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Throughout this document, references to lemmas, equations etc. which start with a “S” are

references to this document. Those which consist of just a number refer to the main text.

S1 Main proofs

In this section we provide our main proofs. Regarding notation: = = y means that z is
defined to be y. The Lebesgue measure on R¥ is denoted by Mg with A := )\; and the
standard basis vectors in R¥ are e1,...,ex. We will make use of the empirical process
notation: Pf = [fdP, P,f = 23" f(V;) and G,f = /n(P, — P)f. For any two
sequence of probability measures (Q)nen and (P,)nen (where @, and P, are defined on a
common measurable space for each n € N), @, < P, indicates that (Q,)nen is contiguous
with respect to (P,)nen. @n <> P, indicates that both @, <P, and P, <@, hold, see van der
Vaart (1998, Section 6.2) for formal definitions. X L Y indicates that random vectors X
and Y are independent; X ~ Y indicates that they have the same distribution. a < b means
that a is bounded above by Cb for some constant C' € (0, 00); the constant C' may change

1'is the inverse vec operator, i.e. if

from line to line. cl X means the closure of X. vec™
b = vec(B) then B = vec™!(b). If S is a subset of an inner product space (V, (-, -)), S* is its
orthogonal complement, i.e. St ={z €V :(z, s) =0forall s € S}. If S C V is complete
(hence a Hilbert space) the orthogonal projection of z € V onto S is II(x|S).

In this document we use notation which explicitly records the dependency of objects on
0 = (v,n), including in cases where this was left implicit in the main text to prevent the
notation from becoming overly cumbersome. For instance, instead of Ag,, in the appendices

we write A(q, 0)ge or €} A(a, o).

S1.1 Score functions and local asymptotic normality

We first review a number of definitions and establish the semiparametric framework under-
lying the robust testing approach outlined in this paper.

Formally, the considered model (3) is the collection
Po={F:0€0}, (S1)

where each P, is the law of the data W, = (Yi,f(i) which lies in W C RE+4-1 The
parameter space © has the form © = A x B x H, where A C RF«, B C R¥s. H has the form
Z x Hszl JC, where Z is the space of density functions 7y and ¢ is the space of density
functions n, such that if X ~ 1y and e ~ 1, then Assumption 2 parts 1, 3, 4 and 5 hold.5!

S1Part 2 of Assumption 2 serves to simplify the form of the effective score function derived in Lemma S3



We write a typical element of © as § = («, 3,7), where 8 = (b, ¢’)" and it is understood
that « € A, f € B and n € H. In what follows we will let V,; :=Y; — BX; be the reduced
form error so that A(a, 0)Vy,; = €;. Each Py is absolutely continuous with respect to Lebesgue

measure on RE+T41 with (Lebesgue) density given by

K
po(W;) = [det A(a, 0)| | [ me(elAla, o) Vo) x mo(Xs) | (52)
k=1
and hence log-density
K ~
lo(W;) = log |det A(a, 0)| + Z log ni. (e, A(a, 0)Vp ;) + log no(X;) (S3)
k=1

We now define the scores of model (S1) following the definition in van der Vaart (2002).

Definition S1 (Cf. Definition 1.6 in van der Vaart, 2002). A differentiable path is a map
t — P, from a neighborhood of 0 € [0,00) to Pg such that for some measurable function

s: W —=R,
_ 1 2
as t — 0, where p; and p respectively denote the densities of P, and P relative to a o-finite

measure ji. The map t — /p; is the root density path and s is the score function of the
submodel {P, : t > 0} att = 0.

In words, a differentiable path is a one-dimensional parametric submodel {P; : ¢ > 0}
that is differentiable in quadratic mean at ¢t = 0 with score function s. If we let ¢ — P, range
over a collection of submodels, indexed by V), we will obtain a collection of score functions,
say s; for j € V.

The differentiable paths we consider have the following form. Let P, be the measure
corresponding to the density with form as in (S2) evaluated at 0, := (v + tg,n;) where the
k-th coordinate of 7 is 77,';’; = me(1 + thy) (k = 0,...,K), and (g,h) € RY x H, where
H =T[, Hy and each Hy, is defined following (6).

That such t — P, paths are indeed differentiable paths as in Definition S1 is established

in the following lemma.

Lemma S1. Suppose Assumptions 1 and 2 hold and that («, 3) is an interior point of AX B.
For each (g,h) € RE x H ==V, the map t — Py, is a differentiable path, with score function

and is not necessary to set up the model.



g'lo + ho + S0 i, where by == V. log s, ho(W) = ho(X) and hp(W) == hy.(e} Al 0)Vi).
(g has the form by = (¢! gle,bvéle,a)/f with

0,00
) K K
E@,a,l(W> = Z Z Clak] a, o Qbk ekA(Oé,U)‘/b)Q;A(Oé,U)%
k=1 j=1,7#k

K
+ZCzakk a,0)[dr(erAla, 0)Vo)ep A, o)V + 1]

K
Co.or(W Z Z rj(a, 0)or(eAla, o)Vy)es Ala, o) Vy
1 j=1,5#k
K

Z Gl 0)[gr(epAla, 0)Ve)ep Ala, o) Vg + 1],

K
k=

and

lop(W) == o (Al 0)Vy) €A, o) [ X' ® I].

k=1

Proof. Let g = (a, 0,s) € Rle x RE» x REe. The log density of W under 6; is then

‘get (W> = lnggz (W)
= log no(X) + log(1 + tho(X)) + log | det(A(a + ta, o + ts))]

K
+ Z log i, (€, A(a + ta,o + ts)(Y — BX — tvec ' (0)X))
k=1
K
+ Z log (1 + thi (e} A(a+ta,0 +ts)(Y — BX —tvec ' (0)X))) ,
k=1

By Lemma S10, t = /P, is continuously differentiable (pointwise) in a neighbourhood V
of 0. Moreover, if we define ¢(W) = %gg—?(mhzt and Q; = Py,q:(W)?, Q; is finite and
continuous in a neighbourhood of 0 by the uniformly integrability of {q;(W)? : t € V} along
with the pointwise continuity of ¢ — ¢,(1W), both of which follow from Lemma S10.

Hence, by Lemma 1.8 in van der Vaart (2002), t — P, is a differentiable path with score



function given by the derivative of £, (W) at t = 0, which is:
K La Lq
> or (€Al 0)Vo) € Y Doyl 0)Vy + Y artr(Aler,0) ' Dyy(ar, )
k=1 =1 =1

K Lo Lo
+3 (e A, 0)Va) eh > Doy, 0)Va+ Y sitr(A(er,0) ' Doy, 0)) (S5)
k=1 =1 =1

K K
— > tn (ep A, 0) Vo) e A, o) [X' @ Ixc]o + ho(X) + Y i (e} Ala, 0)Vp) |
k=1 k=1
with D, ,(o,0) = V., A(a,0) for any x € {o,0} and any [ in {1,...,L,} or {1,..., Ly}
as appropriate. We can re-write the two expressions involving the trace as follows: for any

x € {a, o} and appropriate index [ we have

K

> én(ehAla, o) Vo)erDya(a, 0)Vy + tr(A(e, o) ™ Dyy(ev, 0))
k=1

]~

or(eAla, o) Vo)e Day(a, o)A, o) e + tr(Dyy(a, o) A, 0) )

k=1

K

Z CY o gbk(ek (O"U)V@)G;‘A<O‘a0-)v9

Jj=1

?Mx

K
Z Crnla, 0)[or(eAla, o) Va)ep Ala, o)V + 1],

for (fy (e, 0) = e} Dpg(a,0)A(a,0)"e;. We may therefore write the derivative (S5) as
a/é&a + Qlée,b + S,ée,g + é@,n,h where

K K

lomn(W) = ho(X) + > b (e} Ala, 0)Vp) = ho(W) + > hy(W). (S6)

k=1 k=1

An elementary calculation reveals that g’ég = a’lﬁ(;’a + Q’ég,b + 3’@970.
]

As shown in Lemma S1, the score functions corresponding to n are égﬂ%h as defined in
(S6), for h ranging over H. These are collected in the set 7T, as defined in equation (6).
The next Lemma establishes a uniform local asymptotic normality result for (a localised

version of ) our model. For this we need to specify the notion of convergence on V := RL x H.



We equip the product space V with the norm®?

K
(g Il = g [ gl + 1oll3 g,y + D ekl agen }? -
k=1

Lemma S2. Suppose that Assumptions 1 and 2 hold and that (c, 5) is an interior point of
A x B. For (g,h) €V let

971(97 h) =0 + n_1/2(97 770h0> s 777KhK)'

For any convergent sequence (gn, hy,) — (g,h) (all in'V), define R, as

K

n B ,
Fn = logg %_% ; lglée(Wi) + kZ:O hi(W5) +%]E g ly(W;) + kZ:O ﬁk(Wz)] .
Then,
1. R, 20,
2. Under Py,
(A K | K 2
7 ; [g'ﬁe(Wi) + kz:; hk(Wz)] s N OE g lp(W;) + kz:; hk<Wz)] 7

8. The (product) measures F; and Py are mutually contiguous.

Proof. Part 2 follows from Lemma S1 in combination with the Lindenberg-Lévy central
limit theorem and Lemma 1.7 of van der Vaart (2002). For Part 1, we first note that in the
special case where (g,, h,) = (g,h) for all n € N, R, 29 0 follows by combining Lemma S1
with Lemma 1.9 in van der Vaart (2002). For the general case, note that by Lemma S11
(i) the functions (g, h) — \/iﬁ Sy [g/ég + Zszo ﬁk} (i.e. indexed by n) are equicontinuous
on compacts in Ly(Fp) and (ii) the functions (g,h) = Py, (ie. indexed by n) are

equicontinuous on compacts in the total variation metric. By (i), the i.i.d. assumption and

S2Bach hy, is as defined in the statement of Lemma S1.



Lemma 1.7 in van der Vaart (2002)

lim E

n—oo

K ~ 2 S7
— lmE| <g—gn>ea<m>+z(hkwi)—hnk(vvz))” o
=1 k=0
=0.

By (ii) one has lim,, ;o drv(Fp (i)’ Py ( g,h)) = 0 where dry indicates the total variation

metric. This implies (cf. Theorem 80.13 in Strasser (1985))

- pen(gn,hn)( 7/) - pgn(g,h)( 7/)
log [ Znlandtn 200 _ o T 2l ll2i o0 (1),
el U0 o Pe(Wi) e

Combine the preceding two displays with the previously demonstrated result for the special
case where (gn, hn) = (g,h) for all n € N to conclude. Part 3 then follows by combining
Parts 1 and 2 with Example 6.5 in van der Vaart (1998). O

S1.2 Orthogonality and the effective score

We now derive the effective score for «, i.e. ky. By definition, this is the orthogonal projection
of the score function for the parameter of interest, i.e. 5597&, on the orthocomplement (in
Lo(Py)) of the space spanned by the score functions for all nuisance parameters, i.e. lfg,g, 2975

and €97n7h.83 That is, collecting the scores for the nuisance parameters as
S = Span(ly,) + Span(ly,) + T C Lo(Pp),
where T is defined in (6) and collects the scores corresponding to 7, one has

SL) ,

Koy =11 <fe,a,z

foreachl=1,..., L,.
It is convenient to calculate this projection in two steps (see Bickel et al., 1998, p.

74). Firstly we calculate the effective score for the Euclidean parameters =, i.e. the or-
o o

0.0 Lo 0> .gﬁ)’ onto the orthocomplement of the space spanned by

thogonal projection of (

the score functions for the infinite dimensional parameter 7, i.e. 7+. We denote this by

S3The terminology “effective score” is taken from Choi, Hall and Schick (1996); much of the semiparametric
literature calls this object the “efficient score” (e.g. Bickel et al., 1998; van der Vaart, 1998).



lg = () Do [ ~’97b)’ = (0 ~/0,5)/’ i.e. for any = € {o,0,b} and [ in {1,... L.}

9,0’7 97a7
gH,x,l =1II <€9,z,l TJ_) . (88)
For the second step, we may partition
! T j oo f «
o = ( 000 w) and Iy = |0 20 (S9)
Iy s 1opp
with I == PQ[ZOZ;]. If igwgﬁ is nonsingular,> we can (orthogonally) project once more to
obtain the effective score function for a:>°
feo = g0 — je,aﬁjg{égge,ﬁ ; (510)

which has corresponding effective information matrix
ig = fg}aa — j@,aﬂj;éﬂfe,ﬁa . (Sll)

Lemma S3. Suppose Assumptions 1 and 2 hold. Then the components of by are as follows.

Forx=a orz=o,

K K
Lo o 1(W Z Z Clgf o, 0 ¢k(ekA(@ J)Vb)e Ala, o)V
=1 j=1,j#k
K
- Z rnlo, o) (Traer Ao, 0) Vg + Trar(epAla, o) Vy)),
=1

S4If I~97 s is singular, we may drop components from 597 g until the remaining components form a linearly
independent collection which span the same subspace of Lo(Py) as €9 g. The corresponding variance matrix
of this smaller vector will be non-singular and ¢y g can be replaced throughout by this smaller vector.

S5For any [ = 1,..., L, one has that
y o ; N
k0,0 =Lo.ay — €do.aply halos =11 (fe,mz {Span (59,3)} > .




with 1 in {1,..., Ly} or {1,..., Ly} (respectively); for x =b,

los(W) = =) duleAla, 0)Vo)epAla,0) (X' @ Ix] — E[(X' ® Ix)))
+ Y e Al OE[(X ® L)) (skach Al 0) Vo + qar(er Ala, 0)Vo));

where the expectations are taken under Py and

a0 e — 1 Ele})]
T — Mk (_2> , Sk = Mk <0> s fOT’ Mk = (E[ez] E[Eé] B 1> .

Proof. For each hy € Hy, define the corresponding hy as in the statement of Lemma S1 and
let H, collect all such l~1k formed with h, ranging over Hy,.5® By the definition of !79 in equation
(S8) and Theorem 4.11 in Rudin (1987) it suffices to show that each such component is (a)
in (Hy + -+ Hg)* and (b) fy, — lg. € cl(Ho + - - + Hg), the form of which is given in
Lemma S12.

Case 1: © = a,0. For (a) note that if j # k, then

E [0, 0)on(en)ejho(X)] = B[y, 0)on(en)ho(X)| Ele)] = 0
E G, (@, 0)on()eshum(em)] = B[ (, )] E [Bu(en)eshm(en)] = 0

where the last equality follows from independence and the fact that m must differ from one

of k, j. Additionally, by independence and our moment assumptions (i.e. Assumption 2)
E [(Cf"’k’j(a, o) Tka€x + Tk,gli<6k)]) ho()N()} = Q0 0)E [T 1€ + 7ok ()] E[ho(X)] = 0,
and again using independence and the definition of Hy,
E [¢1 (o, o) [Thaer + Trok(en)]hy(€5)] = ¢ (0, 0)E [(Tii€r + Trzr(er)) hy(e;)] = 0.

Since €, = €, A(, 0)Vp, these observations and the form of f4, establish (a). For (b), it

suffices to show that

fk(Ek) = ¢k(€k>€k +1-— Tk1€k — Tk,2l€<€k) € Hy.

86 That is, for each hy € Hy define ho: W — R acccording to ﬁO(W) = ho(f() and let Hy collect the

l:zo functions so formed. Similarly, for each hy € Hjy (K = 1,...,K), define hy : W — R according to
hi(W) := hi (e}, A(a,0)Vy) and let let Hy, collect the hy functions so formed.



That E[fx(ex)] = 0 and E[fi(ex)?] < oo follows immediately from Assumption 2. That
additionally E[fx(ex)ex] = E[fx(ex)r(ex)] = 0 is ensured by the choice of 7.
Case 2: x =b. For (a) let m(X) = A(a,0)(X' ® Ix) and p = E[m(X)]. Then,

E[éx(er)er(m(X) — p)ho(X)] = Elg(er)|Eler,(m(X) — p)ho(X)] =
E[gr(er)er (m(X) — p)hj(e;)] = Elgr(ex)hj(e;)Eler, (m(X) — )
Ele} 1t (Sk,1€k + Skok(€r)) ho(X)] = GQCME[%,lEk + §k,2/f(€k)]]E[ho(X)

for k # j by independence

Ele)pt (Sk1€x + sk2r(er)) hi(e)] = epuBlcrex + cror(er)E[h;(e;)] =0

whilst for k = j, the definition of Hj ensures that

Ele)pt (Ska€x + sk2r(er)) hiler)] = eppuB[ckenhn(er) + srar(er)hiler)] = 0.

