 0,

P

(∣∣∣∣∣ 1√
n

n∑
i=1

[φk,n(εi,k)− φk(εi,k)]Zn,i

∣∣∣∣∣ > υ

)
≤
nE
(
[φk,n(εi,k)− φk(εi,k)]2Z2

n,i

)
nυ

→ 0.

For the second term, we note that by our hypotheses and lemma S22 we have

E
(

[φ̃k,n(εi,k)− φk,n(εi,k)]
2Z2

n,i

)
= E

(
[φ̃k,n(εi,k)− φk,n(εi,k)]

2
)
EZ2

n,i

≤ C2δ6
k,n‖φ

(3)
k,n‖2

∞EZ2
n,i → 0

, (S47)

as n→∞, and hence again by Markov’s inequality for any υ > 0,

P

(∣∣∣∣∣ 1√
n

n∑
i=1

[φ̃k,n(εi,k)− φk,n(εi,k)]Zn,i

∣∣∣∣∣ > υ

)
≤
nE
(

[φ̃k(εi,k)− φk,n(εi,k)]
2Z2

n,i

)
nυ

→ 0.

For the first term, by Cauchy-Schwarz∣∣∣∣∣ 1n
n∑
i=1

[
φ̂k,n(εi,k)− φ̃k,n(εi,k)

]
Zn,i

∣∣∣∣∣ ≤ ‖ψ̂k,n − ψk,n‖2

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εi,k)Zn,i

∥∥∥∥∥
2

= oP(n−1/2),

by lemmas S23 and S24.

S30Here we implicitly assume (without loss of generality) that all the εi and Zn,i are defined on a common
probability space (Ω,F ,P).
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Next, we show that φ̂k,n satisfies equation (S13). We have:

1

n

n∑
i=1

([
φ̂k,n(εi,k)− φk(εi,k)

]
Zn,i

)2

≤ 4

n

n∑
i=1

[
φ̂k,n(εi,k)− φ̃k,n(εi,k)

]2

Z2
n,i

+
4

n

n∑
i=1

[
φ̃k,n(εi,k)− φk,n(εi,k)

]2

Z2
n,i

+
4

n

n∑
i=1

[φk,n(εi,k)− φk(εi,k)]2 Z2
n,i.

(S48)

We will show that (1/4 of) each of the right hand side terms is oP(νn) under our assumptions,

which is sufficient for equation (S13). For the last term, for any υ > 0, by Markov’s inequality,

independence and Cauchy-Schwarz we have

P

(∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εi,k)− φk(εi,k)]2 Z2
n,i

∣∣∣∣∣ > υνn

)
.

[
E1{εi,k /∈ [ΞL

k,n,Ξ
U
k,n]}

]1/2 EZ2
n,i

υνn
= o(1).

For the second term, for any υ > 0, by Markov’s inequality, independence and lemma S22:

P

(∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k,n(εi,k)− φk,n(εi,k)

]2

Z2
n,i

∣∣∣∣∣ > υνn

)
≤

E
(

[φ̃k,n(εi,k)− φk,n(εi,k)]
2
)
EZ2

n,i

υνn

≤
Cδ6

k,n‖φ
(3)
k,n‖2

∞EZ2
n,i

υνn

= o(1).

Finally, for the first term in the decomposition, by lemma S24 and Assumption 3-part (ii):

1

n

n∑
i=1

[
φ̂k,n(εi,k)− φ̃k,n(εi,k)

]2

Z2
n,i ≤ ‖ψ̂k,n − ψk,n‖2

2

[
1

n

n∑
i=1

‖bk,n(εi,k)‖2
2Z

2
n,i

]
= oP(νn).

Proof of Lemma S8. The proof proceeds verbatim as that of Lemma S4 once references to

equations (S12), (S13) are replaced by equations (S27), (S28) since under the conditions of

the present Lemma, one still has An,γn,iVθn,i ' εk ∼ ηk under Pθn .
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Proof of Lemma S9. We use a similar decomposition to as in the Proof of Lemma S4:

1

n

n∑
i=1

([
φ̂k,n(εi,k)− φk(εi,k)

]
εk,i

)2

≤ 4

n

n∑
i=1

[
φ̂k,n(εi,k)− φ̃k,n(εi,k)

]2

ε2k,i

+
4

n

n∑
i=1

[
φ̃k,n(εi,k)− φk,n(εi,k)

]2

ε2k,i

+
4

n

n∑
i=1

[φk,n(εi,k)− φk(εi,k)]2 ε2k,i.

(S49)

We will show that (1/4 of) each of the right hand side terms is oP(νn) under our assumptions,

which is sufficient for equation (S29), since under Pθn , Ak,γn,iVθn,i ' εk ∼ ηk. For the last

term, for any υ > 0, by Markov’s inequality, Cauchy – Schwarz and the first additional

condition in Lemma S9 we have

P

(∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εi,k)− φk(εi,k)]2 ε2k,i

∣∣∣∣∣ > υνn

)
.

(
E
[
ε4k,i1{εi,k /∈ [ΞL

k,n,Ξ
U
k,n]}

])1/2

υνn
= o(1).

For the second term, first note that by Lemma S24

φ̃k,n(εi,k)
2 ≤ ‖ψk,n‖2

2‖bk,n(εi,k)‖2
2 ≤ ‖ψk,n‖2

2 ≤ ‖Γ−1
k,n‖

2
2‖Ck,n‖2

2 = O(δ−3
k,n∆k,n).

