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S1 Notation

x := y means that x is defined to be y. The Lebesgue measure on RK is denoted by

λK or λ if the dimension is clear from context. The standard basis vectors in RK

are e1, . . . , eK . For any matrix M , M † is its Moore – Penrose pseudoinverse. We

make use of the empirical process notation: Pf :=
∫
f dP , Pnf := 1

n

∑n
i=1 f(Yi)

and Gnf :=
√
n(Pn−P )f . For any two sequence of probability measures (Qn)n∈N

and (Pn)n∈N (where Qn and Pn are defined on a common measurable space for

each n ∈ N), Qn /Pn indicates that (Qn)n∈N is contiguous with respect to (Pn)n∈N.

Qn / . Pn indicates that both Qn / Pn and Pn / Qn hold, see van der Vaart (1998,

Section 6.2) for formal definitions. X ⊥⊥ Y indicates that random vectors X and

Y are independent; X ' Y indicates that they have the same distribution. a . b

means that a is bounded above by Cb for some constant C ∈ (0,∞); the constant

C may change from line to line. clX means the closure of X. If S is a subset of

a vector space, linS or SpanS means the linear span of S. If S is a subset of a

topological vector space, lin S or cl SpanS means the closure of the linear span

of S. If S is a subset of an inner product space (V, 〈· , ·〉), S⊥ is its orthogonal

complement, i.e. S⊥ = {x ∈ V : 〈x , s〉 = 0 for all s ∈ S}. If S ⊂ V is complete

(hence a Hilbert space) the orthogonal projection of x ∈ V onto S is Π(x|S). The

total variation distance between measures P and Q defined on the measurable

space (Ω,F) is dTV (P,Q) = supA∈F |P (A)−Q(A)|. Pn denotes weak convergence

under the sequence of measures Pn. If the sequence of measures is clear from

context, we write just  .

S2 Additional results

S2.1 A consistent estimator of the Moore – Penrose pseu-

doinverse

As is well known, the Moore – Penrose pseudoinverse of a matrix is not a contin-

uous function on the space of positive semi-definite matrices (see e.g. Ben-Israel

and Greville, 2003, Section 6.6). In consequence, if one has a consistent estima-

tor M̌n of some matrix M , it need not follow that M̌ † is consistent for M †. A

necessary and sufficient condition for this convergence in probability to occur is

that rank(M̌n) = rank(M) with probability approaching one as n→∞ (Andrews,

1987, Theorem 2).

Here we record a construction given in the supplementary appendix to Lee
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and Mesters (2024a) which results in an estimator M̂n which is consistent for M

and satisfies rank M̂n = rankM with probability approaching one as n→∞ and,

in consequence, M̂ †
n is consistent for M †. This construction requires an initial

estimator with a known rate of convergence and is based on a spectral cut-off

regularisation scheme. It is very similar to that considered in Lütkepohl and

Burda (1997) and is a special case of the larger class of regularisation schemes

considered by Dufour and Valéry (2016). That this results in an estimator with

the claimed properties is recorded in Proposition S2.1 below, which is proven in

Lee and Mesters (2024b).1

In particular, suppose that the sequence of (random) positive semi-definite

(symmetric) matrices (M̌n)n∈N (of fixed dimension L× L) satisfy

Pn
(
‖M̌n −Mn‖2 < νn

)
→ 1, (S1)

for a sequence (Pn)n∈N of probability measures, a known non-negative sequence

νn → 0 and a sequence of deterministic matrices Mn → M with rank(Mn) =

rank(M) for all sufficiently large n.2 Let M̌n = ǓnΛ̌nǓ
′
n be the corresponding

eigendecompositions and define

M̂n := ǓnΛn(νn)Ǔ ′n , (S2)

where Λn(νn) is a diagonal matrix with the νn-truncated eigenvalues of M̌n on the

main diagonal and Ǔn is the matrix of corresponding orthonormal eigenvectors.

That is, if (λ̌n,i)
L
i=1 denote the non-increasing eigenvalues of M̌n, then the (i, i)-th

element of Λn(νn) is λ̌n,i1(λ̌n,i ≥ νn).

Proposition S2.1 (Proposition S1 in Lee and Mesters (2024a)): If (S1) holds,

Mn → M and for all n greater than some N ∈ N rank(Mn) = rank(M), then

M̂n
Pn−→M and

Pn

(
rank(M̂n) = rank(M)

)
→ 1,

1Dufour and Valéry (2016) prove an analogous result (their Proposition 9.1) for a broader class
of regularisation schemes. However the statement of their result involves an additional rate
term (which satisfies their Assumption 2) as compared to the result stated in Proposition S2.1.