Since ¢, = ¢, A(a,0)Vj, these observations and the form of 5, establish (a). For (b) it

suffices to show that

ar(ex) = (Prex) + shaer + shak(er)) (—eju) € Hy.

That E[gi(ex)] = 0 and E[gx(ex)?] < oo follows immediately from Assumption 2. That
additionally E[gx(ex)ex] = Elgr(ex)r(ex)] = 0 is ensured by the choice of . O

S1.3 Proof of Theorem 1

S1.3.1 Log density score estimation

As discussed just prior to Assumption 3, the log density score estimator in (11) may be
replaced by an alternative estimator, provided it satisfies some high level conditions. These

are given in the following assumption.

Assumption S1. Let v, be as in Assumption 3. We have estimators ng,n,'y such that for (a)
any sequence with elements 0,, = (ao, Bn,n) € O where (By)nen is a deterministic sequence
with /n||B, — Bl = O(1) and (b) any array (Z,i)neni<n with i.i.d. Tows and such that
EZ,; =0, sup,en EZEW < oo and Z,; L €y for each n,i, and k,

1~
E Z |:¢k,n,’yn (Ak:,'yn‘/en,i) - qbk(Ak,'yn‘/Hmi) Zn,i = OPQ"n (n_l/Q)a (812)
=1

10



1 (15 2
=3 ([9rmnon (Ar Vo) = 00(Arn, Vo )| Zus) = oy (02) (513)
=1
where Ay, = €} A(ao,0,), Vp, i =Y — vec (by) X;.

The following Lemma verifies that, under Assumptions 2 and 3, the log density score

estimator in (11) satisfies Assumption S1. Its proof is given in Section S6.

Lemma S4. Suppose Assumptions 2 and 3 hold. Then, gﬁk’nﬂ = ¢Ekn as defined in (11)
satisfies Assumption S1.

S1.3.2 Proof of Theorem 1

In order to prove Theorem 1, we first establish two results which give high level conditions
under which Theorem 1 holds. The proof of Theorem 1 then consists of verifying the required
high level conditions under our primitive assumptions. Let us first recall the definitions of
various objects which were introduced in Section 3.

We have that ¢, denotes the effective score for Euclidean parameter vector v = (o, f3),
evaluated at 6 (as defined in (S8) and derived in Lemma S3). The effective information
for 7 is denoted Iy == Pg[ggg/]. Given a v = («a, 3), these objects are estimated by !ﬁnﬁ =

énﬁ(Wl, ..., W,) and fnv L (Wi, ..., W,), respectively. Each of these objects can be

partitioned conformally with (a, §):

~ !7 o N gn ~ 1 o I o 2 jn aq j «
ge — ( ~9, > 7 gn"y — < 77 > ]’9 ( 9 9 B) , and ]’n;y — < R 777 77 B)
lop lny, Ipga Tops Lnya Inqypp

The effective score for a is Ky = gg,a — jg}aﬁj 0. é ngﬁ, with corresponding effective information
fg = jg,aa — jg,agjgﬁlﬁjg’ga.87 For a given ~, the estimator of kg is

/\

K"”?’y g 7’77056]71,')/ Bﬁgn Y B

The estimator of the effective information for «, Zy, is formed in two steps. Firstly, the
preliminary estimate Zm = fnmw — fnmaﬁf n_ i,ﬂﬁjnmﬁﬂ is formed by replacing population
quantities by their sample equivalents. Secondly, the regularized estimator Z, ., is formed as
n (15): let U, 7A7mU be the eigendecomposition of the initial estimator in,v‘ f\m7 is a
diagonal matrix with (z, i)th element 5\n,'y,i- Then the estimator is:

It = Uprhy (VAU

n)’y ”7 )

STHere it is assumed that Iy g4 is non-singular; cf. footnote S4.

11



1/2) /

where A,, (v

diagonal, i.e. the (i,7)-th element of f\n(y}/Q) is 1(Apqi > 1/,1/2). The rank estimator used is

~

Pny = rank(Z} ). Finally, the effective score statistic (for a given ) is given by

is a diagonal matrix with the vy *-truncated eigenvalues of fn,y on the main

A

Sn,'y =n (]P)n/%n;y)lit’T (Pn"%n,’y) ’

n?’y
where Z!1 is the Moore — Penrose psuedoinverse of Z},

Theorem S1. Suppose that for any deterministic sequence (én)neN in © with elements 0,, =
(e, Bn,m) such that \/n||B, — B|| = O(1) the following conditions hold:

1. The functions ggn satisfy

VP, [Z(;n - 29] +v/nly (Bno— 6) = opyp(1); (S14)

2. The estimators (., satisfy /nP, [lfn% - gén} =opn (1);

On,

3. The estimators I, satisfy ||In., — Iplls = opn (1/71/2) for a non-negative sequence

(Vn)nen with v, — 0;

where v, = (o, Bn), 0 = (a, 5,n) and Iy = Pg[éeég]. Moreover, suppose that for (gn,h,) —
(g9,h) (all in'V) and some o(g,h) € (0,00), under Py

~ “ 0 jg jgg
TP, 0y, Tog [ Pntontn) |, zr N , S15
( ’ 1} po —50(g.h) ) \g'Is o(g,h) (515)

where 0,(g,h) is as in Lemma S2. Suppose that initial estimators ﬂAn are available with
VallB. — Bl = Opp(1) and let B, be a discretised version of this which takes values in
G, = n"2CZ for some C € (0,00).5% Then, if 7, = (a, Bn) and r = rank Zy,

ViPrfins, = ViPafig +opy (1)~ N(0,Ty), and S,x ~ X% (S16)

under any P;' ) such that (g, hn) = (g,h) (all in'V) with g = (0, (b,s)")" € REe x RLs.

n(gnyhn

Additionally, under any Py - such that (gn, hn) — (g, h) (all in V),

pn
/ﬁ ~ On(gn,hn) r (817)

n,Yn

S8That is, Bn is the nearest element in G,, to Bn

12



Proof. Step 1: Let d,, == v/n(B, — B). By arguing along subsequences if necessary we may
assume without loss of generality that d, — d. Hence for ¢° = (0,d],)’ — (0,d) =: ¢°,
6, = 0n(95,0). By condition (S15) and Example 6.5 in van der Vaart (1998), P <> P and

so, given the assumed convergences in conditions 2 and 3, we have
VP, [fn,vn - gén} =opp(1) and  ||Lny, — Iolla = 0pp (13,7).

Step 2: We show that the convergences in the preceding display and equation (S14)
continue to hold if v, (and 6, = (v,,71)) is replaced by #, (and 6, = (3,,7)) as in the
statement of the theorem. Let v* = (o, 8*) and 0* = (v*,n) and define

Rui(8Y) = v/ [Zg* _ Eg} +/nly (50_ 5)

Rua(*) = VP, [éw _ 29*]

R,3(5%) = 1/;1/2 [IAWY* — f9:| )

For any ¢ > 0 there is an M such that Py(v/n||8, — || > M) < e. Moreover, whenever
VallBe — B|| < M then B, € GM = {p € G, : ||B — 8| < n/2M}. For fixed M, the
cardinality |GM| < oo of this set is bounded independently of n, say by GM. For any v > 0,

P ([Rui(B)ll > v) <e+ Y ({IIRBai(B)] > v} N By = B;)

BreGM

<et D (IRas(BII > v)

BreGM

< e+ GYR (| Rua(BY)Il > v),

where (3, € GM is the maximiser of 5* — PJ(||Rn.:(8%)|| > v). As B, € GM, 6, = (o, B, 1)
is a deterministic sequence with \/ﬁHﬁun — Bl = Opp(1). Thus, by equation (S14) and Step
1,

VP, [fén - 579} +/nly (Bno— ﬁ) = opp(1);
(S18)

13



Step 3: Combine the first two lines of (S18) to obtain

By the third line of (S18),

~ ~ _ P ~ ) ~
Ko = [I _I”ﬂ"’o‘ﬁ]nv ﬂ/ﬁ] — Ko = [I _]9,04,3]9 g’ﬁ

By (S15) and Example 6.5 in van der Vaart (1998), By (gnny <> g In combination with
the preceding two displays this gives

Gn(Qn hn)

By (S15) and Le Cam’s third Lemma (e.g. van der Vaart, 1998, Example 6.7),
\/ﬁpnfig = ]Cg\/ﬁpngg ~ ,CQZ, where Z ~ N(fgg, fg)

under any Py’ with (g, hn) — (g, h) (all in V). KoIpKly = T and with g = (0, (b, s)')’,

~ - 0
IC@[@Q = (Ig 0) ((b s)’) =0.
We conclude that

Fengn ~» N(0,Zy)  under Py, .. (S19)

For the final part of the proof, note that since any submatrix has a smaller operator norm
than the original matrix and the matrix inverse is Lipschitz continuous at a non-singular

matrix, the third line of (S18) implies that

||in,% - 191\2 = OPH"(V}E/Q)-
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Therefore, by Proposition 51 and B (gshm) TP Py,

T
Pen(gn yhn)

P’VL
- 6n(gn.hn) 7 .
A ISR I; and  Tny, ——— T,

n,Yn

which gives (S17). For the final part of (S16), combine the preceding display with the weak
convergence result in equation (S19) and Theorem 9.2.2 in Rao and Mitra (1971). O

Corollary 1. In the setting of Theorem S1, let c,, be the 1 —a quantile of the X%n distribution
for any a € (0,1) and

O = {(a0, S +d/V/a, (1 +h/Vn):d€ D*,h € H'},
where D* is a bounded subset of RY and H* is a compact subset of H.5° Then,

lim sup Py (Sn% > cn> <a,

n—oo 196@0,71
with inequality only if r = 0.

Proof. Set S = gny%, P = Tp % and ¢, = 1{5 > ¢, }. Let g, h be such that g = (0,d),
d e D*and h € H*. Smce Tn 5y (by Theorem S1), the events E,, = {r, = r} satisfy
Py E, — 1. Thus ¢, —> ¢, the 1 — a quantile of a x? random variable. We now split into

cases.
Case 1: v > 0. By Theorem S1

A

S, — ¢, ~ Z — ¢ under PGT;(g,h) as n — 0o,
with Z ~ x2. Since this is a continuous distribution

A Fo (g )P = 0
Case 2: r =0. On E,, 7, = 0 = fn% =0= S, =0 = v, = 0, whilst
By (g En — 1 by the contiguity which follows from (S15) and Example 6.5 in van der Vaart
(1998). Thus

lim Py, nyen = 0.

n—oo
These two limiting statements continue to hold under any convergent sequence (g, h,) —
(g9,h), with each g, = (0,d,) for d, € D* and h, € H* and (g,h) € clD* x H*, as

S9See the discussion immediately preceding Lemma S2 for the norm used on H.
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follows directly from drv (B, 1.y, Py (gn)) — 0 as shown in Lemma S11. Considering such

convergent sequences is sufficient since each (g,, h,) € {0} xcl D*x H*, which is compact. [
We next prove our main Theorem by verifying the conditions of Corollary 1.

Proof of Theorem 1. It suffices to show the conditions of Corollary 1 hold. There are 4
conditions which we verify in order: items 1, 2, 3 & equation (S15) of the statement of
Theorem S1.

Condition 1: Let d, = /n(B8, — 8) and g, = (0,d,). Then 0, = 0,.(gn,0). By arguing
along subsequences if necessary we may assume without loss of generality that d, — d. By
Theorem 12.14 in Rudin (1991),

Given this, condition 1 follows by Proposition A.10 in van der Vaart (1988), the hypotheses
of which are verified by Lemmas S1, S13 and S14.

Condition 2: This follows by repeated addition and subtraction along with the con-
vergence in probability and stochastic boundedness results of Lemma S15, Lemma S4,

L and

the moment conditions in Assumption 2 and the boundedness of A(«a,0,), A(a,0,)”
D, (o, 0,) (for x € {a,0}), which follows as each of these functions is continuous by As-
sumption 1 and (o, ),en is a convergent sequence.

Condition 3: Let L4, = L3 Eén%ﬂ. By repeated addition and subtraction along

with the results of Lemmas 5S4, S17 and S18,

I~y 5
_Z ||€én _Enﬂ’n 2
n =1

= OPGZ:L (Vn)
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This and Lemma S13 imply that

~ v

1 A A ~\'/ A ~ -
In,’yn - In,én 9 = ﬁ Z 6”7771 (én:')’n - én> + ( nyn én) én
=1 2
1< . N 1 /- -
0 3 IR D T GRATA
i= i=

[\
VR
S|

iNg
[\~]
~_
=
[\
VR
S|
M) =
=

3

|
QDNI

[\&]
N~
[\

i=1 i
" 1/2 n 1/2
1 R ~ 2 1 ~ o2
+ (52 bnon = 4, ) (gz t, )
i=1 i=1

e OPgLn (I/'rlL/Z)

To complete the demonstration of Condition 3, we show that the right hand side terms in

[,

n,0n

Il <|

B 05,55, = B, |03, ]| + |Pa |a.05,) = Po [G6F0) |

are respectively opy (1/71/ *) and O(V%/ %). Under Py, each epA(a, 0,)V; ; has the same law as
eri (k=1,..., K), whilst the same is true for A(«a, 0)Vp,; under P;'. This, \/n||3,—/5| = O(1)
and the local Lipschitz continuity of each 8 — (;,(a,0) and 8 = A(a, o) yield that the
rightmost term is O(n~1/2) = o(vs/?). For the first term on the right hand side we note that

SUP,en Pén||l79~n£~é7 |2+%/2 < oo by Lemma S13. This is sufficient as either 1 + /4 > p = 2,
in which case P, [Eénégn i [z@;ﬂégnﬂ = Opy (n71/?) = opgn@;/?) by Lindeberg’s CLT or
p=1+0/4 € (1,2) whence P, [Zgﬂggn — P [Zgn%nﬂ = Opgn(n(l—p)/p) — opy (%) by a

Marcinkiewicz — Zygmund style weak law of large numbers for triangular arrays.5!

Condition 4: By Lemma S1, Lemma 1.7 of van der Vaart (2002) and Theorem 1.2.7 of
Conway (1985), the random vector

(Zg(Wi), glo(Wi)+Y ﬁk(Wz‘))

k=0

is zero mean and has a finite variance matrix under F,. By the definition of /4 as an

S10A formal statemement is as follows: Let (Xn,i)nen,1<i<n be a triangular array of zero-mean random
variables, i.i.d. along rows. Let S, = >." | X, ;. If sup,cyE| X, 1P < oo for p € (1,2), then S, /n/?
converges to zero in probability as n — oco. For the case of an i.i.d. sequence (in place of a triangular array)
this result is recorded as, for example, Theorem 6.3.2 of Gut (2005); the proof given there extends essentially
verbatim to the case considered here.
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orthogonal projection and Theorem 12.14 in Rudin (1991), one has

~ . K ~

Ly <g/fg + Z hk>
k=0

Therefore, by the central limit theorem, under Py

- K 0 Iy 1:99
w45

Py =Dy [579%] g = Iug.

where
K 2
o(g,h) = Py |g'ly +th] :
k=0
Combination of this with Lemma S2 and equation (S7) verifies (S15). O

S2 A more general model

S2.1 Model setup, ULAN and the effective score

In this section we extend the approach in the main paper to the more general model:
K:B(b,Xi)—i-A(Oé,U,Xi)ilEi y 7::1,...7717 <822)

under Assumptions S2 and S3 below, which are weakened versions of Assumptions 1 and 2
respectively. This version of the model allows (a) (parametric) conditional heteroskedasticity
in the reduced form error A(a, o, X;)"'e; and (b) the conditional mean E[Y;|X;] = B(b, X;)

to be a non-linear function of X, known up to a finite dimensional parameter b.
Assumption S2. Suppose that for all (o, 5) € A X B,

1. A(a,0,X) is non-singular for all X ;

2. (a,0) — Ala,0,X) and b B(b, X) are continuously differentiable for all X.

Define the partial derivative matrices Dy (o, 0,X) = 0A(a,0,X)/0qy, forl = 1,...,L,
Dyi(a,0,X) = 0A(a,0,X) /00y, forl =1,..., L, and Dy, == 0B(b, X)/0Ob, forl =1,..., Ly.
Further, for eachk,j € {1,..., K}, 1 €{1,..., Lo} andm € {1,..., L, } define (f} ;(a,0,X) =
e Do, 0, X)A(o, 0, X)Yej and (7, 5 = € Dom(c, 0, X)A(o, 0, X) " lej. With this nota-
tion, for all (o, 8) € Ax B
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3. (a,0) = (4 (a0, X) and (o, 0) — (7, . (o, 0, X) are locally Lipschitz continuous for
all j,k,l,m considered and all X .