Thus, for any υ > 0, by Markov’s inequality, Cauchy – Schwarz, the additional conditions

in Lemma S9 and Lemma S22:

P

(∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k,n(εi,k)− φk,n(εi,k)

]2

ε2k,i

∣∣∣∣∣ > υνn

)

≤
E
(

[φ̃k,n(εi,k)− φk,n(εi,k)]
2ε2k,i

)
υνn

≤
M2
k,nE

(
[φ̃k,n(εi,k)− φk,n(εi,k)]

2
)

υνn
+

E
[
(φ̃k,n(εi,k)

2 + φk(εi,k)
2)ε2i,k1{|εi,k| > Mk,n}

]
υνn

.
M2
k,nCδ

6
k,n‖φ

(3)
k,n‖2

∞

υνn
+
δ−3
k,n∆k,nE

[
ε2i,k1{|εi,k| > Mk,n}

]
υνn

+

[
E
(
ε4i,k1{|εi,k| > Mk,n}

)]1/2
υνn

= o(1).

Finally, for the first term in the decomposition, by lemma S24, ‖bk,n(εi,k)‖2
2 ≤ 1 (e.g. de Boor,
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2001, equation (36), p. 96), Assumption S3, the WLLN and Assumption 3-part (ii)

1

n

n∑
i=1

[
φ̂k,n(εi,k)− φ̃k,n(εi,k)

]2

ε2k,i ≤ ‖ψ̂k,n,γn − ψk,n‖2
2

[
1

n

n∑
i=1

ε2k,i

]
= oP(νn).

S6.3 Technical lemmas

Lemma S22 (Cf. Lemma A.5, Chen and Bickel, 2006). Let φk,n be defined as in Assumption

3 and φ̃k,n := ψ′k,nbk,n. If part (iv) of Assumption 3 holds,

E
(
φ̃k,n(εi,k)− φk,n(εi,k)

)2

≤ C2δ6
k,n‖φ

(3)
k,n‖

2
∞.

Proof. By the definition of φ̃k,n and lemma S26 we have

E
(
φ̃k,n(εi,k)− φk,n(εi,k)

)2

= inf
g∈G4(ξk,n)

E (g(εi,k)− φk,n(εi,k))
2 ≤ C2δ6

k,n‖φ
(3)
k,n‖

2
∞,

where the equality follows since ψk,n is the minimiser of (S41) where we integrate over the

support of φk,n (which is also the support of bk,n and ck,n).

Lemma S23 (Cf. Lemma A.3, Chen and Bickel, 2006). Suppose assumptions 2 (or S3) and

3 hold. If Zn,i is independent of εi,k and supn∈N,i≤1,...,n EZ2
n,i <∞, then∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εi,k)Zn,i

∥∥∥∥∥
2

= OP(n−1/2).

Proof. By
∑Bk,n

m=1 bk,n,m(x)2 ≤ 1 (e.g. de Boor, 2001, equation (36), p. 96) and our hypotheses

E

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εi,k)Zn,i

∥∥∥∥∥
2

2

 =
1

n
E

Bk,n∑
m=1

bn,k,m(εi,k)
2

EZ2
n,i ≤

EZ2
n,i

n
.

Fix ε > 0 and take M > 0 large enough such that supn∈N,i≤1,...,n EZ2
n,i/M

2 < ε. Markov’s

inequality yields

P

(
√
n

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εi,k)Zn,i

∥∥∥∥∥
2

> M

)
≤

E
(
n
∥∥ 1
n

∑n
i=1 bk,n(εi,k)Zn,i

∥∥2

2

)
M2

≤
EZ2

n,i

M2
< ε.
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Lemma S24 (Cf. Lemma A.2, Chen and Bickel, 2006). Suppose that Assumptions 2 (or

S3) and 3 hold. Then, for

Γ̂k,n :=
1

n

n∑
i=1

bk,n(εi,k)bk,n(εi,k)
′, Γk,n := E[bk,n(εk)bk,n(εk)

′],

and

Ĉk,n :=
1

n

n∑
i=1

ck,n(εi,k), Ck,n := E[ck,n(εk)],

we have that

(i) ‖Ck,n‖2 = O(δk,nB
1/2
k,n),

(ii) ‖Ĉk,n − Ck,n‖2 = OP

(√
Bk,n logBk,n

nδ2k,n

)
,

(iii) ‖Γ̂k,n − Γk,n‖2 = OP

(√
Bk,n logBk,n

n

)
,

(iv) ‖Γk,n‖2 = O(δk,n)

(v) ‖Γ−1
k,n‖2 = O(δ−2

k,n).

In particular, ‖Γ̂−1
k,nĈk,n−ψk,n‖2 = OP(n−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι) = oP(1) and ‖Γ̂k,n‖2 = oP(1).