2(S1) is implied by ‖M̌n−Mn‖ = oPn(νn) for any matrix norm. Moreover, the existence of such
a sequence (νn)n∈N is guaranteed if ‖M̌n −Mn‖2 → 0 in Pn-probability, however its explicit
knowledge is necessary to perform the subsequent construction. In most cases Mn = M for all
n ∈ N.
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where M̂n is defined as in (S2). In consequence,

M̂ †
n

Pn−→M †.

S2.2 The quotient space Hγ

I first briefly recall some preliminaries regarding quotient spaces, for the conve-

nience of the reader. Following this a lemma used during the development of the

power bounds is established.

S2.2.1 Preliminaries on quotient spaces

Let X be a linear space and V a subspace of X. The quotient of X by V , X /V

is a linear space whose elements are the cosets [x] := x + V := {x + n : n ∈ V }
(for x ∈ X). x (or any other member of [x]) is a coset representative. The zero

vector in X /V is [0] = 0 + V = V .

Vector addition and scalar multiplication are defined according to:

[x+ y] := [x] + [y], [ax] := a[x] for all [x], [y] ∈ X /V and all a ∈ R.

The map πV : X → X /V defined by πV (x) := [x] is the natural projection or

quotient map. πV is a surjective linear transformation with ker πN = V (Roman,

2005, Theorem 3.2).

There are two main cases of interest in the present paper. In the first, X is a

linear space equipped with a positive semi-definite symmetric bilinear form, 〈· , ·〉.
Let ‖·‖ be the corresponding semi-norm formed in the usual way: ‖x‖ :=

√
〈x , x〉

and let V := {x ∈ X : ‖x‖ = 0}, which is evidently a subspace of X. We define

an inner product on X /V as follows:

〈[x] , [y]〉V := 〈x , y〉 .

Symmetry and linearity in the first argument of 〈· , ·〉V follow from the correspond-

ing properties of 〈· , ·〉. For positive definiteness, suppose that [x] 6= [0]. Then,

〈x , x〉V = ‖x‖2 > 0 since x /∈ kerπV = V . In consequence (X /V, 〈· , ·〉V ) is an

inner product (pre-Hilbert) space. The induced norm on X /V evidently satisfies

‖[x]‖V = ‖πV (x)‖V = ‖x‖.
In the second case of interest, X is a linear space equipped with a semi-norm

‖ · ‖. Let V := {x ∈ X : ‖x‖ = 0}, which is evidently a subspace of X. We define
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a norm on X /V as follows:

‖[x]‖V := ‖x‖.

This definition ensures that (X /V, ‖ · ‖V ) is a normed space (Rudin, 1991, 1.43).

S2.2.2 A lemma on the kernel of π1

Lemma S2.1: Suppose Assumption 3.1 holds and Bη is a linear space. Let π′1

denote the restriction of π1 to Hγ. Then, the closure of kerπ′1 in Hγ is kerπ1.

Proof. Since π1 is continuous, kerπ1 = π−11 ({0}) is closed. Hence it suffices to

show that

kerπ1 = {[h] ∈ Hγ : [h] = [0, b]} ⊂ cl ker π′1 = cl{[h] ∈ Hγ : [h] = [0, b]}.

Let [h] = [0, b] ∈ kerπ1. There is a sequence Hγ 3 [hn] = [tn, bn] → [h]. Decom-

posing the norm, we have that

‖[hn]− [h]‖γ = ‖Π⊥[hn]− Π⊥[h]γ‖γ + Π[hn]− Π[h]‖γ
= t′nĨγtn + ‖Π[tn, 0] + [0, bn]− [0, b]‖γ

= t′nĨγtn +

∥∥∥∥∥
dθ∑
j=1

tn,jΠ[ej, 0] + [0, bn]− [0, b]

∥∥∥∥∥
γ

= t′nĨγtn + ‖t′ne + [0, bn]− [0, b]‖γ ,

with e = (Π[e1, 0], . . . ,Π[edθ , 0])′, where ej is the j-th canonical basis vector in

Rdθ . For each n ∈ N, there are ěn = ([0, b̌1,n], . . . , [0, b̌dθ,n])′ with each [0, b̌j,n] ∈ Hγ

such that ∥∥[0, b̌j,n]− Π[ej, 0]
∥∥ ≤ 1

n|tn,j|
.

Hence, putting [0, b̃n] := t′něn + [0, bn], we have

‖[0, b̃n]− [0, b]‖γ ≤ ‖t′něn − t′ne‖γ + ‖t′ne + [0, bn]− [0, b]‖γ ≤
dθ
n

+ o(1) = o(1).