4. | A(a, 0, X)||, | A(v, 0, X) 7Y, | Davi(ev, oy X)|| and || Dy (v, o, X)|| are locally (in (o, o))
bounded.

Assumption S3. Fore; = (€1,...,€.x)" in model (522), each component €;) has a con-
tinuously differentiable root density (with respect to Lebesque measure on R). We write
the density as m with log density score ¢p(x) = Olognk(x)/0x. We assume that for all
kE=1,...,K and some § > 0

1. Eeiy, =0, Eefj =1, Eefjg‘s < o0, E(¢},) — 1> E(e,)?, and Er ™ (e;1) < 00;
2. Ed(eir) =0, Edplein)eix = —1, Edr(ein)er, = 0 and Egp(eip)el ), = —3;
3. €1 1s independent of €;; for all k # 1;

4. no € Z is a density function (with respect to Lebesque measure on R*Y) such that if
X; ~ 10, B[||Dya(b+ 0, X:)||*+?] < Dyy(b) < oo for all b € B, all ¢ in a neighbourhood
of zero and alll =1,..., Ly;

5. € and )N(, are independent.

Remark 1. If A(a,0,X) = A(a,0) and B(b, X) = vec ' (b) X then Assumptions S2 and S3

are implied by Assumptions 1 and 2 respectively.

Formally, the considered model is the collection
Po={Fy:0€0}, (523)

where each P is the law of the data W, = (Yi,f(i) which lies in W C RE+4-1 The
parameter space © has the form © = A x B x H, where A C Rf, B ¢ RY. H has the
form 2 x Hszl JC, where 2 is the space of density functions ny and 7 is the space of
density functions 7, such that if X ~ 1y and €, ~ 1, then Assumption S3 parts 1, 3, 4 and
5 hold.5*!,

We write a typical element of © as 6 = («, 3,7), where 8 = (b, 0’)" and it is understood
that « € A, p € B and n € H. In what follows we will let Vp, = Y; — B(b, X;) be

S11Part 2 of Assumption S3 serves to simplify the form of the effective score function derived in Lemma S7
and is not necessary to set up the model.
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the reduced form error so that A(«, o, X;)Vp,; = €;. Each Py is absolutely continuous with

respect to Lebesgue measure on RET4-1 with (Lebesgue) density given by

K
po(Wi) = | det A(a, o, X;)| T [ m (€ Aler, 0, Xi) Vo) x mo(X5) (S24)
k=1

and hence log-density

K
lo(W) = log| det A(a, 0, X;)| + Y log ni(ef A(cr, o, X;)Vy,:) + log no(X;) - (S25)
k=1

The differentiable paths we consider have the following form.

Let H = Hy x [[1—, Hy, where each Hy is as defined following (6). Given a direction
(9,h) € RE x H, the measures P, are those corresponding to the density with form as in
(S24) evaluated at 6; == (v + tg,n:) where the k-th coordinate of 7, is nZ’; = (1 + thy)
(k=0,...,K).

We have the following analogues of Lemmas S1, S2 and S3.

Lemma S5. Suppose Assumptions S2 and S8 hold and that (o, B) is an interior point of
A x B. For each (g,h) € RL x H := V, the map t — Py, is a differentiable path, with
score function ¢'ly + ho + Zszl hy., where {y = V., log py, EO(W) = ho(f() and ﬁk(W) =
hi(e, A, 0, X)Vy). Uy has the form by = (lfg}’a,lf’o’b,é’e’a)’, with

K K
lpadW) =" " ¢ i(0,0, X) (Al 0, X)Vo)es A, 0, X)Vy

k=1 j=1,j#k

K
+ 3 Gonlas o Xor(erAla, 0, X)Vo)er Al 0, X)V + 1J;
k=1

K
Copa(W) = — Z ok (e Ala, 0, X)Vy) €, Ao, 0, X) Dy (b, X);

k=1

' K K

lo.o1(W) ::Z Z iy, 0, X)op(er Ala, 0, X)Vy)es Ao, 0, X )V
k=1 j=1,j£k
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Proof. Let g = (a, 0,5) € RFe x Rl x RE2. The log density of W under 6; is then

ﬁgt(W) = logpgt(W)
= log no(X) + log(1 4 tho(X)) + log | det(A(a + ta, o + ts, X))|

K
+ Y log i (ehA(a +ta, o+ ts, X)(Y — B(b+to, X))
k=1
K
+ ) log (1+ thy (Al + ta, o +ts, X)(Y — B(b+ to, X)))).
k=1

By Lemma S10, t — ,/pg, is continuously differentiable (pointwise) in a neighbourhood V

of 0. Moreover, if we define ¢,(W) = %?(W)L:t and Q; = Py,q;(W)?, Q; is finite and

continuous in a neighbourhood of 0 by the uniformly integrability of {q;(W)? : t € V} along
with the pointwise continuity of ¢ — ¢,(W), both of which follow from Lemma S10.

La ch
> (epAle, 0, X)Vo) € Y aDay(c, 0, X)Vy + > artr(A(e, 0, X) ' Day(e, 0, X))

K Lo Lo
+3 (e Ao, 0, X)Vg) €, Y siDog(0,0, X)Vo+ Y sytr(Ala, 0, X) ™ Doy, 0, X))

K Ly

=) b (€ A(a, 0, X)Vg) €A, 0,X) >~ oDy (b, X)
k=1 =1
~ K
+ho(X) + ) b (e Ala, 0, X)Vp) .
k=1

(526)
We can re-write the two expressions involving the trace as follows: for any = € {«, 0} and

appropriate index [ we have

K

> on(epAla, 0, X)Vy)e Dy, 0, X)Vy + tr(A(e, 0, X) ™' Doy, 0, X))
k=1

[
Mw

wler Ala, o, X)Vy)e, Dy (o, 0, X)A(r, 0, X) e + tr(Dy (o, 0, X) A, 0, X) 71
k Kz, :

k=1
K K

= Z Z (a, 0, X) (e A, o, X)Va)e Ao, 0, X)Vp
k=1 j=1,j#

K
Z Crr(a, 0, X)[or(epAla, o0, X)Vy)ep Ala, 0, X )V + 1],
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for 7y ;(a,0,X) = €Dy, 0, X)A(a, 0, X)7te;. We may therefore write the derivative
(526) as a'lp o + 0'lop + 505 + Lo,y n Where

K K
bomn = ho(X) + ) hi (A, 0, X)Vp) = ho(W) + > hys(W).
k=1 k=1
An elementary calculation reveals that ¢'fy = a/%’a + Q,ég,b +5 5970. O

Lemma S6. Suppose that Assumptions S2 and S3 hold and that (a, B) is an interior point
of Ax B. For (g,h) €V let

en(gv h’) =0 + n71/2(ga Uoho’ s ;TIKhK)~

For any convergent sequence (gn,hyn) — (g,h) (all in'V), define R, as

K K 2
Po.,.( nhn 1 . -
IOgH (9 Z [ ’f@ Z hy (Wl) +§E g%@(W,‘) + Z hk(VVz)] .
= k=0 k=0
Then,
1. R, 20,
2. Under Py,
1 & : LS ' K 2
n Z [g’éo(Wi) + Z hk(Wl)] ~ N O,E |¢le(W;) + Z hk(Wl)] 7
=1 k=0 =0

3. The (product) measures P and Pj' are mutually contiguous.

Proof. The proof proceeds verbatim as that of Lemma S2 on replacing Lemma S1 with

Lemma S5. O

Lemma S7. Suppose Assumptions S2 and S3 hold. Then the components Ofgg are as follows.
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Forx=a orz=o,

_ K
g@,xl Z

k=1j

M~

G, 0, X)op(epAla, 0, X)Vy)es Ao, 0, X )V

Il
-

JF#k

Mw

+ (Q,k,k(aa g, X) —E [gl:fk,k(av g, X)}) [qbk(e;cA(O" g, X)‘/@)BZA(C% g, X)% +

B
Il

1

[M] =

+ E [ka,k(a, o, X)} (k1€ Ala, o, X)Vy + 1 2k(e, Ao, 0, X)Vh)),

£
Il
—_

with 1 in {1,..., Ly} or {1,..., Ly} (respectively); for 1 =1,..., Ly,

ZQJ,J(W) = — Z qbk(e;gA(oz, g, )()‘@)6;C (A(Oé, g, X)Db?l(b, X) — E[A(a, g, X)Db’l(b, X)])
k=1

- Z e E[A(av, 0, X) Dy (b, X)|(ska€,Ala, 0, X )V + spok(eA(a, 0, X)V));

where the expectations are taken under Py and

I ! . 1 Ele}]

Proof. For each hy € Hj, define the corresponding iLk as in the statement of Lemma S5
and let H,, collect all such hy, formed with hy ranging over Hj.5'2 By the definition of /4 in
equation (S8) and Theorem 4.11 in Rudin (1987) it suffices to show that each such component
is (a) in (Ho+---+ Hg)™ and (b) ly, — Ly € cl(Hy + - - + Hg), the form of which is given
in Lemma S12.

Case 1: x = a or x = 0. For (a) note that if j # k, then

E Gy (0, X)u(e)esho(X)| = B[ ( 0, X)u()ho(X)| Eles] = 0
E [Clgfk,j(a’ g, X)st(ek)Ejhm(em)} =E [glgfk:,j (aa g, X)} E [¢k(€k)€]hm(€m)] =0

where the last equality follows from independence and the fact that m must differ from
one of k,j. Additionally, writing ffk](X) = () (0, X) = E[(} ;(a,0, X)] and ffkj =

S12 That is, for each hg € Hy define hg : W — R acccording to ho(W) = h0~()~() and let Hy collect the

ho functions so formed. Similarly, for each hy € Hjy (K = 1,...,K), define hy : W — R according to
hi, (W) = hi (e}, A(a, 0, X)Vp) and let let Hj, collect the hy, functions so formed.
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E[¢7, ;(c, 0, X)], by independence and our moment assumptions (i.e. Assumption S3)

E | (G (l0r(er)er + 1] + Gy lriaen + miam(en)] ) ho(X)]
=K [5fk,j(X)ho(X) E [pr(er)er + 1] + G B [Thaer + Tozk(er)] Elho(X)]
=0,

and again using independence and the definition of Hy,

E [ (Gy () dn(en)en + 1) + G ylrmner + mian(en)]) hs(es)]
=K [Eﬁk,j(X)} E [(on(en)en + 1)hy(e;)] + o ;B [(Thaen + Tiar(er)) hyle;)]
=0.

Since ¢, = ¢}, A(a, 0, X)Vp, these observations and the form of /. establish (a). For (b), it

suffices to show that

fk(Ek) = ¢k(€k)€k +1— Tk1€k — Tk,glﬁ(ﬁk) € Hk

That E[fx(er)] = 0 and E[fi(e)?] < oo follows immediately from Assumption S3. That
additionally E[fx(ex)ex] = E[fx(ex)r(ex)] = 0 is ensured by the choice of 7.
Case 2: x =b. For (a) let m(X) = A(a, 0, X)Dyp; (b, X) and p = E[m(X)]. Then,

E[ok (ex) el (m(X) — p)ho(X)] = Elgx(ex)Elel, (m(X) — p)ho(X)] =
Elp(ex)er(m(X) — p)hj(e;)] = Elgr(er) hy(€)]E[e},(m(X) — p)
E[e;c,u (Sk,1€k + Skok(€r)) ho(X)] = G;ME[%,lEk + §k,2/€(€k)]]E[ho(X)

for k # j by independence
Elewn (Sken + cuari(en)) hile;)] = eppllcpi€n + cuari(en)]E[h;(€;)] = 0
whilst for k = j, the definition of Hj ensures that

Ele)t (Sk1€x + Sk2r(er)) hi(er)] = eppuB[ckenhn(er) + skar(er)huler)] = 0.

Since €, = €} A(, 7, X)Vp, these observations and the form of /5, establish (a). For (b) it

24



suffices to show that

Qi (ex) = (r(€r) + k1€ + Sk ok(er)) (—epp) € Hy.

That E[g(ex)] = 0 and E[gx(ex)?] < oo follows immediately from Assumption S3. That
additionally E[gx(ex)er] = Elgr(ex)r(ex)] = 0 is ensured by the choice of . O

S2.2 Log density score estimation

We work with a high level condition analagous to Assumption S1, adapted to the more

general setting of equation (S22).

Assumption S4. Let v, be as in Assumption 3. We have estimators Cgknw such that for (a)
any sequence with elements 0,, = (ao, Bn,n) € O where (By)nen s a deterministic sequence
with /n||Bn — Bl = O(1) and (b) any array (Z,i)neni<n With i.i.d. rows and such that
EZ,; =0, sup,yEZ}, < co and Z,; L €y, for each n,i, and k,

%Z [ék,n,%(Ak,%iVami) - Qbk(Ak,'yn,i‘/Hn,i)} Zni = opp. (n=13), (527)
%Z ([ék,nﬁn (Akfyn,iven,i) - Qﬁk(Ak,%,iVGn,i)} Zn,i>2 = Oopp. (Vn) (828)
=1

where Ay, i = e A(ag, 00, Xi), Vo, =Y — B(bn, Xi).

We additionally impose the following condition, which is necessary in this more general

setup, due to the term
K
Z Cl k, k «, 0, X [Cﬁk,k(av g, X)}) [¢k(e;cA(a7 g, X)‘/@>€2A<a> g, X)‘/@ + 1] )
k=1

which appears in gy, for z € {o, 0} when A(a, o, X) depends on X.513

Assumption S5. In the context of Assumption S4, additionally

%Z ([ngn%(z‘lkw‘/bnz) - ¢k(14k,%,¢ven,¢)} Ak,wn,z"/@n,z)z = opp (V). (529)
=1

Lemmas S8 and S9 below demonstrate that the estimator defined in (11) satisfies the
high-level conditions in Assumptions S4 and S5 provided Assumption S3 holds along with

S13Compare the forms of the effective scores given in Lemmas S3 and S7.
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Assumption 3 and some additional conditions given in the statement of Lemma S9. The

proofs of these Lemmas are given in Section S6 below.

Lemma S8. Suppose Assumptions S3 and 3 hold. Then, gzgkmﬁ as defined in (11) satisfies
Assumption S4.

Lemma S9. Suppose Assumptions S3 and 3 hold. Additionally suppose that for some My, >

max{|=f,,|, =]}
1. (5,:‘:’1Ak7nE [efkl{\elﬂ > My} = o(vn);
2. E [eiklﬂei,kl > l\/lkn}] = o(V2);
8. MR 6001208, = o(v).
Then, ngﬂw as defined in (11) satisfies Assumption S5.

Remark 2. For o < p where E|e|? < oo, one has
Ellex|®1{|ex| > My }] = E [|6k|p|ek|9_”1{]ek| > Mk,n}] < E|€k|p|\/|z’—np7

and thus the speed at which My, is required to increase to satisfy conditions 1, 2 in Lemma

S9 decreases with the number of finite moments of €.

S2.3 The test and its asymptotic properties

Since fy has a slightly different form in the setting considered in this section (compared to
that considered in the main text; compare Lemmas S3 and S7), we amend our estimator é,w

accordingly. First let 73, , and ¢, be given by

X 0 . 1 . 1 — 1 (AgqyiVs)?
7’; oy = M—l ’ gc I M—l 7 M = — V5tV ]
o ki (—2) oy Ry (O) BT Z ((Ak;y,iv%i)s (Ak,y,ivfy,z‘yl —1

=1
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The estimators for the components corresponding to o and o are:

K
Z Cﬁk,j,'y,i¢k7ny’7 (Aky’Y»lVY:Z)AJKYﬂV%Z

>
[M] =

n,y,a,l (VVZ> =

=
Il
I

—

1y

K
) (ki — k) <¢k,n,w(Akmivv,i)AkmiV%i + 1)

K

+ Z 71(?]@7]@777,77 (%k,n,'y,lAk,'y,iVy,i + 72k,n,'y,2/§(Ak,'y,iV'y,i)) ;
K K , (S30)
lnrrd W) = > siyi®hne (A iVy i) Ay Vi

k=1 j=1,j#k

K
+ Z (Clakkm - Clgkkn'y) (¢k,n,7(Akmivv,i)AkmiV%i + 1)

e
Il
—

K
+ Z _gk,k,n,fy (%k,n,"/,lAk,’y,i‘/:y,i + 72k,n,’y,2/€(Ak,'y,iv'y,i)> 3

: a o e 1 n «a ! — —
With Gy i 7= Gl (60 05 Xy Gl jiny = 3 20im1 Sk Ak = Al 0, X3), Vi = Vo =
Y, — BX;, X, = % »  X;. For the components corresponding to b,

K n
A N 1
lns(Wi) = = bt (AryiVia) (Ami(X{ ®Ik) —— D Akni(X @ [K)]>

i=1

1
K 1 n
+ Z (E Z [Ak,'y,i (Xz/ Y IK)]) (fk,n,'y,lAk,'y,iV'y,i + élc,n,'y,Q"i (Ak,'y,ivfy,i)) .

k=1 i=1
(S31)
The estimator ]A,m is given by

Remark 3. If A(a,0,X) = A(a,0) and B(b,X) = vec ()X (as considered in the main

text), the estimators given in (S30) and (S31) are numerically identical to those in (9).