Proof. The proof follows the relevant parts of the proof of lemma A.2 in Chen and Bickel

(2006). Firstly, from the representation of the derivative of the cubic spline (e.g. de Boor,

2001) ck,n,i =
(
b

(3)
k,n,i − b

(3)
k,n,i+1

)
/δk,n. We have, for large enough n ∈ N,

|Ck,n,i| = |E[ck,n,i(εk)]| = δ−1
k,n

∣∣∣∣∫ b
(3)
k,n,i(t)ηk(t) dt−

∫
b

(3)
k,n,i+1(t)ηk(t) dt

∣∣∣∣
= δ−1

k,n

∣∣∣∣∫ b
(3)
k,n,i(t)ηk(t) dt−

∫
b

(3)
k,n,i(t)ηk(t+ δk,n) dt

∣∣∣∣
≤
∣∣∣∣∫ b

(3)
k,n,i(t)

ηk(t+ δk,n)− ηk(t)
δk,n

dt

∣∣∣∣
≤ 2‖η′k‖∞

∫
b

(3)
k,n,i(t) dt

≤ 6‖η′k‖∞δk,n,

where the last inequality is due to (20) on p. 91 in de Boor (2001) and the fact that splines
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(of any order) take values in [0, 1].S31 It follows immediately that for large enough n ∈ N,

Bk,n∑
i=1

C2
k,n,i ≤

Bk,n∑
i=1

62‖η′k‖2
∞δ

2
k,n = Bk,n62‖η′k‖2

∞δ
2
k,n,

from which (i) follows.

As noted above ck,n,i =
(
b

(3)
k,n,i − b

(3)
k,n,i+1

)
/δk,n. Since splines (of any order) take values in

[0, 1], it follows that ck,n,i ∈ [−δ−1
k,n, δ

−1
k,n]. Hence, by Hoeffdings’s inequality for t ≥ 0 we have

P

(∣∣∣∣∣ 1n
n∑
i=1

ck,n,m(εi,k)− Ecn,k,m(εi,k)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−n2t2

2nδ−2
k,n

)
= 2 exp(−nt2δ2

k,n/2).

Therefore,

P
(
‖Ĉk,n − Ck,n‖2 ≥ t

)
≤

Bk,n∑
m=1

P

(∣∣∣∣∣ 1n
n∑
i=1

ck,n,m(εi,k)− Ecn,k,m(εi,k)

∣∣∣∣∣ ≥ t√
Bk,n

)
≤ 2Bk,n exp(−nt2B−1

k,nδ
2
k,n/2),

and so for any fixed ε > 0 we can take t =
√

4Bk,n logBk,n
nδ2k,n

to obtain (ii) as then

P
(
‖Ĉk,n − Ck,n‖2 ≥ t

)
≤ 2B−1

k,n → 0.

Since for any m, s ∈ {1, . . . ,Bk,n} we have bk,n,mbk,n,s ∈ [0, 1] it follows by Hoeffding’s

inequality that for any t ≥ 0

P

(∣∣∣∣∣ 1n
n∑
i=1

bk,n,m(εi,k)bk,n,s(εi,k)− E[bk,n,m(εi,k)bk,n,s(εi,k)]

∣∣∣∣∣ ≥ t

)
≤ 2 exp(−2nt2).

Therefore, since ‖Γ̂k,n−Γk,n‖2 ≤ ‖Γ̂k,n−Γk,n‖F and both Γ̂k,n and Γk,n are zero for all (m, s)

S31This is evident from their definition. See also property (36) (p. 96) of de Boor (2001).
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entries where |m− s| > 3 (de Boor, 2001, (20), p. 91) we have that

P
(
‖Γ̂k,n − Γk,n‖2 ≥ t

)
≤ P

(
‖Γ̂k,n − Γk,n‖F ≥ t

)
≤

Bk,n∑
m=1

min(Bk,n,m+3)∑
s=max(m−3,1)

P

(∣∣∣∣∣ 1n
n∑
i=1

bk,n,m(εi,k)bk,n,s(εi,k)− E[bk,n,m(εi,k)bk,n,s(εi,k)]

∣∣∣∣∣ ≥ t√
7Bk,n

)

≤ 14Bk,n exp

(
−2nt2

7Bk,n

)
.

Putting t =
√

7Bk,n logBk,n
n

we obtain (iii) as

P
(
‖Γ̂k,n − Γk,n‖2 ≥ t

)
≤ 14B−1

k,n → 0.

Since Γk,n is symmetric and positive (semi-)definite we have that:S32

‖Γk,n‖2 ≤ ‖Γk,n‖∞ = max
m=1,...,Bk,n

Bk,n∑
s=1

Ebn,k,m(εk)bk,n,s(εk).

Then, since for any z ∈ R, each row of bk,n(z)bk,n(z)′ has at most 7 non-zero entries,S33 all

of which are bounded above by 1 we have

‖Γk,n‖2 ≤ max
m=1,...,Bk,n

Bk,n∑
s=1

Ebn,k,m(εk)bk,n,s(εk)

= max
m=1,...,Bk,n

Bk,n∑
s=1

∫ ξk,n,m+4

ξk,n,m

bk,n,m(z)bk,n,s(z)ηk(z) dz

≤ max
m=1,...,Bk,n

7‖ηk‖∞4δk,n

= 28‖ηk‖∞δk,n,

which yields (iv) in conjunction with requirement (iii) of Assumption 3.