Since each [0, b̃n] ∈ kerπ′1, the limit [0, b] ∈ cl ker π′1.

S2.3 Uniform Local Asymptotic Normality

The equivalence discussed in Remark 3.2 is proved in Proposition S2.2 below,

which is an adaptation of Theorem 80.13 in Strasser (1985). Hγ is assumed to be
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a subset (containing 0) of a linear space equipped with some pseudometric.

Assumption S2.1 (Uniform local asymptotic normality): Ln,γ(h) satisfies

Ln,γ(h) = ∆n,γh−
1

2
‖∆n,γh‖2 +Rn,γ(h),

where h = (τ, b), ∆n,γ : lin Hγ → L0
2(Pn,γ) are bounded linear maps and for any

hn → h in Hγ, Rn(γ, hn)
Pn,γ−−→ 0. Additionally, suppose that for each hn → h in

Hγ, (∆n,γhn)n∈N is uniformly square Pn,γ-integrable and

(∆n,γhn,∆n,γh)′
Pn,γ
 N (0, σγ(h) [ 1 1

1 1 ]) , σγ(h) := lim
n→∞

‖∆n,γh‖2.

Remark S2.1: Assumption S2.1 ensures that the pairs of sequences (Pn,γ)n∈N and

(Pn,γ,hn)n∈N are mutually contiguous for any hn → h ∈ Hγ (see e.g. van der Vaart,

1998, Example 6.5).

Remark S2.2: In Assumption S2.1, the assumption of joint convergence of (∆nhn,∆nh)′

is nedeed only because Hγ is not required to be linear. If Hγ is a linear space this

follows from the Cramér – Wold Theorem given the definition of σγ(h).

Remark S2.3: If (∆n,γ)n∈N is asymptotically equicontinuous on compact subsets

K ⊂ Hγ, then hn → h in Hγ implies ‖∆n,γ(hn − h)‖ → 0. In consequence

(∆n,γh)n∈N being uniformly square Pn,γ-integrable and ∆n,γh
Pn,γ
 N (0, σγ(h)) for

each h ∈ Hγ, suffices for (∆n,γhn)n∈N being uniformly square Pn,γ-integrable and

(∆n,γhn, ∆n,γh)′ =

(
1 1

0 1

)
(∆n,γhn −∆n,γh, ∆n,γh)′

Pn,γ
 N

(
0, [ 1 1

0 1 ]
[
0 0
0 σγ(h)

]
[ 1 1
0 1 ]′

)
= N (0, σγ(h) [ 1 1

1 1 ]) ,

for any hn → h ∈ Hγ.3

If Hγ is a Banach space metrised by its norm, the equicontinuity of (∆n,γ)n∈N

is guaranteed as uniform boundedness of (∆n,γ)n∈N (hence equicontinuity on Hγ)

is implied by uniform square Pn,γ-integrability of (∆n,γh)n∈N for h ∈ Hγ.

Proposition S2.2: Assumption S2.1 is equivalent to Assumption 3.1 plus asymp-

totic equicontinuity on compact subsets K ⊂ Hγ of (∆n,γ)n∈N and (h 7→ Pn,γ,h)n∈N,

where the metric on the relevant space of probability measures is dTV .

3Each ∆n,γhn ∈ L2(Pn,γ) by definition.
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Proof. Suppose first that Assumption 3.1 and the asymptotic equicontinuity con-

ditions hold. Let hn → h in Hγ. By asymptotic equicontinuity of (h 7→ Pn,γ,h)n∈N,

lim
n→∞

dTV (Pn,γ,hn , Pn,γ,h) = 0 =⇒ lim
n→∞

∫ ∣∣∣∣pn,γ,hnpn,γ,0
− pn,γ,h
pn,γ,0

∣∣∣∣ dPn,γ,0 = 0.

In combination with (compact) asymptotic equicontinuity of (∆n,γ)n∈N, this yields

Rn,γ(hn)−Rn,γ(h) = Ln,γ(hn)− Ln,γ(h) + oPn,γ (1) = oPn,γ (1).

That (∆n,γhn)n∈N is uniformly square Pn,γ-integrable and the required joint weak

convergence under Pn,γ follows from the asymptotic equicontinuity of (∆n,γ)n∈N

on compacts as discussed in Remark S2.3.