S, is then defined as in (14) and we have the following Theorem (cf. Theorem 1), the

proof of which is analogous to that of Theorem 1.

Theorem S2. Suppose that Assumptions S2, S3, S4 and S5 hold and suppose that 5 is
an interior point of B. Let r, = rank(i%) and denote by c, the 1 — a quantile of the X%n
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distribution, for any a € (0,1). Then

limsup sup PQ(S’:Y > ¢,) < a,

n—oo  0€Oq

with inequality only if rank(Zy,) = 0 where 8y = (g, 5,7).

Proof. 1t suffices to show the conditions of Corollary 1 hold. There are 5 conditions which
we verify in order: items 1, 2, 3 & equation (S15) of the statement of Theorem S1.

Condition 1: This follows verbatim as the demonstration of Condition 1 in the proof of
Theorem 1 on replacing Lemma S1 with Lemma S5.

Condition 2: This follows by repeated addition and subtraction along with the conver-
gence in probability and stochastic boundedness results of Lemma S15, the moment condi-
tions in Assumption S3 and the local boundedness given by Assumption S2 Part 4.

Condition 3: This follows verbatim as the demonstration of Condition 3 in the proof
of Theorem 1 on replacing “the local Lipschitz continuity of each 8 — Cﬁjyk(a, o) and § —
A(a, 0)” with “the local Lipschitz continuity of each 8 +— (f'; ; (o, 0, X) and 8+ A(a, 0, X)”
and removing the reference to Lemma S4.5'

Condition 4: This follows verbatim as the demonstration of Condition 4 in the proof of

Theorem 1 on replacing Lemmas S1 and S2 with Lemmas S5 and S6.
O

S3 Supporting results for the main Theorems

The following supporting results apply to the model introduced in Section S2. The model
considered in the main text is a special case of this model with A(«a, 0, X) = A(a,0) and
B(b, X) = vec™}(b) X, for which Assumptions 1, 2 and S1 imply S2, S3 and S4 respectively.
In consequence the results in this section apply a fortiori to the case considered in the main

text.

Lemma S10. Suppose that Assumptions S2 and S3 hold and that («, 3) is an interior point
of Ax B. Let p(g,h) = (9,n0h0, ..., NxhK). Then

1.t = \/Dostp(gn) (W) is (pointwise) continuously differentiable in a neighbourhood U C

[0, 00) of zero.S1?

. Olo w
Moreover, if we define qg,(g,n)u(w) = m%—f(g”‘)()h:u, then

Sl emmas S8 and S9 are not necessary here since the high level Assumptions S4 and S5 are directly
assumed.
SISTf O + tp(g, h) € © for all t € [0, 1], U may be taken to include [0, 1].
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2. {qo,(gn)u(W)? 1 u € V} is uniformly Pyyup(gn) — tntegrable for some neighbourhood of
zeroV C U.

Proof. For all sufficiently small ¢, 0 + tp(g,h) € ©; in such an interval, the continuous
differentiability follows directly from Assumptions S2 and S3 along with the definition of H.
Under Pyiue(g.h): 0,(g,n),u(W) has the same law as

L EK: 6k + Uhk; Ek)ek[Dl u%—i—ugp(g h) + D2 u]
“ 1 + Uho =1 1+ uhk(ek)
. (S32)
+tr(A(a + ua, o +us, X)'Dy1y) + Z Ok (€r)€,[D1,uVorup(g.n) + Daul-
k=1
where
Lo Lo
Dy, = Z a Do (o +ua, o + us, X) + Z $1Dg (a0 + ua, o + us, X)
=1 =1
and
Ly

Dy = A(a + ua, 0 + us, X) Z 01Dy (b + uo, X).
=1

The definition of H ensures that for all sufficiently small u (i.e. u € V), the denominators
1 + uho(X) and 1 4 uhy(e;) are bounded, as are ho(X), hy(ep) and uh)(e;). Assumption
S2 ensures the same is true of Dy, the trace term, A(«a + ta,o + ts, X) and its inverse.
These bounds, along with the finite moments given by Assumption S3 allow the application
of Jensen’s and Holder’s inequalties to obtain that sup,cy E|Z,]|*7%/? < oo, implying the

claimed uniform integrability. [

Lemma S11. Suppose that Assumptions S2 and S3 hold and let V = RY x H be equipped

with the norm>'®

g, WII == \ lgll? +Z hellZ,r, -

Then, the functions (g,h) \/%;Z?:l gl + S0, } (i.e. indexed by n) are equicon-
tinuous on compacts in Ly(Py) and the functions (g, h) By (om (i-e. indezed by n) are

equicontinuous on compacts in the total variation metric.

Proof. For any (g,h), (¢%,h*) € V, by the fact the observations are i.i.d. and any h € H is

516 Each izk is as defined in the statement of Lemma S5.
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mean zero, as is £y,

2 2

= (0" = 9)'ts + Y _ (R — hu)

k=0

23 - avie 0 - )

Lao(Pp) Lo (Pp)

Therefore, left hand side in the display above can be made arbitrarily small, uniformly in
n, by taking ||(¢g*, h*) — (g, h)|| sufficiently small and hence the first claim holds. For the
second claim we note that each (g, h) — Pj (,) 18 continuous by the pointwise continuity of
the densities and Scheffé’s Lemma. Then, let K C V = R* x H be compact. We will now
show that for any convergent sequence (gn, hn) — (9,h) in K, drv(Ey. 1y Forgmy) — 0
as n — 00.5'7 For this, by Lemma S21 and the triangle inequality, it is sufficient to show

that .
Y
log On (gn,hn)

pan (gn>h)

pn
lOg On(gn,h) —
p@n(g,h)

P5n<gn,h>(1)’ 0P§n<g,h>(1)' (533)

For these we first note that since hy is bounded,

2

[

— [ thasla) = (o) m) 1+ ()i

La2(Pg,, (g 1))

(934)
< e = Pl Loppy + g — Pl Loopy 1P| oo o2y / /70

Next introduce the notation:5'8

y e A0 (gn 1), X)Vo, (gun)i = A0 (Gns hn), X)Von(gup)a k=1, K
kn,g ~— - .

Equation (S34) implies that (ﬁk,n)neN is uniformly square Py (gmih) integrable, and hence the

Lindeberg condition holds for hy,(ugn:)/+/n. In particular, under P; (gmih)’

n

lim iE Mumk (i) > 6/}
neyoo — n ,n ,n,

1 n
= lim — Y E [P (k)1 { |k ()] > 63/ }]
=1

n—oo 1

= lim E [hk,n(uk,n,i)Ql {|hk,n(uk,n,i)| > 5\/5}}

n—oo

:07

S17That this convergence holds for any convergent sequence in a compact subset K is equivalent to equicon-
tinuity on K, given the continuity of (g, h) — Py (9.1) already noted.
S184(0,X) = Aa, 0, X).
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for any § > 0. This implies uniform asymptotic negligability (e.g. Gut, 2005, Remark 7.2.4):

h n n,i Pnn gn;
maxe Len(Uena)| Bron (S35)

1<i<n NLD

Then, to prove the first claim in (S33) observe

log ——— p9 (g0l) Z Z log(1 + hppn(Usn z)/\/_) log(1 + hk(uk’"’i)/\/ﬁ)’

Db, (g 1) =1

hence it suffices to show that each
= 9n(9n h)
lng = Y _10g(1+ g (up i) /1) = 10g(L + hi(ugn)/v/n) =25 0.
t=1
Let € € (0,1) be fixed and define

B = { g IV < 2

Since hy, is bounded, Py o tn = 15 Byl iy En = 1 follows from equation S35. Hence
Pg;(gn h)Fn NE, — 1. On E, N F, we can perform a two-term Taylor expansion of log(1 + x)

to obtain

log (1+hpn(ukni)/vn) —log(1 + hy(Urni)/Vn)
_ P (Wkni) lhkn(uknz)z Ty (ugn,i) n lhk<uknz)2
vn 2 n vn 2 n

where |R(z)| < |z|?. Tt follows that

n

11
L, k= Z hk n Uk n, 2 hk(uknz) - 5; Z[hkn<uknz)2 - hk(“knz)Z]

i=1

+;R(L;T—T))—R(M\/’;_;))

31



We will show that the remainder terms vanish. In particular, one has

()

i=1

n

>

=1

hk,n(“k,n,i)2

n

hk,n (uk,n,i)

vn

‘hkn(uknz)’ 1 . 2
< ) 310y _ h . .
< o T 2 ek

By Markov’s inequality and equations (S34), (S35), this converges to zero in Py (omih) prob-
ability. The same evidently holds for the case where hy,, = hy, for each n € N. Thus,

n

1 < 11 ) )
b = 7 ; Piein (g i) — P (ki) — o Z[hkn(uknz) — hi(Up,ni)°] + opp

n
i=1

<gn,h)(1)’

and it remains to show that —= 7| hye (i) =Pk (Wen) and 5 370 [ (wyn,i) = (g )]

also converge to zero in probability under B ()" The second of these follows directly from

n

(S34), Markov’s inequality and the reverse triangle inequality since
1 2 2

Fon(gum ( "
=1

1 n
> 8) < 8715 ZZIE [hkn(uknz)2 — hk(uknz)ﬂ

=& 'E [hbp(Uni)® — hio(tpni)’]
— 0.

For the remaining term, we start by noting that

E[(hgn(er) — hi(er)) h(er)]

B[ (ki) — P ()] = NG

SO

1 < 1<
7 > Ehkn (k)] — Elhi(tgn)]| < - > Mok = hill ooy 1okl Lacrgy — O
=1

=1

Thus it suffices to show that
LS e lin) — Bali) e
= kn\Wkmnyi) — 1tk\UWkmn i )
Vi S

for g (Urni) = M (Ukni) — B [hin(Ukni)] and hg(upni) = P (Uen,i) — B [Pr(ugni)]. By
the reverse triangle inequality and (S34),

E [(hkn(ukn,) — hk(ukm))ﬂ — 0,  uniformly in 1.

32



Using this, the independence of the W; and Markov’s inequality:

gn7 (
en(gn h)

This establishes that 215:1 nk ——— 0, as required.
For the second condition in (S33), by Lemma S6 part 3 Py () <> Ppr.51Y Hence it suffices

to show that log 9“(-"":)) = opy(1). We first show that,

2
pe ] — .
Jog —2non0) E '5 — E "0o(W; n(1

0

2
pan(QO 2:/ 1 En: Iy
T 97 <\/ﬁtlg . )> +ory ()

0

Z hk: n uk n, z hk(“k,n,i)

> E) < —=-— ZE hkn uknz) hk(ukmj:i))ﬂ — 0.

where the expectations are taken under Pj'. Here we may proceed analogously to Lemma
S5. In particular, by an argument analogous to that showing condition 1 in Lemma S10,
g+ /Po,(g0) 1s continuously differentiable, whilst an argument analogous to that showing
condition 2 in Lemma S10 yields that {gg,4,0)(W)? : g € U} is uniformly Py (0 — integrable
for some neighbourhood & C R¥ of 0. Application of Lemma 7.6 and Theorem 7.2 in van der
Vaart (1998) then yields the two likelihood expansions in the display above. To complete
the proof set

ak,n,i = eggA(en(gna h)J X)‘/@n(gn,h),ia Uk,n,i = 62A<9n(ga h)7 X)‘/@n(g,h),i7

and observe that

I P D
IOg es(gmh) _ |:10g en(inp) _ lOg 9n(:70):|
Dy, (g,h) Do Dy

—;;bg (1+ <f_"’)) — log (1+%>

where the bracketed term is opn(1) by the preceding argument. Hence it suffices to show

that an arbitrary k-th element of the outer sum on the right hand side is also opy(1). Let

S19The present Lemma is used in the proof of Lemma S6, but is used only to handle the case where (gn, hn)
are not constant in n, which is the relevant case here.
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€ (0,1) be fixed and define

B, = {fggﬂhk(ak,n,i)\/\/ﬁ < g} . R, = {max ()| [/ < g}

1<i<

Since hy is bounded P} (E, N F,) — 1. On this set we may perform a two-term Taylor

expansion of log(1 + x) to obtain

Pt ) = Pa(imi) 1 P (g ni)* — P (g i) LR P (Unni) \ R P (Uk i)
vn 2 n vn vnoo )’

where |R(z)| < |z|?. For the remainder terms one has for any wu;,

R s e s g

since hy is bounded. For the first term in Taylor expansion, note that the derivative (in 6, o)
of A(f,0,X) is bounded on a neighbourhood of (6,0) (by Assumption S2). Combine this

with the boundedness of hj, and the mean value theorem to conclude that

n

D

i=1

Ly

(i) = P (i) S 02l gn = gl [lleill + | D Do+ o1y Xi)?|

for some g;,, with ||g;,|| < |lgn — g||. Since hy is bounded,

Ly
e (i) = e (knd)®] S 072 g — gl | llesll + ZDb,l<b + 01ns Xi)?
=1

Therefore, using the moment bounds in Assumption S3 parts 1 and 4

>

hi (g ni) — P (ki) B lhk(fbknzy — hi(Uppi)?
NZD 2 n

i=1
1)1 <L
Sl = all (172 ) 23 [l + | 3 Durls + 0 X002 | = 0y
This completes the demonstration of (S33) and hence the proof. [

Lemma S12. Suppose that Assumptions S2 and S3 hold. Then,
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1. cl Hy is the space of functions hg : R*" — R such that Eho(X;)? < co, Ehg(X) = 0;

2. Fork=1,...,K, cl Hy, is the space of functions hy : R — R such that Eh(e;,)? < oo,
E[hk(Gk)] = E[Ekhk(Gk)] = E[H(Ek)hk(ﬁuk)] =0.

Additionally, define Hy as the space of functions EO(W) = ho(f() for hy € cl Hy and Hf as
the space of functions hy(W) = hy(e} A(a, 0, X)Vy) for hy € 1 Hy (k=1,...,K). Then

H* = H;+---+Hj C Ly(P)) and H*=cl(Hy+---+ Hg).

Proof. For 1 & 2 let H} denote the set of functions described in the statement (for k& =
0,...,K). Clearly any convergent sequence in this space has a limit also in this space and
hence Hj is closed. For any hy € ﬁ];g there is a sequence (hy)nen such that each hy,, € Hy
and hy,, — hy in squared mean (e.g. Newey, 1991, Lemma C.7) and hence cl Hy, = H;.5%°
For the second part, the first claim follows since e} A(a, 0, X)Vj has the same law as
er under Py and hence each Py[h(W)?] < oo. For the second claim, as X, e, ..., ek are
independent, ﬁ[g ,..., H% are pairwise orthogonal. As the (finite) sum of closed pairwise
orthogonal subspaces is closed (e.g. Conway, 1985, p. 39) we have that cl(Hy+ ...+ Hg) C
H*. For the reverse inclusion let h = szo hi, € H*. By the definition of H* there are

~ ~ ~ - ~ ~ 2 ~
Tio(W) = ho(X) such that ho, € Hy and P, [hom(W) - hO(W)] — 0 and (W) =

~ ~ ~ 2 ~
hin(el Ala, 0, X)Vy) such that hy, € Hy and By [ho,k(W) - hk(W)] 0. Hence hy, =
ZkK:o Bkn € Hy + ...+ Hy and converges to h, implying that h € cl(Hy+ -+ Hg). ]

Lemma S13. Suppose that Assumptions S2 and S3 hold. Then sup,cy P9~n||£79~n||2+‘5/2 < 00

and hence (H%JP),LGN is uniformly P; —integrable.