By Assumption 3 part (v), on [ΞL
k,n,Ξ

U
k,n] we have η(x) ≥ cδk,n. Hence η(x) − cδk,n ≥ 0

and so
∫
bk,nb

′
k,n(η − cδk,n)λ =

∫
(bk,n

√
η − cδk,n)(bk,n

√
η − cδk,n)′λ. Note that the functions

bk,i
√
η − cδk,n satisfy

∫
(bk,i

√
η − cδk,n)2 dλ <∞ and hence belong to L2(λ). It follows that

S32See e.g. Theorem 5.6.9 in Horn and Johnson (2013).
S33bk,n,m(z) = 0 outside [ξk,n,m, ξk,n,m+4). See (20) on p. 91 in de Boor (2001).
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the matrix
∫
bk,nb

′
k,n(η − cδk) dλ is a Gram matrix and hence positive semi-definite. This

implies that Γk,n � cδk,nΓ̃k,n where Γ̃k,n is defined as in lemma S25. Hence, by the Rayleigh

quotient theorem (see e.g. Theorem 4.2.2 in Horn and Johnson, 2013) and lemma S25

λmin(Γk,n) ≥ λmin(cδk,nΓ̃k,n) = cδk,nλmin(Γ̃k,n) ≥ cυδ2
k,n,

for a υ > 0, which may be used to conclude that (v) holds via

‖Γ−1
k,n‖2 =

1

λmin(Γk,n)
≤ (cυ)−1δ−2

k,n.

To demonstrate the last claim, note that with the results just derived, under our assump-

tions we have,

‖Ĉk,n‖2 ≤ ‖Ĉk,n−Ck,n‖2+‖Ck,n‖2 = OP

(√
Bk,n logBk,n

nδ2
k,n

)
+O

(
δk,n
√
Bk,n

)
= OP

(
δk,n
√

Bk,n
)
,

and, using inequality (5.8.2) from Horn and Johnson (2013),

‖Γ̂−1
k,n‖2 ≤ ‖Γ−1

k,n(I + [Γ̂k,n − Γk,n]Γ−1
k,n)−1‖2

≤ ‖Γ−1
k,n‖2‖(I + [Γ̂k,n − Γk,n]Γ−1

k,n)−1‖2

≤ ‖Γ−1
k,n‖2

(
1− ‖[Γ̂k,n − Γk,n]Γ−1

k,n‖2

)−1

≤ ‖Γ−1
k,n‖2

(
1− ‖Γ̂k,n − Γk,n‖2‖Γ−1

k,n‖2

)−1

= OP(δ−2
k,n).

(S50)

Using these intermediate results along with (ii) - (v) and our hypotheses we obtain that

‖ψ̂k,n − ψk,n‖2 = ‖Γ̂−1
k,nĈk,n − Γ−1

k,nCk,n‖2

≤ ‖(Γ̂−1
k,n − Γ−1

k,n)Ĉk,n‖2 + ‖Γ−1
k,n(Ĉk,n − Ck,n)‖2

≤ ‖Γ−1
k,n‖2‖Γk,n − Γ̂k,n‖2‖Γ̂−1

k,n‖2‖Ĉk,n‖2 + ‖Γ−1
k,n‖2‖Ĉk,n − Ck,n‖2

= OP

(√
B2
k,n logBk,n

δ6
k,nn

)
+OP

(√
Bk,n logBk,n

δ6
k,nn

)
= oP(1),

by Assumption 3 part (ii), since we have Bk,n ≤ ∆k,nδ
−1
k,n and hence the dominant term above
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vanishes since for all large enough n,√
B2
k,n logBk,n

δ6
k,nn

≤ n−1/2∆k,nδ
−4
k,n log(∆k,nδ

−1
k,n) ≤ n−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι = o(1).

Finally, by (iii) and (iv) and Assumption 3 part (ii) we have

‖Γ̂k,n‖2 ≤ ‖Γ̂k,n − Γk,n‖2 + ‖Γk,n‖2 = OP

(√
Bk,n logBk,n

n

)
+O(δk,n) = oP(1),

since δk,n → 0 and for all large enough n,√
Bk,n logBk,n

n
≤ n−1/2∆k,nδ

−1
k,n log(∆k,nδ

−1
k,n) ≤ δ3

k,nn
−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι = o(1).

Lemma S25. The smallest eigenvalue of the Bk,n × Bk,n Gram matrix Γ̃k,n :=
∫
bk,nb

′
k,n dλ

satisfies

λmin(Γ̃k,n) ≥ υδk,n > 0,

for a υ > 0.

Proof. Since bk,n,m(x)bk,n,s(x) is non-zero only for |m − s| ≤ 3 and each bk,n,m is non-zero

only on [ξm,k,n, ξm+4,k,n)] (e.g. (20) p. 91 of de Boor, 2001), Γ̃k,n is a symmetric banded

Toeplitz matrix.S34 Its entries can be computed by direct integration:

[Γ̃k,n]m,s = δk,n ×



151
315

if m = s

397
1680

if |m− s| = 1

1
42

if |m− s| = 2

1
5040

if |m− s| = 3

0 if |m− s| > 3

.

Let f0 := 151
315

, f1 := f−1 := 397
1680

, f2 := f−2 := 1
42

and f3 := f−3 := 1
5040

and let fs := 0 for

|s| > 3. Now, let f(θ) :=
∑3

s=−3 fse
i(sθ). Then, Γ̃k,n/δk,n is then the matrix generated by f

in the sense that Γ̃k,n/δk,n = Tn(f) :=
∑min(Bk,n−1,3)

s=−min(Bk,n−1,3) fkJ
s
n where each Jsn is the Bk,n×Bk,n

matrix which is zero everywhere except for the (i, j)-th entries where i−j = s, where it has a

value of 1.S35 Since f ∈ L1([−π, π]) and is real on [−π, π] by Theorem 6.1 in Garoni and Serra-

S34As can be easily verified, unlike in the case of linear (κ = 2) or quadratic splines (κ = 3), this matrix is
not diagonally dominant. In the case of κ ∈ {2, 3} this argument could be completed in a simpler fashion
by using the Gershgorin circle theorem.
S35See section 6.1 in Garoni and Serra-Capizzano (2017), noting that it is clear that f ∈ L1([−π, π]).
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Capizzano (2017) we have that λmin(Γ̃k,n) = δk,nλmin(Γ̃k,n/δk,n) ≥ δk,n infθ∈[−π,π] f(θ) = δk,nυ,

where υ := infθ∈[−π,π] f(θ) > 0.

Lemma S26. Suppose ξ ∈ RN+1 such that a = ξ0 < ξ1 < · · · < ξN = b, h := maxi∈[N ] ξi −
ξi−1, and let Gl(ξ) be the linear space formed by degree l splines with knots ξ. Then, if

f ∈ C l−1[a, b] we have that

inf
g∈Gl(ξ)

‖g − f‖∞ ≤
(l + 1)!

2l
hl−1‖f (l−1)‖∞ = clh

l−1‖f (l−1)‖∞,

where cl depends only on l.

Proof. This is a special case of Theorem 20.3 in Powell (1981).

S7 Power optimality under strong identification

In either the setting considered in the main text or that introduced in Section S2, consider

local alternatives of the type given in (17). We now prove the limiting power statements

claimed in equations (18), (19) and (20).

Proposition S2. Suppose that Assumptions 1, 2 and 3 (or S2, S3, S4 and S5) hold, α ∈ R
and Ĩθ > 0. Then, (18) holds.

Proof. Apply Proposition S3 in the case where Lα = 1 to obtain

lim
n→∞

P n
θn(q,d,h)ϕn = 1− P

(
χ2

1(Ĩθq2) ≤ ca

)
.

The right hand side is the power function of the test ψ(Z) := 1{Z2 > ca} for Z ∼ N (Ĩ1/2
θ q, 1).

If X = Z − Ĩ1/2
θ q, then

ψ(Z) = 1{(X − Ĩ1/2
θ q)2 > ca} = 1{|X − Ĩ1/2

θ q| > za/2}, X ∼ N (0, 1),

hence Eψ(Z) is (18).

Proposition S3. Suppose that Assumptions 1, 2 and 3 (or S2, S3, S4 and S5) hold and Ĩθ
is positive definite. Then, (19) holds.

Proof. The proof of Theorem 1 (or Theorem S2) showed that the conditions of Theorem

S1 hold. Therefore, by (S17), cn is equal to the 1 − a quantile of a χ2
Lα

distribution with
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probability 1 for all large enough n. By (S15), (S16), Le Cam’s third lemma (e.g. Example

6.7 in van der Vaart (1998)) and Theorem 12.14 in Rudin (1991),

√
nPnκ̂n,γ̄n  N (Ĩθq, Ĩθ) under P n

θn(q,d,h).

By condition 3, the mutual contiguity which follows from (S15) and Example 6.5 in van der

Vaart (1998), Proposition S1 and Theorem 9.2.3 in Rao and Mitra (1971)

Ŝn,γ̄n  χ2
Lα(q′Ĩθq) under P n

θn(q,d,h),

from which the result follows.

Proposition S4. Suppose that Assumptions 1, 2 and 3 (or S2, S3, S4 and S5) hold and Ĩθ
is positive definite. Then, (20) holds.

Proof. By arguing exactly as in Proposition S3 with convergent sequences (qn, gn, hn) →
(q, d, h) replacing the fixed (q, d, h) in that Proposition one obtains that

Ŝn,γ̄n  χ2
Lα(q′Ĩθq) under P n

θn(qn,dn,hn),

and hence

lim
n→∞

P n
θn(qn,gn,hn)ϕn = 1− P

(
χ2
Lα(q′Ĩθq) ≤ ca

)
, (S51)

with ca the 1 − a quantile of a χ2
Lα

distribution. The proof is completed by a standard

subsequence argument. Note first that the map (q, d, h) 7→ q′Ĩθq from V → R is continuous.

As K?
u is compact this function attains its infimum, hence

u = inf{q′Ĩθq : (q, d, h) ∈ K?
u} = min{q′Ĩθq : (q, d, h) ∈ K?

u}.

Taking (q?, d?, h?) ∈ K?
u such that q?Ĩθq? = u, we have by (S51)

lim sup
n→∞

inf
(q,d,h)∈K?

u

P n
θn(q,d,h)ϕn ≤ lim

n→∞
P n
θn(q?,d?,h?)ϕn = 1− P

(
χ2
Lα (u) ≤ ca

)
=: R. (S52)

There is a sequence (vn)n∈N ⊂ K?
u and a subsequence (nj)j∈N such that

lim
j→∞

vnj = v? = (q?, d?, h?) ∈ K?
u

and

S := lim inf
n→∞

inf
(q,d,h)∈K?

u

P n
θn(q,d,h)ϕn = lim

j→∞
P
nj
θnj (qnj ,dnj ,hnj )ϕnj . (S53)
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Construct a new sequence (v∗m)m∈N as follows. For all m ∈ [nj, nj+1)∩N for some j ∈ N put

v∗m = vnj and for m = 1, . . . , n1 put v∗m = vn1 . By construction limm→∞ v
∗
m = v?. By (S51)

lim
m→∞

Pm
θm(v∗m)ϕm = 1− P

(
χ2
r (u?) ≤ ca

)
≥ R, with u? = (q?)