Proof. As each component of gén lies in Ly(F; ) by its definition as an orthogonal projection,
it suffices to show that lim sup,,cy P;. [H%RHQ”/Q] < 00. Let d,, == (bn, sn) = v/n(Bn — B),
with b, € RY and s, € RL, so that 6, = 0,.(gn,0) with g, = (0,b,,s,). Then, under
P; . e, A(a, 0 + 5,/y/n, X)V; has the same law as ;. This, along with the observations
that E[|¢r(ex)][*T] < 0o, Elex|*™ (both for k = 1,..., K), E[||Dy;(b, X)||**°] < oo and the
local boundedness conditions in Assumption S2 part 4 allow the application of Jensen’s and

Holder’s inequalities to conclude that limsup, ¢y P, [||[79~n||2+5/ 2] < 00 as desired. O

520The required non-singularity condition for g(ex) = (1, €k, k(ex))’ is satisfied under the condition E(e}) —
1 > E(€})? imposed in Assumption S3.

35



Lemma S14. Suppose that Assumptions S2 and S3 hold. Then,

i [ vz~ ] ar =

Proof. Re-write the integral as

/Hgén\/@_ 29\/7’_9“2 da = ZL:/ [gén,z\/ﬁn— loa/Po S (S36)
=1

It is evidently sufficient to show that each of the integrals in the sum on the rhs converges to
zero. For this note that inspection of the forms of ¢y and py reveals that gén — 0y and Pg, — Po
pointwise. Hence each lﬁén’l\/m — g97l\/])_9 pointwise and, by Scheflé’s Lemma, P; KR FPy.
Combine this observation with Lemma S13 and Corollary 2.9 in Feinberg, Kasyanov and

Zgurovsky (2016) to obtain lim, .« [ ]Eéml\/mP dA= [ ]gg,l\/p_g]Q < 00. Apply Proposition
2.29 in van der Vaart (1998) to conclude. O

Lemma S15. Suppose that Assumptions S2, S3 and S4 hold. Then, for each (k,j) with
k # j, each l, each x € {a, 0} and each o € {7,<}, the following terms are opn (1):

1. Elmkkn'yn - B, [ka,k,%,i} ’

2. =i <¢k(f4knnivwn,z’) - ék,nqn(Ak,vninn,iD i Vo

3. \/%7 Doy <§bk(f4k,7niv7n,i> - ng,n,%(Ak,wV%,iD A iVai (Crgyi — G )7
4- \/Lﬁ Z?:l ([0knm,t = Ok 1Ak iVasi  [Okmm2 — Ok 2] 6( Ak, i Vi)

5w i [k i Do by Xi)] = Py [As i Do (bn, X))

6. 7= i <<bk(Ak,wV%i) - ng,n;yn(Ak,vniVyn,iD ([Arn i Do (bn, Xo)] = 3 320 [Aky i Do (bn, Xi)]) s

and the following terms are Opé;(l):
7. \/Lﬁ > i ( Ok ( Ak i Vi i) Ak i Vo + 1)
8. = Dt 01 Ak i Vo k26 ( Ak i Vi i)
9. \/Lﬁ Z?:l Dr (AkpyniVansi)-

Proof. Under Fj , X is distributed according to the density 7o whilst Ak ry,iVo,,i has the

same law as €;. We will use these facts without explicit reference in the rest of the proof.
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1. The triangular array (Cﬁk,k,—yn,i)TLEN,iZLM,n has i.i.d. rows and the variance of (., _
is bounded above uniformly in n by Assumption S2. The claim then follows from a

WLLN for triangular arrays (e.g. Durrett, 2019, Theorem 2.2.6).

2. Let Zni = ([} jiAjniVoni- The triangular array (Zni)neNiz=1,.n has iid. rows,
Zni L €k, Zy,; is mean zero and the variance of Z, ; is bounded above uniformly in n

by Assumptions S2 and S3. The claim then follows by Assumption S4.

3. By Cauchy — Schwarz one has

1 ¢ 7 x T
% Z (Qﬁk(Akv’YniV’Ynyi) - ¢k»n77n (Aka'YniV'Ynai)> Akv'YnaiV’Ynyi (CZ,k,j,’Yn,i - Cl,k7j7n77n)
=1

N 1/2

1 - 2 - 2
S [E Z <¢k(Aky'7nl‘/’Yn77t> - ¢k,n7'yn (Akv'YniV'Yn,i)> (Cl,k,j,’yn,i - Cl,k:,j,n,'yn)
i=1
Lo 1/2
2
X [ﬁ D (A Vi)
i=1

Take Zyi = (i — Eﬁk,j,n,%- The triangular array (Z,;)neni=1...n has i.i.d. rows,
Zn;i L €, Z,,; is mean zero and the variance of Z,; is bounded above uniformly in
n by Assumption S2. Therefore, the first factor on the right hand side is 0p9pn(1) by
Assumption S4. The second right hand side factor is Opgn(l) by Assumption S3.

n

4. Ok SN or by Lemma S16. Assumption S3 and the central limit theorem imply
that \/Lﬁ Z?:l Ak,%iV%i and \/Lﬁ Z?:l /-@(Ak,%,i\/%i) are OPén(1>‘

5. Let Uy, = vec(An, iDpi(bn, X)). Then for each component Uy, ;;, (Unii)neNizt,. n 18
a triangular array with i.i.d. rows and the variance of U, ;; is bounded above uniformly
in n by Assumptions S2 and S3. The claim then follows from a WLLN for triangular
arrays (e.g. Durrett, 2019, Theorem 2.2.6).

6. Put Z,; = [Aky,.iDpi(by, X)] — % >y [Akn,iDyi(by, X)]. Then, the triangular array
(Zni)nen,i=1,..n has iid. rows, Z,; L €, Z,; is mean zero and the variance of Z,, ;
is bounded above uniformly in n by Assumptions S2 and S3. The claim follows by

Assumption S4.

Each of the remaining items follow from the central limit theorem given Assumption S3. [
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Lemma S16. If Assumption S3 holds, ||okn, — 0kl = opr (vnp) for o € {r, }.52

4
€k Cik

it suffices to show that || M, 'w — M, w| = opr (Vn,p) for any fixed w € R?. Since the map

- 1 3
Proof. Under P; , My, has the same law as My, = %Z?:1 ( . Cik 1>. Therefore,

M +— M~ is Lipschitz continuous at a positive definite matrix,
1M w = M wlly < Jlwll [ M, — M lo S 1M — Mello,

and thus it suffices to show that || My, — M|l = opn (Unyp). If v =10/4 > 1, we have that
by Theorem 2.5.11 in Durrett (2019)

n

1 —

ﬁ [E?k - E(E?k)] = OP(;H (n 1/2 log(n)1/2+p)
=1

1 — )

E [Eik - E(Eik)] = Opgn (n 1/2 10g(n)1/2+p)
=1

for any p > 0, which implies that
[Mion = Millz < [|Min = Millr = 0pp (0" log(n)"/2*7) .
If 0 <v < 1, by Theorems 2.5.11 & 2.5.12 in Durrett (2019), for any p > 0,

( “2log(n)/?tr) ifv € [1/2,1)
_Z Ezk _]E Ezk = )
orn ( ) if v e (0,1/2)

which together imply that
1—
| My = Mlla < | My = Millr = opp (n'+"). 0

Lemma S17. Suppose that Assumptions S2, S3 and S4 hold. Then, for each (k,j) with
k # j, each l, each x € {a,0} and each o € {T,s}, the following terms are opn (Vn):

2 2
. Zz 1 <¢k(Ak Tt vnz) ¢kan(Ak Tt Vwm)) (Aj:’aniV’Yn:iglgjk,jqn,i) ’

n(1-p)/p for p € (1,2)
n~Y2log(n)'/2t?  for p =2

)

521y, » is as defined in Assumption 3: p := min{1+6/4,2} and v, , = {

for some p > 0.
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3.

E

5.

D

7.

8.

9.

10.

(Pén [Clxklmnz] - glgfk,k,n,%)Q;'

S (DA Vi) Ak Vi + % (P [ kkri) = Gimn) 5
%2?21 (Qk,lAk,'yn,iV"/n,i + Qk,zH(Ak,%,inn,i))z (Pén [ngfk,k,%,i] - Elm,k,k,n,fyn)2;
S (ot [Pkt = 06] Ak iVai + [z — Ok 26 (A Vo)) s
(P; [k iDii(ba, X)) — [ADBX],))%;

0 0k Ak iV + 0k2 (A iVi))? (P, Ak iDoi(ba, Xi)] = [ADBX],)
> (TADDX],, ([0kmv01 = 0k 1] Ak i Vi + [Bknn2 — Ok 2]K (A iV50)))

= Dy <¢k(Ak,wn,inn,i) — Gknirn (Ak,%,iV%,i)Y (A i Dbt(bn, Xi) — [ADbX], )

LS (dr(ApnniVani)) (P, [Akrni Dot (b, X)) — [ADBX],,)%,

where [ADbX],, == %Z?:l Ay iDp i (b, Xi).

Proof. Under P , X is distributed according to the density 7, whilst Ak ~,.iV5,, has the

same law as €. We will use these facts without explicit reference in the rest of the proof.

1.

Let Zy, i = Ajn, iV5,.iCi%, jmi- Thisis independent of €; x, is mean-zero and has variance
bounded above uniformly in n by Assumptions S2 and S3. The claim then follows by
Assumption S4.

Let Zni = (Grpmni — L, [k ki) and note that sup, oy EZ}:® < oo forae >0 (by
Assumption S2). By the Lindeberg CLT one then has that > | Z,,; = Opénn (v/n) and

T T 2
hence (Pén [Cl,k,k,'yn,i] - Cz,k,k,n,%) = OPgn (Vn)-
By Assumption S3, %Z?:l (Dk( Ak iV i) Ak i Vo i + 1)2 = Op, (1). Use 2.
By Assumption S3, %Z?Zl (08,1 A% i Vai + Qkyg/i(Ak%,iV%i))z = Op, (1). Use 2.

By Assumption S2, éfkkn% is bounded uniformly for all sufficiently large n. By
Assumption S3, 37" (Ag, i Va,i)? and = 307 | k(Agy, i V5,.0)? are Opr (1). Combine
with Lemma S16.

Let Z,,; = (Akqn,iDb,l(bm X;) — F; [Ak i Dpi (b, XZ)]) and note that sup,,cy EZ;ff <
oo for a e > 0 (by Assumptions S2 and S3). By the Lindeberg CLT one then has that
Yory Ly = Opgzl (v/n) and hence (Pén [Ak i Doy (b, Xi)] — [ADbX]n)2 = opy (Vn)-

. By Assumption S3, £ 377 (05,1 Ak, iVaui + 0k26(Aks, iV5,))" = Op, (1). Use 6.
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8. Take [ADbX,] out of the summation. By Assumption S3 and 6. this is Opr (1). By
Assumption S3, 37" (Ag, i Va,i)? and = 307 | k(A iV5,.0)? are Opr (1). Combine
with Lemma S16.

9. For Z,,; == Ak ,.,iDv(bn, X;) — [ADbX],,, Z,,; is independent of ¢; 5, mean-zero and has
variance bounded uniformly in n by Assumptions S2 and S3. The claim follows from

Assumption S4.
10. 250, (Or(Apry Vi)’ = Opx (1) by Assumption S3. Use 6.
[

Lemma S18. Suppose that Assumptions S2 and S5 hold. Then, for each k, each [, each
z €{a,o},

2
= Opn (Vn)
On

1 & . 2 _
E Z (Qﬁk{Ak,%“inn,i) - ¢k,n,% (Akwn,ivvn,i)> (Ak,vn,ivvn,i [glajk,kn/n,i - Clgfk,k,n,%])
i=1

Proof. By Assumption S2, [ka’k’%i - ffkkn%f is uniformly bounded for all large enough

n. Hence it suffices that by Assumption S5,
I ; 2 2
D (A Vi) = G (A Vi) ) (AnaVi i) = 0 (), =
i=1

S4 Additional auxillary results

We present a few additional results that explicitly prove some claims made in the main
text. First, we show that if two errors ¢;;, and ¢;; are Gaussian fg’aa becomes singular,
which implies the singularity of Zy if j@ﬁﬁ is non-singular (cf. Propositions 8.2.4 and 8.2.8
in Bernstein (2009)). Second, we provide an explicit example of a density which satisfies
the first part of the Assumption 2 but not the second. Third we prove that if Assumption 2
part 1 holds then a sufficient condition for part 2 is that 7, has tails that decay to zero at a

polynomial rate.

Lemma S19. Consider the LSEM model (3) and suppose that Assumptions 1 and 2 hold.

Define the random vector Q in RX* as

Q=(Q1...,Qk),
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where the j-th element of Qy for j € [K] is given by

Dr(€r)e; ifk#j

Tk,1€k + Tk72/£(6k) Zf k= j

Qrj =

Next define the matriz ¢ € RE*Le gecording to
¢ = (vec([Dai(a,0)Ala, o)1), ..., vec([Da.r. (o, o) A, 0) ).

Then where {y is the effective score function as defined in lemma S3, the law of 57971 under
Py is equal to that of 'Q. Moreover,

(i) EQQ' is non-singular if and only if for each pair (k,j) with k # j and each k,j € [K]
we have that [E¢p (ex)|[Eg?(e;)] # 1.

(i) Ig.ae is non-singular if rank(¢) = Lo and EQQ' is non-singular.
(iii) If rank(C) < Ly then Ip e is singular.
() If Lo = K% and EQQ' is singular then jg,aa is singular.
(v) If EQQ' is singular, fgﬂa may be singular when rank(¢) = L, < K.

In particular, if both €, and €; (k # j) have a Gaussian distribution and L, = K2, fgym 18

singular.

Proof. For (i), let j,k,m,i all be in [K]. We will consider the entries of the matrix EQQ)’,
which are of the form E[Q ;jQ]. In particular, the s,t-th element of the matrix is given
by the form E[Qj jQm ] where (k— 1)K +j=sand (m—1)K+i=¢t. Ifk=j=m =1 we
have s = t and E[Qy jQm.i] = E[rk1€x + Tr2r(er)]*. The other diagonal entries occur when
k =m # j =i, and have the form E[Qy jQm.] = E[¢?(ex)]. Inspection of the other possible
cases reveals that the only other case with non-zero entries is kK = ¢ # m = j which has value
E[Qk,jQm.i] = E|dk(ex)er]E[dr(em)em] = 1 by assumption 2.

Therefore for any k, j € [K], column (k—1)K + j has non-zero entries in row (k—1)K +j
only if k£ = j and otherwise in rows (k — 1)K + j and (j — 1)K + k, with values E¢; ()
and 1 respectively. There are therefore no columns that can be linearly related to column
(k—1)K+jif k=j. If k # j, then column (k — 1)K + j has zeros everywhere except row
(k—1)K + j where it has E¢?(ex) and row (j — 1) + k where it has 1. Column (j — 1)K + k
has zeros everywhere except row (j — 1)K + k where it has E¢3(¢;) and row (k — 1)K + j

where it has 1. Since no other columns have entries in these rows, it follows that column
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(k — 1)K + j is linearly independent of all the other columns if and only if it is linearly
independent of column (j — 1)K + k, which occurs if and only if [E¢j (ex)][E¢3(e;)] # 1.

For (ii), suppose that rank(¢() = L, and EQQ)’ is non-singular. Then there is a (unique)
positive definite [EQQ’']"/? and we have Ipqq = ([EQQ’]1/2C)/ ([EQQ'*/?¢) which has full
rank, since ([EQQ’ 11/2¢ ) has full column rank.

For the remaining parts note first that
f@,aa - Eg@,lg/al - C/ [EQQ/] Ca

and so rank(faaa) < min{rank(('EQQ"), rank(¢)}. Hence if rank(¢) < L, rank(fgyaa) < Lq
implying (iii).

For (iv), suppose that rank(EQQ’) < K% = L,. Then, there is a non-zero x € R such
that EQQ'z = 0 and hence ('EQQ'z = 0. Hence dim(ker(('EQQ’)) > 1. It follows that
rank(('EQQ’) < Lo — 1 < L and hence rank (I oo) < min{rank(¢'EQQ’), rank(¢)} < L.