′Ĩθq? ≥ u.

For any ε > 0, there is a M ∈ N such that if m ≥ M , Pm
θm(v∗m)ϕm ≥ R− ε by the preceding

display. Taking a subsequence njk such that for all k ∈ N we have mk = njk ≥M gives

S = S − P njk
θnjk

(v∗njk
)ϕnjk + Pmk

θmk (v∗mk
)ϕmk ≥ S − P

njk
θnjk

(v∗njk
)ϕnjk +R− ε.

Take k → ∞ to conclude (via (S53)) that S ≥ R − ε. Since ε > 0 was arbitrary, it follows

that S ≥ R. Combine with equations (S52) and (S53) to obtain (20).

S8 Additional simulation results

In this section we provide a number of additional simulation results.

S8.1 Truncation in the baseline model

In our main simulations we truncated the effective information matrix estimate at machine

precision, i.e. ν
1/2
n = 10−308. Here we investigate the sensitivity of the rejection frequencies to

this choice. Specifically, we replicate Table 2 from the main text, fixing B = 6, but allowing

for different truncation rates ν
1/2
n = 10−308, 10−5, 10−1.S36 The value 10−1 is a high truncation

value which implies that we end up truncating often when all densities are Gaussian. The

results are shown in Table S1.

We find that the results are not sensitive to the truncation parameter choice. Comparing

machine precision to ν
1/2
n = 10−5 yields no differences at all, whereas ν

1/2
n = 10−1 makes the

test slightly conservative. Closer inspection reveals that the under rejection is due to cases

where all eigenvalues are truncated and hence rank(Îtγ̂) = 0. In Theorem 1 this corresponds

to the conservative case.

S8.2 Additional power results for the baseline model

Figure 4 in the main text compared the power of different tests for the baseline model

Yi = A−1εi for the case where n = 1000. Here we show the results for n = 200 and n = 500.

S36Recall that the specification corresponds to the baseline model Yi = A−1εi, with A a rotation matrix
parametrized by the Cayley transform. The first shock is always drawn from a Gaussian distribution whereas
the remaining k = 2, . . . ,K are from different distributions whose densities are shown in Figure 3.
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Specifically, Figures S1 and S2 show the results.

Overall, the patterns that we find are similar as in the main text. One thing that stands

out is that the Sgmm test over-rejects for these smaller sample sizes, essentially confirming

the results in Table 3. It is possible that a more careful selection of the relevant higher order

moments will improve this finding.

Besides this our two main findings from the main text hold. First, the standard LM test

is the preferred approach whenever the true density is known, but the semi-parametric score

test comes close in terms of power. Second, for all other densities the semi-parametric score

test shows the highest power.

S8.3 Additional power results for the LSEM

Figure 5 in the main text compared the power of different tests for the LSEM model for

the case where n = 1000. Here we show the results for n = 200 and n = 500. Specifically,

Figures S3 and S4 show the results.

We find that for n = 200 the power of tests is generally quite low, indicating that for

small sample sizes little can be learned by exploiting deviations from the Gaussian density.

This holds most notably for the Student’s t densities, the skewed unimodal density and the

bimodal density. Intuitively, given a small sample these densities are hard to distinguish

from the normal density and little can be learned about the parameter α. A reassuring

finding is that the null rejection frequency of the test remains well controlled. These findings

persist when we increase to n = 500, though the power does improve as one would expect.

Overall, the implementing the test with one-step efficient estimates leads to higher power,

but the null rejection frequency of the test is controlled less well. Therefore we recommend

using OLS estimates for β when the sample size is small.

S8.4 Heteroskedastic LSEM model

In this section we study the empirical rejection frequency (under the null) of the semi-

parametric score test for the heteroskedastic baseline model. Specifically we consider

Yi = A(α, σ,Xi)
−1εi A(α, σ,Xi)

−1 = L(σ)D(σ, X̃i)
1/2R(α)′ , (S54)

where R(α) is a rotation matrix parametrized by the Cayley transformation of a skew-

symmetric matrix (e.g. Gouriéroux, Monfort and Renne, 2017), L(σ) is lower triangular

with positive diagonal elements and D(σ, X̃i) is a diagonal matrix with diagonal elements
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given by

[D(σ, X̃i)]jj = exp
(
σ′j1X̃i

)
, j = 1, . . . , K ,

where σj1 is a (d − 1) × 1 parameter vector. Note that the average scaling of the errors is

captured by L(σ) and D(σ, X̃i) is the only heteroskedastic part. More elaborate specifications

that allow off-diagonal elements of L to depend on Xi are also possible.

The results for different sample sizes, dimensions K and number of explanatory variables

are shown in Table S2. Overall, we find a similar pattern as for the LSEM model from the

main text (cf Table 4). When K = 5 and the sample size is small, i.e. n = 200, the test

tends to over-reject. The over-rejection vanishes for larger sample sizes. A slight difference

is observed for heavy tailed densities (e.g. t(5)) where even with n = 1000 there is still some

over-rejection.

S9 Additional empirical results

In this section we present some additional results for the returns to schooling application of

section 6. Specifically, we consider the more flexible model from Section S2 which allows for

conditional heteroskedasticity.

Starting from the baseline linear IV model with a possibly scalar endogenous instrument:

yi = α1wi + b′yXi + ui

wi = πzi + b′wXi + vi

zi = BzXi + (α2/σu)ui + ei

, (S55)

We now allow the scaling of the errors σu, σv and σe to be a flexible functions of Xi. Specifi-

cally, we follow Wooldridge (2012, Chapter 8) and model the scales using flexible functions,

i.e.

σj(Xi) = σj,0 exp
(
σj1X̃i,1 + . . .+ σjdX̃i,d−1

)
, j = u, v, e ,

see also Romano and Wolf (2017) for more elaborate specifications. The coefficients σik are

estimated along with the other well identified parameters. Following (23) we write the model

in our general form

Yi = BXi + A−1(α, σ,Xi)εi , (S56)

A−1(α, σ,Xi) =

 σu(Xi) + α1σv(Xi)ρ+ α1πα2 α1

√
1− ρ2σv(Xi) α1πσe(Xi)

ρσv(Xi) + π′α2

√
1− ρ2σv(Xi) π′σe(Xi)

α2 0 σe(Xi)

 ,
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which shows that the model is a special case of (S22). For this specification we reconstruct

the confidence set for α = (α1, α2). The result is shown in Figure S5.

We find that the confidence region is quite similar when compared to the homoskedastic

one. The volume is slightly smaller and there is more mass on the probability that α2 is

positive. Importantly however, the main conclusion remains the same. Even when relaxing

the instrument validity assumption the effect of education is positive and quite precisely

identified.

An obvious caveat is that this result is obtained under the additional assumption that

the model for heteroskedasticity is correctly specified. An open question is how to handle

model mis-specification in the class semi-parametric LSEM models. We leave this for future

research.
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Figure S1: Power Comparison Baseline model n = 200
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Notes: Empirical power curves for the baseline model with k = 2 and n = 200. Each plot corresponds to the

choice for densities εk, for k ≥ 2, where the numbers correspond to the different densities listed in Figure 3.

The solid red line corresponds to Sγ̂ , the dashed blue line to LMmle, the dotted pink line to LMpmle and the

dot-dashed green line to Sgmm.
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Figure S2: Power Comparison Baseline model n = 500
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Notes: Empirical power curves for the baseline model with k = 2 and n = 500. Each plot corresponds to the

choice for densities εk, for k ≥ 2, where the numbers correspond to the different densities listed in Figure 3.

The solid red line corresponds to Sγ̂ , the dashed blue line to LMmle, the dotted pink line to LMpmle and the

dot-dashed green line to Sgmm.
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Figure S3: Power LSEM n = 200
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 200. Each plot corresponds

to the choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in

Figure 3. The solid red line corresponds to the empirical rejection frequency of the Ŝγ̂ test where γ̂ = (α0, β̂),

with β̂ the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the Ŝγ̂

test where γ̂ = (α0, β̂), with β̂ the one-step efficient MLE estimator.
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Figure S4: Power LSEM n = 500
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 500. Each plot corresponds

to the choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in

Figure 3. The solid red line corresponds to the empirical rejection frequency of the Ŝγ̂ test where γ̂ = (α0, β̂),

with β̂ the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the Ŝγ̂

test where γ̂ = (α0, β̂), with β̂ the one-step efficient MLE estimator.
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Figure S5: Confidence sets: returns to schooling

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

,2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

,
1

(a) Heteroskedastic

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

,2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

,
1

(b) Homoskedastic

Notes: We show 95% (light gray) and 67% (dark gray) confidence sets for α = (α1, α2), where α1 captures

the effect of education on log wages and α2 capture the correlation between the instrument (proximity to

schooling interacted with parental education) and the error of the log wage equation. The red line indicates

the confidence interval under the restriction of instrument exogeneity, i.e. α2 = 0. Figure (a) shows the result

after inverting the Ŝγ̂ test statistic with heteroskedastic errors. Figure (b) shows the result after inverting

the same test statistic but with homoskedastic errors.
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Table S1: Rejection Frequencies Ŝγ̂ test for Baseline model: truncation