For (v) suppose that K = 2, ¢; and ey are both Gaussian and A(a) = [Zfs((g)) ;zlslzg;‘)}

We have for [ € {1,2}, ¢;(2) = —z2, hence ¢7(z) = 2% and so E¢?(g) = 1. Dyi(y) =
|:7sin(a) — cos(a)

cos(a) —sin(a) and hence

Des(@)A(0)™ = Daa(@)A(a) = [? ‘01] ,

which implies ¢ = (0,—1,1,0) and hence rank({) = 1 = L, < K? = 4. Explicit calculation

reveals that

89 0 0 0
11 0
EQQ’ = ,
e 11 0
0 0 8/9
which is clearly singular with rank 3. We have
8/9 0 0 0 0
~ 11 -1 0
_[ we = ! E / — / — ! — O
0, (EQQTC=(¢ L1 ) ¢ 0
0 0 8/9 0 0

For the last part, suppose that k£ # j and ¢, and €; are both Gaussian. Since both have
zero mean and unit variance, we have for [ € {k,j}, ¢1(2) = —z, hence ¢?(z) = z* and so
E¢? () = 1. EyQQ" is singular by (i) and hence by (iv) Iy aq is singular. O
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Example S1 (Necessity of part 2 of assumption 2). Suppose that &, ~ X3 and let ¢, =
(€x — 2)/2. Then € has mean zero, variance one and density function ni(z) = exp(—z — 1)
on its support [—1,00) on which we also have that ¢r(2) = —1. Ezplicit calculation reveals
that part 1 of assumption 2 is satisfied. However, E¢y(z) = —1 # 0 as would be required by
part 2 of assumption 2.

Note also that this example does not satisfy the requirements of lemma S20: we have
ap = —1,b, = 00 and

lim ng(z) = lim1 exp(—z—1)=14#0,

zlag

and hence the required condition is violated for r = 0.

Lemma S20. Let ay = inf{x € RU {—o00} : m(x) > 0} and by = sup{z € R U {oo} :
m(z) > 0}. Suppose that, for r = 0,1,2,3: (i) if ax = —oo then ng(z) = o(z™3) as
T — —00, else aj limy ., r(z) = 0, and (i) if by, = oo then ni(x) = o(z™3) as x — oo, else

by, limyy, mk(z) = 0. Then, if part 1 of assumption 2 holds, part 2 is also satisfied.

Proof. Let r € {0,1,2,3}, b = sup{z € R : ni(x) > 0} and a; = inf{z € R : nx(z) > 0}.

We have, by integration by parts, with GG denoting the measure on R corresponding to 7y,

b
dz"
— dz.
. /Uk(z) P z

0. Therefore we have Gy, (z)2" = —Gyi2". For

r = 0 this equals zero as £20 = 41 = 0. For r € {1,2,3} we have & = 72"~ and hence

Gror(2)2" = —rGrz""t. Since Gx1 =1, Gz = 0, and G2? = 1, the result follows. O

[ aci= | ZEW) 4z = [ )z dz = ()

b

ak_

Our hypothesis ensures that z"n;(z)|

Lemma S21. Suppose that P, and @, are probability measures (with each pair (P,, Q)
defined on a common measurable space) with corresponding densities p, and q, (with respect

to some o-finite measure v, ). Let l, = log q,/p, be the log-likelihood ratio.5** If
ln = OPn<1>7

then dTV(Pm Qn) — 0.
Proof. By the continuous mapping theorem

I _ exp (1) Lo 1,

n

5221 may be defined arbitrarily when p,, = 0.
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Le Cam’s first lemma (e.g. van der Vaart, 1998 Lemma 6.4) then implies that @, < P,.
Let ¢, be arbitrary measurable functions valued in [0, 1]. Since the ¢, are uniformly tight,
Prohorov’s theorem ensures that for any arbitrary subsequence (n;),en there exists a further

subsequence (n, )men such that ¢, ~ ¢ € [0, 1] under P, . Therefore by Slutsky’s Theorem

(¢nm7 eXp(lnm>> ~ (¢> 1) under an.

By Le Cam’s third Lemma (e.g. van der Vaart, 1998, Theorem 6.6), under @, the law of
¢n,, converges weakly to the law of ¢. Since each ¢,, € [0,1]

lim [Qnmgbnm - an¢nm] =0.
m—00

As (n;)jen was arbitrary, the preceding display holds also along the original sequence. [

S5 A consistent estimator of the Moore — Penrose psue-

doinverse

As is well known, the Moore — Penrose psuedoinverse of a matrix is not a continuous function
on the space of positive semi-definite matrices (see e.g. Ben-Israel and Greville, 2003, Section
6.6). In consequence, if one has a consistent estimator M,, of some matrix M, it need not
follow that MT is consistent for M. A necessary and sufficient condition for this convergence
in probability to occur is that rank(M,) = rank(M) with probability approaching one as
n — oo (Andrews, 1987, Theorem 2).

Here we provide a simple construction, based on the knowledge of the speed of conver-
gence of M, to M, which results in an estimator M, which is consistent for M and satisfies
rank M,, = rank M with probability approaching one as n — oo and, in consequence, ]\2@ is
consistent for MT.

The construction proposed here is very similar to a special case of that considered by
Dufour and Valéry (2016). We provide a direct proof for this construction rather than relying
on Proposition 9.1 in Dufour and Valéry (2016) as the latter would require the introduction
of an additional rate term (b, in their notation) which satisfies a given condition (their
Assumption 2.2). For our purposes we need only a single rate term (essentially the equivalent
of ¢, in their notation) and thus there are fewer conditions to verify.

In particular, suppose that the sequence of (random) positive semi-definite (symmetric)
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matrices (M, )nen (of fixed dimension L x L) satisfy
Py (1M, — M|z < vy) — 1, (S37)

for a sequence (P,),en of probability measures, a known non-negative sequence v,, — 0 and
a sequence of deterministic matrices M,, — M with rank(M,,) = rank(M) for all sufficiently

large n.5% Let M, = (v]n]\n(v][1 be the corresponding eigendecompositions and define
M, = Uy Ay (v U (S38)

where A, (v,) is a diagonal matrix with the v,-truncated eigenvalues of M, on the main
diagonal and U, is the matrix of corresponding orthonormal eigenvectors. That is, if
(Ani)E | denote the non-increasing eigenvalues of M,,, then the (i,7)-th element of A, (v,,) is
5\,”1(5\7” > V).

Proposition S1. If (S37) holds, M, — M and for all n greater than some N € N
rank(M,,) = rank(M), then M, Loy M and

P, (rank(Mn) = rank(M)> — 1,

where M, is defined as in (S38). In consequence,

Mt It
Proof. Throughout let 7,, == rank(Mn), r=rank(M), R, = {r, =r} and A\, A\, 5\,171 and
;\ml respectively the [-th largest eigenvalue of M, M,,, M,, and Mn
Start with the case r = 0. By Weyl’s perturbation theorem (e.g. Bhatia, 1997, Corollary

I11.2.6) and the fact that M, = 0 for all n larger than some N € N,

P.(R,) = P, (lrrllaXL |Ana] < vn> > P,(| M, — M,||> < v,) — 1.

On the sets R, we have that M, =0 = M and so M, — M as P(R,) — 1.

Now suppose that 7 > 0. let ¥ := ),/2 > 0 and note that (S37) implies that || M, —
M,|l2 = op,(1) and so, by Weyl’s perturbation theorem, max;—; |;\n,l — | < ||Mn —
M,l|ls = op,(1). Hence, defining FE, = {Xw > v, }, for n large enough such that v,, < v

23 (S37) is implied by ||M,, — M,|| = op, (v,) for any matrix norm. Moreover, the existence of such a
sequence (Vp)nen is guaranteed if | M, — M,||2 — 0 in P,-probability, however its explicit knowledge is
necessary to perform the subsequent construction. In most cases M,, = M for all n € N.
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and ||M,, — M2 < v/2 we have
Py(E,) = Py (A = Vi) > Py (Mr > 3) > By (| Ay — Ay < ¥/2) — 1.

If r = L we have that R, D E, and therefore P,(R,) — 1. Additionally, if 5\71’ L > Vg,
then j\nJ = Xn,l for each [ = 1,..., L and hence M, = M,,, implying HMn — M2 < HMn —
Mylls + M, — Mz = o, (1).

Now suppose instead that r < L and define F;, = {5\n,r+1 < v, }. It follows by Weyl’s
perturbation theorem and the fact that A,; = 0 for [ > r and n > N that as n — oo

Po(F,) = Po(Muri1 < Vi) > Po(|| My, — Myll2 < vy) — 1.

Since R, D E, N F,, this implies that P,(R,) — 1 as n — oco. Additionally, if S\W >V,
XMH < v, and HMn — M]|2 < v, we have that S\nk = Xn,k for £k < r and S\n,l =0= )\ for

{ > r and so
8u(va) = Alle = max R0 = N = mas (L M| < A, — Alls < [, — M]ly < v,

and hence {||M,, — M||s < v}NE,NF, C {||An(v,) — Al < v}, from which it follows that
An(va) 225 A as || M, — MJs < ||M,, — My|la + [|M,, — M2 2= 0. Suppose that (Aq, ..., \,)

consists of s distinct eigenvalues with values A\ > A\? > ... > \* and multiplicities my, ..., m,

S24 )\s+1

each at least one). = 0 is an eigenvalue with multiplicity mgy; = L — 7. Let [F
+ 7

fork=1,...,s+1and ¢ = 1,..., m; denote the column indices of the eigenvectors in U

1 825
1k

Total eigenprojections are continuous.®? Therefore, if we construct II, ; in in an analogous

corresponding to each A\*. For each A*, the total eigenprojection is Il = > uu

fashion to II; but replace columns of U with columns of U,, we have IL,, & RN I, for each
k=1,...,s+ 1 since M, Doy M. Spectrally decompose M as M =7 _, AFII,, where the

sum runs to s rather than s + 1 since \**! = 0. Then,

s+1 my s+1 myg s
M, = A, iy, et e = s — N, et o+ AFIT
n n I Yn b nlk n, Ik n, Ik n,F n.ks
k=1 =1 k=1 i=1 k—1

S24The superscripts on the s are indices, not exponents.
$25Gee e.g Chapter 8.8 of Magnus and Neudecker (2019).
S26F g. Theorem 8.7 of Magnus and Neudecker (2019).
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whence

s+1 myg
1M, — M|l < ZZ A = Al gt 2 + Z NM[[ITL g =TTl =2
=1 =1 k=1

by I, Loy i, An(vy) 22 A and since we have 1, 6 |l = 1 for any i, k,n. Combine
this with P,(R,) — 1 and Lemma 1 in Andrews (1987) to conclude. O

S6 Log density score estimation

In this section we discuss the details for the estimation of the log density scores ¢p. We first
provide a detailed description of the construction of the estimator (11). Secondly we provide
a proofs of Lemma S4, i.e. we show that this estimate satisfies Assumption S1. Thirdly
we provide proofs of Lemmas S8 and S9. The analysis here (in addition to the proposed
estimator) is based on Chen and Bickel (2006) and Jin (1992), with small tweaks to fit the
setup of the present paper.

S6.1 B-spline based log density score estimation
For & < --- < &x a knot sequence, the first order B-splines are defined according to bgl)(aj) =
1, ¢, (2). Subsequent order B-splines can be computed according to the recurrence relation

b(l)

)

r—§& - Sivl — T -1
—=b () + ——F—b; (2), S39
€Z+l 1 57, ( ) §i+l - £i+1 + ( ) ( )

forl >1andi=1,...,N —1[. A [-th order B-spline is [ — 2 times differentiable in x with

first derivative

(z) =

[—1 _ -1 .
e e 50

See de Boor (2001) for more details on B-splines.

W () =

7

Let ben = (brns---»brnp,.,) be a collection of By, cubic (i.e. 4-th order) B-splines
and let crpn = (Chm,1s -5 ChnB,,) be their derivatives: ¢, i(7) = (ﬂ)’“’d"—;m for each i €
{1,...,Bgn}. The knots of the splines, &, = (é‘km)fi’“l" are equally spaced in [Zf,, 2] ]
with 0k, = e niit1 — ki > 0.527 For each (k,n) pair the relationships between the number
of knots (Kj,,), the number of spline functions (Bg,) and oy, are given by By, = K, — 4

and Kkn_ 1+(“kn_‘—‘kn)/6kn

S27For each k = 1,..., K the sequences (Hk n)neN, (Hk w)neNs (Bin)nen and (0 n)nen are deterministic.
S28Implicitly we Choose K}, and the endpomts and 5k n adjusts such that these formulae hold; this way

47



Since the B-splines vanish at infinity for any n € N, integration by parts gives that

J0n2) — bentoPntz) a
= /¢k(z)2nk(2) dz + /(w;mbk,n)znk(z) dz + 2/w27nck,n(2)nk(2) dz (541)

= E¢k(€k)2 + w]/g,n]E[bk,n(Ek)bk,n(ek)/]¢k,n + 2¢27nE0k,n(€k)7

where we integrate over the support of ¢y, (which is also the support of by, and ¢ ). This

mean-squared error is minimsed by:52

’gbkm = —E[bkm(Ek)bkyn(Ek)/]_lE[Chn(Ek)] . (842)

Replace the population expectations with sample counterparts to define the estimate of v,

—1
A 1 & 1 &
Q/Jk,n,w = ﬁ Z bk,n(An,k,i%n,i)bk,n(An,k,i%n,i)/ E Z Ck.n (An,k,i‘/en,i)v (843)
i=1

=1

where A,, ;.; and Vj, ; are defined as in Assumption S1. The estimate for ¢y, is

ggk,nﬂ(’z) = Q%ﬂ,nﬁbk‘,n(z) : <S44)

We note that computing (S44) effective only requires computing the B-spline regression
coefficients 1/A)k7n77 in (S43). To implement the score test we need to estimate K density

scores, hence the computational cost is quite modest.

S6.2 Proof of Lemmas S4, S8 & S9

Proof of Lemma S4. Under Py, , Ag~, iV, = € ~ ng. We start by showing that ¢3,m =
Ok, (Where 7, = (a0, 8,)) satisfies equation (S12). We have

%i [ékn(ezk) - ékn(ezk)} Zn,i

i=1

+%;MMWPWWMVM

12 ) — o) Zu,
=1

<

1< -
ﬁ Z ¢k,n<€i,k>Zn,i - ¢k(€i,k)Zn,i
i=1

(S45)

)

we do not need to adjust anything to ensure these are integers.
S29This differs from the expression in Chen and Bickel (2006) by a factor of —1 as they estimate —¢y.
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where ¢y, = ¢k1[5£’n7EkU’n] as in Assumption 3, qgkn(z) = w,’wbk,n(z) and q@kn(z) = Qﬂ;m%bk,n(z).
To establish (S12) it suffices to show that each of these three terms on the right hand side
are op(n~1/2).5%0

For the last term in (S45), by assumption El{e;x ¢ [Z,,Z/,]} I 0 and hence by

independence, Cauchy-Schwarz and sup, .y EZ; ; < 0o,

E ([¢rn(ein) — onlen))’Zh ;) = E [on(ein)’Hew ¢ [Ebn Snnlt EZ2,
< [Een(ein)’]"? [E1{eis ¢ [EF,, 20,1} P RZ2,  (S46)

— 0.

By Markov’s inequality it follows that for any v > 0,

'

For the second term, we note that by our hypotheses and lemma S22 we have

— 0.
nv

S U> < nkE ([¢kn(€zk) - ¢k(€i,k)]2zz,i)

% Z[¢kn(€zk) = Ol€in)) Zn,

E ([dnn(€in) = drnlcn)?22,) = E ([drnlein) = drnlein))?) EZ2,

, S47
< O l0REZ = 0 o
as n — 00, and hence again by Markov’s inequality for any v > 0,
N ; nE ([6x(ess) = dun(ei) P22,
NG ;m, (€1) = Pt (€10)) Zud| > v —
For the first term, by Cauchy-Schwarz
IR 7 7 1 ¢ —1/2
=37 [Benlein) = Srnleia)] Zaa| < I = valle |~ D7 binlein) Zug]| = on(n™2),
i=1 i=1 9

by lemmas S23 and S24.

S30Here we implicitly assume (without loss of generality) that all the ¢; and Z,.; are defined on a common
probability space (2, F,P).
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Next, we show that ¢y, satisfies equation (S13). We have:

%g <|:ng71<€7,/€) - Cbk(ézk;)] Zn,i>2 < %i [ngn(ezk) _ ngn(em)] 2 Zzﬂ,

i=1

+ %; [ng,n(ﬁi,k) - ¢k,n(€i,k)] ’ wa- (848)
+ % ZZ1 [Prn(€in) — ¢k(€z‘,k)]2 ZTZLZ

We will show that (1/4 of) each of the right hand side terms is op(v,,) under our assumptions,
which is sufficient for equation (S13). For the last term, for any v > 0, by Markov’s inequality,
independence and Cauchy-Schwarz we have

'

For the second term, for any v > 0, by Markov’s inequality, independence and lemma S22:

'

n

l Z [Prnl€in) — ¢k(€i,k)]2 wa’

n <
=1

> Ul

=o(1).

— —_ 1/2
> < [E1{€Z7k ¢ [:iﬂw:‘g,n]}} EZ?%,@ o

Uy,

% Zzl [ngn(ﬁk) - ¢kn(51k>] 2 Zg,i

Uy,

) E ([ngn(%) - ﬁbk,n(ﬁi,k)]Q) ]EZ%}Z-
>y, | <

_ ORalloIREZ],

vy,

=o(1).
Finally, for the first term in the decomposition, by lemma S24 and Assumption 3-part (ii):
LS [Bunens) = dunleis)] 224 < W — el | 2 3 Iok(ess) 822, | = on().
n p m\ e, m\ e, n,y — n m |2 n p ,m\ -, 2%n,i nj-

Proof of Lemma S8. The proof proceeds verbatim as that of Lemma S4 once references to
equations (S12), (S13) are replaced by equations (S27), (S28) since under the conditions of
the present Lemma, one still has A,, ., ;Vs, . =~ € ~ n, under Py, . O
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Proof of Lemma S9. We use a similar decomposition to as in the Proof of Lemma S4:
1 & N 2 4 - - 2
- Z <|:¢kn<€zk) - st(ez}k)] Ek,z) = Z |:¢kn(€zk) - ¢kn(€zk)] €ri
i=1 1=1

+ %Z [ﬁgkn(ezk) - ¢k,n(ei,k)] i €t (S49)
+— Z Grnlein) — drlen)? €2,

We will show that (1/4 of) each of the right hand side terms is op(1,) under our assumptions,
which is sufficient for equation (S29), since under Py, Ay, iV, =~ € ~ ni. For the last
term, for any v > 0, by Markov’s inequality, Cauchy — Schwarz and the first additional

condition in Lemma S9 we have

'

For the second term, first note that by Lemma S24

~ Z [Drn(€in) — drlein)]” &,

n <
=1

=o(1).

vy,

> vy, > < ( [Ek’zl{elk ¢ [Hkn?‘—‘kn]}})lﬂ

Onn(€ie)” < Wnl310knlem)l3 < 1kl < ITEnl3ICknllz = O Akin)-

Thus, for any v > 0, by Markov’s inequality, Cauchy — Schwarz, the additional conditions

> vun>
VUl

M2 E ([hn(ein) = Bn()?) B[ (Grnlein)? + drle))dd{lei] > M}
+
vV, Vln,

- 1/2
MELCOLallofallie | din e [ {leisl > Miad] [ (chit{lein] > Min})]”

vy, vy, vy,

in Lemma S9 and Lemma S22:

'

<

1 > [ék,n(ei,k) - ¢k,n(€i,k>] 2 oF

n <
=1

E ([dkn(eir) = ornleis)?ed,)

AN

=o(1).

Finally, for the first term in the decomposition, by lemma S24, ||by.,(€; )||3 < 1 (e.g. de Boor,
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2001, equation (36), p. 96), Assumption S3, the WLLN and Assumption 3-part (ii)

n

1
- Zeill = op(Vn). O

=1

1 e~T- - 2 .
=3 [Bralein) = dnlein)] € < MWna, — vrnl}
=1

S6.3 Technical lemmas

Lemma S22 (Cf. Lemma A.5, Chen and Bickel, 2006). Let ¢y, be defined as in Assumption
3 and gg,m = V) bk If part (iv) of Assumption 3 holds,

~ 2
E (Grn(ein) = drnlein)) < C208 JIo0 %

Proof. By the definition of &kn and lemma S26 we have

~ 2
E (Gnleir) = knlei)) = il E(gleis) = drnlein))” < O30, I60 1%,
g€g4(£k,n)

where the equality follows since v, is the minimiser of (S41) where we integrate over the

support of ¢, (which is also the support of by, and ¢y ). O

Lemma S23 (Cf. Lemma A.3, Chen and Bickel, 2006). Suppose assumptions 2 (or S3) and
3 hold. If Z,; is independent of €, and sup,cy <., EZr; < 0o, then

= Op(nilm).

2

1 n
n; ko (€ik) Zn,

Proof. By ZBI“’” bi.nm(2)? < 1 (e.g. de Boor, 2001, equation (36), p. 96) and our hypotheses

m=1

2 Bk,n

1 EZ?.
=_FE bormlein)? | EZ? . < —22
" mZ:l gm(€ik) i <

n

E

1 n
- b n\% Zni
n; ko (€i ) Zn,

2

Fix € > 0 and take M > 0 large enough such that sup,cy <., EZ;;/M? < e. Markov’s
inequality yields

E (n H% Z?:l bk,n(ei,k)Zn,iHZ) EZg,i
> M) < M2 < e < €.
2

P<\/ﬁ

1 n
n; ko (€ik) Zn,
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Lemma S24 (Cf. Lemma A.2, Chen and Bickel, 2006). Suppose that Assumptions 2 (or
S3) and 3 hold. Then, for

. 1 <&
Fk,n = ﬁ ;bk,n(ﬁi,k)bk,n(ﬁi,k)/, Fk,n = E[bk,n(ﬁk)bk,n(ﬁk)/],

and

. 1 <&
C n = n\€i,k ), C n = Elckn )
kan = ;:1 ckn(€in);  Ck, [k (€r)]
we have that

(7’) HCk,nH2 - <5kn 1/2)
(ZZ) ||ék,n - Ck,n||2 = OP (W))
(Z”) ||fk,n - Fk,n||2 = OP <\/@> ;

(v) [|Tknll2 = O(0kn)
(v) ITinlla = O(5;2).
In particular, ||f’,;}16'kn—1/1kn||2 = Op(n‘l/QAk,n(S,;i(Ak,né,;}l)L) = op(1) and kaan = op(1).

Proof. The proof follows the relevant parts of the proof of lemma A.2 in Chen and Bickel

(2006). Firstly, from the representation of the derivative of the cubic spline (e.g. de Boor,
2001) cjopi = (b(?’)

k,n,i

— b,(mHl) /0kn. We have, for large enough n € N,

|Crmil = Elckmi(en)ll = i

[ omrai— [ o, omoar

/bl(cgv)zi(t)nk@) dt_/b;(czm( Nk (t + Ok.n) dt‘

77k (t + On) — m(t)
k,n

swwu/%zow

< 61 llocOk.n

_ 1
_5kn

where the last inequality is due to (20) on p. 91 in de Boor (2001) and the fact that splines
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(of any order) take values in [0,1].53! Tt follows immediately that for large enough n € N,

Bk,n Bk,n

> Cini < D G307 0 = Brabl|nil|%0% 0.
i=1 i=1

from which (i) follows.

b(3) b(3)

fomi — Ok +1) /6k.n- Since splines (of any order) take values in

As noted above ¢ i = <

0, 1], it follows that ¢y, € [—5,;711, 5,;;] Hence, by Hoeffdings’s inequality for ¢ > 0 we have

1 — —n?t?
Pl|= nml€ir) —Eenrmler) >t] <2 =2 —nt?6% /2).
(n;Ck (€ k) Cn,k, (€ k) = >_ €xXp (2”5k_i> exp(—n kn/)

Therefore,

n

1
E Z Ck’,n,m(ei,k’) - Ecn,k,m(ei,k)

1=1

Bk,n
m=1

t
>
N \V4 Bk,n)

< 2By, exp(—nt2B,;711§,37n/2),
and so for any fixed € > 0 we can take t = , /%—Sﬁk‘" to obtain (ii) as then
k,n

P (IChn — Crall2 > t) < 283 0.

Since for any m,s € {1,...,Bg,} we have by, mbrns € [0,1] it follows by Hoeffding’s
inequality that for any ¢ > 0

'

Therefore, since ||I'y,, — Tk

1 n
E Z bk,n,m<€i,k)bk,n,s(€i,k) - E[bk,n,m(ei,k)bk,n,s(Ei,k)]
=1

> t) < 2exp(—2nt?).

lo < ||fkn —I'y.n||F and both fkn and Iy, are zero for all (m, s)

S31This is evident from their definition. See also property (36) (p. 96) of de Boor (2001).

o4



entries where |m — s| > 3 (de Boor, 2001, (20), p. 91) we have that

P (0 = Thall2 > 1)

<P (k0 — Thallr > ¢)

B, » min(By ,,m+3)
Sy ot |

m=1 s=max(m—3,1)

—2nt?
< 14By, ,, exp ( 7Bn ) .
k.n

Putting ¢ = 4/ m we obtain (iii) as

P (Ilfkn = Tealle = t) < 148}, = 0.

1 n
ﬁ Z bk,n,m(‘fi,k)bk,n,s(ei,k) - E[bk,n,m(ei,k)bk,ms(ei,k)] Z

i=1

t
\V4 7Bk,n>

Since Iy, is symmetric and positive (semi-)definite we have that:5%?

Bk,n

||Fk,nH2 < ||Fk,nHoo = max Z]Ebn,k,m<€k)bk,n,s(€k>-
s=1

mzlv"'7Bk,n

Then, since for any z € R, each row of by, (2)by..(2) has at most 7 non-zero entries,>** all
of which are bounded above by 1 we have

Bk,n

Hrk,nH2 S max ZEbn,k,m(Ek)bk,n,s(€k)
s=1

m=1,....Bx n —

Bk,n 5k,n,m+4
= max Z/ bk,n,m(»z)bk,n,s(z)nk(z)dZ
m:17---7Bk,n s=1 gkr,n,'m

S max 7||77k||oo45k,n

m:l,..‘,Bk’n

= 28|77k /|0 Ok,

which yields (iv) in conjunction with requirement (iii) of Assumption 3.

By Assumption 3 part (v), on [Zf,,Z]] we have n(z) > ¢dy,. Hence n(z) — cdpn > 0
and 50 [ bgnbj,, (1 — k)X = [(Orn/1 — Okn) (bknr/1 — Okn)’'A. Note that the functions
brin/1 — O satisty [(bgi\/n — cOkn)?dX < 0o and hence belong to Lo(A). It follows that

532Gee e.g. Theorem 5.6.9 in Horn and Johnson (2013).
S33bk7n7m(z) = 0 outside [k n,m, &k n,m+4). See (20) on p. 91 in de Boor (2001).
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the matrix [ by b}, (1 — o) dX is a Gram matrix and hence positive semi-definite. This
implies that Iy, > cékmfkm where flm is defined as in lemma S25. Hence, by the Rayleigh

quotient theorem (see e.g. Theorem 4.2.2 in Horn and Johnson, 2013) and lemma S25
/\rnin(Pk,n) > )\min(65k,nfk,n> — C(Sk,n)\min<fk,n> > CU(Sz’n,

for a v > 0, which may be used to conclude that (v) holds via

1

Py —
H k,nHQ >\min<rk,n)

< (cv) 10,2

To demonstrate the last claim, note that with the results just derived, under our assump-

tions we have,

. . Br.n10g B
[Canlle < NIChn—ChalloH|Chnll2 = Or ( m;—g) +0 (hnv/Bin ) = Op (80 /Brn)
k,n

and, using inequality (5.8.2) from Horn and Johnson (2013),

IT5nll2 < ITh (2 + Lo = TralTin) 2
< Tnll2l (7 + [Cam = Tral D) ™o

~ -1

< Thllz (1= If%n = TenlTiklz) (50)
~ -1

< Tkl (1= 1Bk = Thall2l Tkl

= Op(0)-

Using these intermediate results along with (ii) - (v) and our hypotheses we obtain that

[ — Vinll2 = ||IA”,§}LCE,” — T Cronll2
<N (@ = D) Cranllz + 1T (Crn — Cie)ll2
< IPenll2lThm = Tinll2lTnll2 Crnllz + 1T 2l Crm — Crnll2

B} log Bk n Bk log Bk
-0 k.mn ) 10 n n
P ( (52,nn +0p 52’7171

= 013(1),

by Assumption 3 part (ii), since we have By.,, < Ay .0, and hence the dominant term above
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vanishes since for all large enough n,
= < P A G 108 (Al ) < 0T EAL G A (Ag i) = o(1).

Finally, by (iii) and (iv) and Assumption 3 part (ii) we have

. . Bi.n log By 1,
ITealle < If%n = Tallz + [Thalls = Or (\/ %) + O(8) = op(1),

since dy, — 0 and for all large enough n,

B, logB.., B B B B B
(R OB Bk 125 log(Agadil) < 08 n 2 ARG (Arndi ) = 0(1). O
n b 9 b b 9

Lemma S25. The smallest eigenvalue of the By, X By, Gram matriz fkn = fbk,n ;m dA
satisfies
)\min(fk,n) Z U(Sk,n > Oa

for av > 0.

Proof. Since by, m (2)bgn,s(x) is non-zero only for |m — s| < 3 and each by, is non-zero

only on [&m ks Emtakn)) (e.g. (20) p. 91 of de Boor, 2001), fkn is a symmetric banded

S34

Toeplitz matrix.”>* Its entries can be computed by direct integration:

(151

T ifm=s

% if j|m—s|=1
[Fk,n}m,s :516,71 X 4—12 if ]m—s\ =2.

ﬁ if |m —s| =3

0 if |m —s| >3

Let fo =L fi=f1 =25, f = [ = 4i2~ and f3 = f_3 = 7 and let f; :== 0 for
|s| > 3. Now, let f(0) = 22’273 f:€'9). Then, 'y, /6y, is then the matrix generated by f
. ~ min(Bg_,,—1,3 s S 3

in the sense that 'y, /0k.n = T (f) = Zs:£r£h(8k7n)—l73) frJ;, where each J; is the By, X By,
matrix which is zero everywhere except for the (7, j)-th entries where i —j = s, where it has a

value of 1.5% Since f € Ly([—m, n]) and is real on [—, 7] by Theorem 6.1 in Garoni and Serra-

534 As can be easily verified, unlike in the case of linear (k = 2) or quadratic splines (k = 3), this matrix is
not diagonally dominant. In the case of k € {2,3} this argument could be completed in a simpler fashion
by using the Gershgorin circle theorem.

535See section 6.1 in Garoni and Serra-Capizzano (2017), noting that it is clear that f € Ly ([—m, 7).
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Capizzano (2017) we have that )\min(fk,n) = 5k,n)\min(l~“k,n/5k7n) > O infpei—r . f(0) = v,
where v = infpe_r A f(0) > 0. O

Lemma S26. Suppose £ € RNT! such thata = & < & < -+ <&y =0b, h = maxe(n] & —
&1, and let G(&) be the linear space formed by degree | splines with knots . Then, if
f € C'a,b] we have that

: (l DUy e - -
inf — flloo < —=*h ) = a7 Y| o,
N T
where ¢; depends only on [.
Proof. This is a special case of Theorem 20.3 in Powell (1981). O

S7 Power optimality under strong identification

In either the setting considered in the main text or that introduced in Section S2, consider
local alternatives of the type given in (17). We now prove the limiting power statements
claimed in equations (18), (19) and (20).

Proposition S2. Suppose that Assumptions 1, 2 and 3 (or S2, S3, S4 and S5) hold, « € R
and Ty > 0. Then, (18) holds.

Proof. Apply Proposition S3 in the case where L, = 1 to obtain
im Py g appn =1-P (X%(jeQQ) < Ca) -

The right hand side is the power function of the test ¢(Z) == 1{Z% > ¢,} for Z ~ N'(Z,/%¢, 1).
tX=7Z —i’;/Qq, then

W(Z) = 1{(X — 1,7 > c.} = 1{|X = L,/%q| > 202}, X ~N(0,1),

hence Evy(Z) is (18). O

Proposition S3. Suppose that Assumptions 1, 2 and 3 (or S2, S3, S4 and S5) hold and T
is positive definite. Then, (19) holds.

Proof. The proof of Theorem 1 (or Theorem S2) showed that the conditions of Theorem
S1 hold. Therefore, by (S17), ¢, is equal to the 1 — a quantile of a X%a distribution with
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probability 1 for all large enough n. By (S15), (S16), Le Cam’s third lemma (e.g. Example
6.7 in van der Vaart (1998)) and Theorem 12.14 in Rudin (1991),

VNP s, ~> N (Zyq, o) under Py, 4 p)-

By condition 3, the mutual contiguity which follows from (S15) and Example 6.5 in van der
Vaart (1998), Proposition S1 and Theorem 9.2.3 in Rao and Mitra (1971)

~

Snmn ~ x%a(q/fgq) under P&L(q7d7h),

from which the result follows. ]

Proposition S4. Suppose that Assumptions 1, 2 and 3 (or S2, S3, S4 and S5) hold and Ty
is positive definite. Then, (20) holds.