n K ν
1/2
n 1 2 3 4 5 6 7 8 9 10

200 2 10−308 0.051 0.047 0.048 0.041 0.050 0.049 0.047 0.049 0.050 0.044

200 2 10−5 0.051 0.047 0.048 0.041 0.050 0.049 0.047 0.049 0.050 0.044

200 2 10−1 0.051 0.047 0.048 0.041 0.050 0.049 0.047 0.049 0.050 0.044

200 3 10−308 0.046 0.041 0.049 0.036 0.045 0.052 0.046 0.048 0.049 0.047

200 3 10−5 0.046 0.041 0.049 0.036 0.045 0.052 0.046 0.048 0.049 0.047

200 3 10−1 0.046 0.043 0.049 0.036 0.044 0.052 0.046 0.049 0.049 0.045

200 5 10−308 0.034 0.040 0.037 0.037 0.034 0.044 0.041 0.048 0.044 0.042

200 5 10−5 0.034 0.040 0.037 0.037 0.034 0.044 0.041 0.048 0.044 0.042

200 5 10−1 0.041 0.039 0.040 0.036 0.037 0.047 0.042 0.050 0.044 0.040

500 2 10−308 0.050 0.044 0.052 0.045 0.051 0.052 0.052 0.043 0.049 0.049

500 2 10−5 0.050 0.044 0.052 0.045 0.051 0.052 0.052 0.043 0.049 0.049

500 2 10−1 0.050 0.044 0.052 0.045 0.031 0.052 0.052 0.043 0.049 0.049

500 3 10−308 0.048 0.046 0.040 0.047 0.050 0.055 0.054 0.047 0.051 0.048

500 3 10−5 0.048 0.046 0.040 0.047 0.050 0.055 0.054 0.047 0.051 0.048

500 3 10−1 0.038 0.048 0.042 0.045 0.050 0.055 0.054 0.047 0.051 0.051

500 5 10−308 0.042 0.038 0.041 0.039 0.045 0.050 0.040 0.050 0.052 0.043

500 5 10−5 0.042 0.038 0.041 0.039 0.045 0.050 0.040 0.050 0.052 0.043

500 5 10−1 0.043 0.034 0.050 0.040 0.047 0.051 0.041 0.050 0.052 0.042

1000 2 10−308 0.056 0.048 0.045 0.047 0.050 0.053 0.049 0.049 0.045 0.050

1000 2 10−5 0.056 0.048 0.045 0.047 0.050 0.053 0.049 0.049 0.045 0.050

1000 2 10−1 0.010 0.048 0.041 0.047 0.050 0.053 0.049 0.049 0.045 0.050

1000 3 10−308 0.046 0.044 0.046 0.042 0.049 0.050 0.046 0.051 0.049 0.047

1000 3 10−5 0.046 0.040 0.046 0.042 0.049 0.050 0.046 0.051 0.049 0.047

1000 3 10−1 0.039 0.044 0.035 0.043 0.049 0.050 0.046 0.050 0.049 0.047

1000 5 10−308 0.044 0.042 0.043 0.038 0.045 0.050 0.043 0.050 0.049 0.046

1000 5 10−5 0.044 0.042 0.043 0.038 0.045 0.050 0.043 0.050 0.049 0.046

1000 5 10−1 0.043 0.050 0.044 0.036 0.050 0.053 0.042 0.053 0.049 0.047

Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the baseline model Yi = A−1εi. The test has nominal level a = 0.05. The columns denote

the sample size n, the dimension of the model K, the truncation rate ν
1/2
n and the choice for densities εik,

for k ≥ 2, where the numbers correspond to the different densities shown in Figure 3.
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Table S2: Rejection Frequencies Ŝγ̂ test for Heteroskedastic model

n K d 1 2 3 4 5 6 7 8 9 10

200 2 2 0.061 0.061 0.065 0.072 0.054 0.053 0.054 0.040 0.056 0.045

200 2 3 0.063 0.069 0.070 0.085 0.067 0.061 0.058 0.047 0.062 0.051

200 3 2 0.074 0.088 0.092 0.127 0.076 0.071 0.081 0.047 0.081 0.056

200 3 3 0.079 0.093 0.103 0.145 0.080 0.078 0.082 0.044 0.081 0.065

200 5 2 0.126 0.167 0.197 0.279 0.132 0.097 0.068 0.056 0.057 0.080

200 5 3 0.151 0.180 0.209 0.307 0.151 0.107 0.065 0.062 0.059 0.080

500 2 2 0.050 0.060 0.057 0.075 0.058 0.054 0.035 0.045 0.061 0.051

500 2 3 0.054 0.060 0.062 0.079 0.063 0.055 0.040 0.048 0.052 0.050

500 3 2 0.061 0.074 0.079 0.110 0.060 0.063 0.044 0.046 0.078 0.051

500 3 3 0.070 0.079 0.084 0.115 0.064 0.058 0.052 0.048 0.074 0.050

500 5 2 0.084 0.113 0.139 0.201 0.091 0.075 0.050 0.060 0.097 0.069

500 5 3 0.094 0.132 0.158 0.229 0.095 0.090 0.047 0.053 0.091 0.061

1000 2 2 0.059 0.060 0.057 0.066 0.053 0.050 0.026 0.040 0.057 0.045

1000 2 3 0.055 0.055 0.062 0.072 0.049 0.053 0.027 0.046 0.054 0.053

1000 3 2 0.056 0.062 0.069 0.087 0.056 0.056 0.030 0.047 0.072 0.050

1000 3 3 0.053 0.067 0.076 0.102 0.054 0.055 0.035 0.045 0.065 0.057

1000 5 2 0.071 0.092 0.101 0.150 0.074 0.051 0.048 0.042 0.051 0.051

1000 5 3 0.072 0.092 0.100 0.145 0.071 0.052 0.049 0.046 0.052 0.050

Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the heteroskedastic model Yi = A(α, σ,Xi)
−1εi. The test has nominal level a = 0.05. The

columns denote the sample size n, the dimension of the model K, the number explanatory variables d and

the choice for densities εik, for k ≥ 2, where the numbers correspond to the different densities shown in

Figure 3.
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