Proof. By arguing exactly as in Proposition S3 with convergent sequences (¢, gn, hn) —

(q,d, h) replacing the fixed (q,d, h) in that Proposition one obtains that

~

Snm XZLQ(‘JIZJQ) under P &(qn,dn,hnw

and hence
lim P ypn=1—P (X%a (¢ Thq) < ca) , (S51)

n—oo
with ¢, the 1 — a quantile of a X%a distribution. The proof is completed by a standard
subsequence argument. Note first that the map (q,d, h) — ¢'Zyq from V — R is continuous.

As K is compact this function attains its infimum, hence
u = inf{q¢Zyq : (q,d,h) € K} =min{q'Zyq : (¢,d,h) € K}.
Taking (¢, ds, hy) € K such that ¢,Zpq, = u, we have by (S51)
. : n : N _ 2 _.
llglﬁs;}p (q,d}}rzl)fGKa By (qanPn < nh_)n;lo Py edopyPn =1—P (X7, (w) <o) =R.  (S52)

There is a sequence (v,,),eny C K and a subsequence (n;) ey such that

lim v,, = v, = (qx, ds, h) € K,

J—00
and
5= ligglf (q,d,iirzl)feK; Péi(q’d’h)san - glggo Penjj (an; ’d"j’h"j)gpnj' (853)
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Construct a new sequence (v, )men as follows. For all m € [n;,n;+1) NN for some j € N put

vy, = Un, and for m = 1,...,n; put v}, = v,,. By construction lim,, . v, = v,. By (551)

lim Py e yom =1-P (X2 (u) <e,) >R, with u* = (q)Zyq > u.

m—r0o0

For any € > 0, there is a M € N such that if m > M, B o)

display. Taking a subsequence nj, such that for all k£ € N we have my, = n;, > M gives

Ym > R — € by the preceding

S=8- PG"JJZ (U:ij)(pnjk T Pg:;; (U:nk)gpmk = S - PQ"JJZ (U:ij)gon]'k tR-—e
Take k — oo to conclude (via (S53)) that S > R —e. Since € > 0 was arbitrary, it follows
that S > R. Combine with equations (S52) and (S53) to obtain (20). O

S8 Additional simulation results

In this section we provide a number of additional simulation results.

S8.1 Truncation in the baseline model

In our main simulations we truncated the effective information matrix estimate at machine

.. : 1
precision, i.e. Vn/

? = 1073%, Here we investigate the sensitivity of the rejection frequencies to
this choice. Specifically, we replicate Table 2 from the main text, fixing B = 6, but allowing
for different truncation rates va/? = 1073%,1075,10~1.5% The value 107! is a high truncation
value which implies that we end up truncating often when all densities are Gaussian. The
results are shown in Table S1.

We find that the results are not sensitive to the truncation parameter choice. Comparing

. .. 1/
machine precision to v,

> =107" yields no differences at all, whereas va/? = 107! makes the
test slightly conservative. Closer inspection reveals that the under rejection is due to cases
where all eigenvalues are truncated and hence rank(f%) = 0. In Theorem 1 this corresponds

to the conservative case.

S8.2 Additional power results for the baseline model

Figure 4 in the main text compared the power of different tests for the baseline model
Y; = A~ '¢; for the case where n = 1000. Here we show the results for n = 200 and n = 500.

S36Recall that the specification corresponds to the baseline model ¥; = A~ '¢;, with A a rotation matrix
parametrized by the Cayley transform. The first shock is always drawn from a Gaussian distribution whereas
the remaining k = 2,..., K are from different distributions whose densities are shown in Figure 3.
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Specifically, Figures S1 and S2 show the results.

Overall, the patterns that we find are similar as in the main text. One thing that stands
out is that the S&™™ test over-rejects for these smaller sample sizes, essentially confirming
the results in Table 3. It is possible that a more careful selection of the relevant higher order
moments will improve this finding.

Besides this our two main findings from the main text hold. First, the standard LM test
is the preferred approach whenever the true density is known, but the semi-parametric score
test comes close in terms of power. Second, for all other densities the semi-parametric score

test shows the highest power.

S8.3 Additional power results for the LSEM

Figure 5 in the main text compared the power of different tests for the LSEM model for
the case where n = 1000. Here we show the results for n = 200 and n = 500. Specifically,
Figures S3 and S4 show the results.

We find that for n = 200 the power of tests is generally quite low, indicating that for
small sample sizes little can be learned by exploiting deviations from the Gaussian density.
This holds most notably for the Student’s ¢ densities, the skewed unimodal density and the
bimodal density. Intuitively, given a small sample these densities are hard to distinguish
from the normal density and little can be learned about the parameter a. A reassuring
finding is that the null rejection frequency of the test remains well controlled. These findings
persist when we increase to n = 500, though the power does improve as one would expect.

Overall, the implementing the test with one-step efficient estimates leads to higher power,
but the null rejection frequency of the test is controlled less well. Therefore we recommend

using OLS estimates for § when the sample size is small.

S8.4 Heteroskedastic LSEM model

In this section we study the empirical rejection frequency (under the null) of the semi-

parametric score test for the heteroskedastic baseline model. Specifically we consider
Y; = Ala, 0, X;) e Ao, 0,X;)" = L(0)D(o, X:)*R(a)" , (Sh4)

where R(«) is a rotation matrix parametrized by the Cayley transformation of a skew-
symmetric matrix (e.g. Gouriéroux, Monfort and Renne, 2017), L(o) is lower triangular

with positive diagonal elements and D(o, )N(i) is a diagonal matrix with diagonal elements
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given by
[D(O',XZ)LJIGXP (O’;IXZ) y jzl,,K s

where 01 is a (d — 1) x 1 parameter vector. Note that the average scaling of the errors is
captured by L(o) and D(o, X;) is the only heteroskedastic part. More elaborate specifications
that allow off-diagonal elements of L to depend on X; are also possible.

The results for different sample sizes, dimensions K and number of explanatory variables
are shown in Table S2. Overall, we find a similar pattern as for the LSEM model from the
main text (cf Table 4). When K = 5 and the sample size is small, i.e. n = 200, the test
tends to over-reject. The over-rejection vanishes for larger sample sizes. A slight difference
is observed for heavy tailed densities (e.g. ¢(5)) where even with n = 1000 there is still some

over-rejection.

S9 Additional empirical results

In this section we present some additional results for the returns to schooling application of
section 6. Specifically, we consider the more flexible model from Section S2 which allows for
conditional heteroskedasticity.

Starting from the baseline linear IV model with a possibly scalar endogenous instrument:

yi = oqw; +b,X; + u
2z = B.X;+ (wf/ou)u + e

We now allow the scaling of the errors o, 0, and o, to be a flexible functions of X;. Specifi-
cally, we follow Wooldridge (2012, Chapter 8) and model the scales using flexible functions,
ie.

0;(X;) = 0j0exp <0j1)~(i71 +...+ O-jdXi,d_1> , j=u,v,e,

see also Romano and Wolf (2017) for more elaborate specifications. The coefficients oy, are
estimated along with the other well identified parameters. Following (23) we write the model

in our general form

}/; = BXZ + A_1<Oé, g, XZ)GZ ) (856)
Uu(Xz) + CklUU(Xi)p + 1Ty 1/ 1-— p20'1,<Xi) &17T0'6<XZ')
A Ha,0,X;) = po,(X;) + s V1= p?0,(X;) oo (X;) ,
(0] 0 Oe(Xi)
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which shows that the model is a special case of (522). For this specification we reconstruct
the confidence set for & = (v, a2). The result is shown in Figure S5.

We find that the confidence region is quite similar when compared to the homoskedastic
one. The volume is slightly smaller and there is more mass on the probability that ay is
positive. Importantly however, the main conclusion remains the same. Even when relaxing
the instrument validity assumption the effect of education is positive and quite precisely
identified.

An obvious caveat is that this result is obtained under the additional assumption that
the model for heteroskedasticity is correctly specified. An open question is how to handle
model mis-specification in the class semi-parametric LSEM models. We leave this for future

research.
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Figure S1: POWER COMPARISON BASELINE MODEL n = 200
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Notes: Empirical power curves for the baseline model with k = 2 and n = 200. Each plot corresponds to the
choice for densities €, for k£ > 2, where the numbers correspond to the different densities listed in Figure 3.
The solid red line corresponds to S5, the dashed blue line to LM™®€ the dotted pink line to LMP™® and the

dot-dashed green line to S&™™.
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Figure S2: POWER COMPARISON BASELINE MODEL n = 500
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Notes: Empirical power curves for the baseline model with k£ = 2 and n = 500.
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choice for densities €, for k > 2, where the numbers correspond to the different densities listed in Figure 3.
The solid red line corresponds to S5, the dashed blue line to LM™€ the dotted pink line to LMP™® and the

dot-dashed green line to S&™™.

67



Figure S3: POwErR LSEM n = 200
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Notes: Empirical power curves for the LSEM model with & = 2, d = 2 and n = 200. Each plot corresponds
to the choice for densities €; j, for k£ > 2, where the numbers correspond to the different densities shown in
Figure 3. The solid red line corresponds to the empirical rejection frequency of the S’y test where 4 = («p, B),
with 3 the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the S”:Y
test where 4 = (ay, B), with 3 the one-step efficient MLE estimator.
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Figure S4: POwErR LSEM n = 500
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Notes: Empirical power curves for the LSEM model with £ = 2, d = 2 and n = 500. Each plot corresponds
to the choice for densities €; 1, for £ > 2, where the numbers correspond to the different densities shown in
Figure 3. The solid red line corresponds to the empirical rejection frequency of the 5”:, test where 4 = («p, B),
with /3 the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the 34,
test where 4 = (ap, B), with 3 the one-step efficient MLE estimator.
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Figure S5: CONFIDENCE SETS: RETURNS TO SCHOOLING
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Notes: We show 95% (light gray) and 67% (dark gray) confidence sets for a = (ay, ), where oy captures
the effect of education on log wages and as capture the correlation between the instrument (proximity to
schooling interacted with parental education) and the error of the log wage equation. The red line indicates
the confidence interval under the restriction of instrument exogeneity, i.e. as = 0. Figure (a) shows the result
after inverting the S’;, test statistic with heteroskedastic errors. Figure (b) shows the result after inverting

the same test statistic but with homoskedastic errors.
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Table S1: REJECTION FREQUENCIES S’ﬁ TEST FOR BASELINE MODEL: TRUNCATION

n K u/? 1 2 3 4 5 6 7 8 9 10
200 2 107308 0.051 0.047 0.048 0.041 0.050 0.049 0.047 0.049 0.050 0.044
200 2 1075  0.051 0.047 0.048 0.041 0.050 0.049 0.047 0.049 0.050 0.044
200 2 10~ 0.051 0.047 0.048 0.041 0.050 0.049 0.047 0.049 0.050 0.044
200 3 107308 0.046 0.041 0.049 0.036 0.045 0.052 0.046 0.048 0.049 0.047
200 3 1075  0.046 0.041 0.049 0.036 0.045 0.052 0.046 0.048 0.049 0.047
200 3 1071 0.046 0.043 0.049 0.036 0.044 0.052 0.046 0.049 0.049 0.045
200 5 10739 0.034 0.040 0.037 0.037 0.034 0.044 0.041 0.048 0.044 0.042
200 5 1075  0.034 0.040 0.037 0.037 0.034 0.044 0.041 0.048 0.044 0.042
200 5 10~ 0.041 0.039 0.040 0.036 0.037 0.047 0.042 0.050 0.044 0.040
500 2 107308 0.050 0.044 0.052 0.045 0.051 0.052 0.052 0.043 0.049 0.049
500 2 1075 0.050 0.044 0.052 0.045 0.051 0.052 0.052 0.043 0.049 0.049
500 2 1071 0.050 0.044 0.052 0.045 0.031 0.052 0.052 0.043 0.049 0.049
500 3 107308 0.048 0.046 0.040 0.047 0.050 0.055 0.054 0.047 0.051 0.048
500 3 1075 0.048 0.046 0.040 0.047 0.050 0.055 0.054 0.047 0.051 0.048
500 3 1071 0.038 0.048 0.042 0.045 0.050 0.055 0.054 0.047 0.051 0.051
500 5 107305 0.042 0.038 0.041 0.039 0.045 0.050 0.040 0.050 0.052 0.043
500 5 1075 0.042 0.038 0.041 0.039 0.045 0.050 0.040 0.050 0.052 0.043
500 5 1071 0.043 0.034 0.050 0.040 0.047 0.051 0.041 0.050 0.052 0.042
1000 2 10739 0.056 0.048 0.045 0.047 0.050 0.053 0.049 0.049 0.045 0.050
1000 2 107°  0.056 0.048 0.045 0.047 0.050 0.053 0.049 0.049 0.045 0.050
1000 2 101 0.010 0.048 0.041 0.047 0.050 0.053 0.049 0.049 0.045 0.050
1000 3 10739 0.046 0.044 0.046 0.042 0.049 0.050 0.046 0.051 0.049 0.047
1000 3 10°  0.046 0.040 0.046 0.042 0.049 0.050 0.046 0.051 0.049 0.047
1000 3 107" 0.039 0.044 0.035 0.043 0.049 0.050 0.046 0.050 0.049 0.047
1000 5 10739 0.044 0.042 0.043 0.038 0.045 0.050 0.043 0.050 0.049 0.046
1000 5 10°  0.044 0.042 0.043 0.038 0.045 0.050 0.043 0.050 0.049 0.046
1000 5 10 0.043 0.050 0.044 0.036 0.050 0.053 0.042 0.053 0.049 0.047

Notes: The table shows the empirical rejection frequencies for the Sy test based on S = 5,000 Monte Carlo
replications for the baseline model ¥; = A~ '¢;. The test has nominal level @ = 0.05. The columns denote

/

the sample size n, the dimension of the model K, the truncation rate vi/? and the choice for densities €iks

for k > 2, where the numbers correspond to the different densities shown in Figure 3.
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Table S2: REJECTION FREQUENCIES Sg TEST FOR HETEROSKEDASTIC MODEL

n K d 1 2 3 4 5 6 7 8 9 10
200 2 2 0.061 0.061 0.065 0.072 0.054 0.053 0.054 0.040 0.056 0.045
200 2 3 0.063 0.069 0.070 0.085 0.067 0.061 0.058 0.047 0.062 0.051
200 3 2 0.074 0.088 0.092 0.127 0.076 0.071 0.081 0.047 0.081 0.056
200 3 3 0.079 0.093 0.103 0.145 0.080 0.078 0.082 0.044 0.081 0.065
200 5 2 0.126 0.167 0.197 0.279 0.132 0.097 0.068 0.056 0.057 0.080
200 5 3 0.151 0.180 0.209 0.307 0.151 0.107 0.065 0.062 0.059 0.080
500 2 2 0.050 0.060 0.057 0.075 0.058 0.054 0.035 0.045 0.061 0.051
500 2 3 0.054 0.060 0.062 0.079 0.063 0.055 0.040 0.048 0.052 0.050
500 3 2 0.061 0.074 0.079 0.110 0.060 0.063 0.044 0.046 0.078 0.051
500 3 3 0.070 0.079 0.084 0.115 0.064 0.058 0.052 0.048 0.074 0.050
500 5 2 0.084 0.113 0.139 0.201 0.091 0.075 0.050 0.060 0.097 0.069
500 5 3 0.094 0.132 0.158 0.229 0.095 0.090 0.047 0.053 0.091 0.061
1000 2 2 0.059 0.060 0.057 0.066 0.053 0.050 0.026 0.040 0.057 0.045
1000 2 3 0.055 0.055 0.062 0.072 0.049 0.053 0.027 0.046 0.054 0.053
1000 3 2 0.056 0.062 0.069 0.087 0.056 0.056 0.030 0.047 0.072 0.050
1000 3 3 0.053 0.067 0.076 0.102 0.054 0.055 0.035 0.045 0.065 0.057
1000 5 2 0.071 0.092 0.101 0.150 0.074 0.051 0.048 0.042 0.051 0.051
1000 5 3 0.072 0.092 0.100 0.145 0.071 0.052 0.049 0.046 0.052 0.050

Notes: The table shows the empirical rejection frequencies for the S5 test based on S = 5,000 Monte Carlo
replications for the heteroskedastic model Y; = A(a, o, X;)"'¢;. The test has nominal level a = 0.05. The
columns denote the sample size n, the dimension of the model K, the number explanatory variables d and
the choice for densities €;x, for k > 2, where the numbers correspond to the different densities shown in

Figure 3.
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