For the converse suppose that Assumption S2.1 holds. We need to prove only

the asymptotic equicontinuity conditions. It suffices to show that (i) ‖∆n,γ(hn −
h)‖ → 0 and (ii) dTV (Pn,γ,hn , Pn,γ,h) for any hn → h with hn, h ∈ K ⊂ Hγ. (i) holds

since for any convergent hn → h ∈ Hγ we have ∆n,γ(hn−h) = (1,−1)(∆n,γhn,∆n,γh)′
Pn,γ−−→

0 and so by the square uniform integrability and e.g. Theorem 2.7 in Serfozo

(1982), ‖∆n,γ(hn − h)‖2 → 0. That (ii) holds follows from Lemma S2.4 and

Ln,γ(hn)− Ln,γ(h) = ∆n,γhn −
1

2
‖∆n,γhn‖2 +Rn,γ(hn)−

[
∆n,γh−

1

2
‖∆n,γh‖2 +Rn,γ(h)

]
= oPn,γ (1),

since Rn,γ(hn) = oPn,γ (1), Rn,γ(h) = oPn,γ (1) and ‖∆n,γ(hn − h)‖2 → 0.

The following Lemmas provide conditions which can be useful for demonstrat-

ing (compact) equicontinuity in the i.i.d. case.

Lemma S2.2: If Hγ is a linear space and ∆n,γh = 1√
n

∑n
i=1Aγh for some bounded

linear map Aγ : Hγ → L2(Pθ), then (h 7→ ∆n,γh)n∈N is equicontinuous on compact

subsets of Hγ in L2(Pθ).

Proof. Let K ⊂ Hγ be compact and note that for any hn → h (all in K),

‖∆n,γ(hn − h)‖ = ‖GnAγ(hn − h)‖ = ‖Aγ(hn − h)‖ ≤ ‖Aγ‖‖hn − h‖ → 0.

Lemma S2.3: Let Γ,Γ′ be subsets of linear spaces, H a subset of a seminormed

linear space H ′ and W ⊂ RK. Suppose V is the intersection of a neighbourhood

of 0 in H ′ with H and ϕ : H 7→ Γ′ is a linear map such that γ + sϕ(h) ∈ Γ for
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each s ∈ [0, 1], h ∈ V and γ ∈ Γ. Let U := {γ + ϕ(h) : h ∈ V}. If

(i) For each γ ∈ Γ, Pγ is a probability measure on (W ,B(W)), dominated by a

σ – finite measure ν, with corresponding density pγ;

(ii) t 7→
√
pγ?+tϕ(h)(w) is absolutely continuous on [0, 1] for all γ? ∈ U , h ∈ V

and w ∈ W;

(iii) For all γ? ∈ U , h ∈ V, qγ?,h,s(w) =
∂ log pγ?+tϕ(h)(w)

∂t
|t=s satisfies

Pγ?+sϕ(h)[qγ?,h,s]
2 ≤ m(s)‖h‖2,

for m : [0, 1]→ [0,∞) with
∫ 1

0
m(s) ds <∞.4

Then there is an N such that for all n ≥ N , the functions h 7→ Pn,γ,h := P n
γ+ϕ(h/

√
n)

are dTV –Lipschitz with a common Lipschitz constant. Consequently, {h 7→ Pn,γ,h :

n ≥ N} is uniformly equicontinuous in dTV .

Proof. Let h? ∈ H and let h̃ := (h? − h). For all large enough n, h/
√
n and

h̃/
√
n belong to V and hence also γ0,n := γ + ϕ(h/

√
n) ∈ U . Therefore, by (ii)

qγ0,n,h̃/
√
n,s(w) exists for almost every s ∈ (0, 1) and

√
pγ+ϕ(h?/√n)(w)−

√
pγ+ϕ(h/√n)(w) =

√
pγ0,n+ϕ(h̃/

√
n)(w)−

√
pγ0,n(w)

=
1

2

∫ 1

0

qγ0,n,h̃/
√
n,s(w)

√
pγ0,n+sϕ(h̃/

√
n)(w) ds.

By Fubini’s Theorem, Jensen’s inequality and (iii),∫ (√
pγ+ϕ(h?/√n)(w)−

√
pγ+ϕ(h/√n)(w)

)2
dν ≤ 1

4

∫ ∫ 1

0

qγ0,n,h̃/
√
n,s(w)2pγ0,n+sϕ(h̃/

√
n)(w) ds dν

=
1

4

∫ 1

0

∫
qγ0,n,h̃/

√
n,s(w)2pγ0,n+sϕ(h̃/

√
n)(w) dν ds

≤ 1

4

∫ 1

0

m(s)
‖h̃‖2
n

ds

=
M‖h? − h‖2

4n
,

where M :=
∫ 1

0
m(s) ds. Therefore, by Lemmas 2.15 and 2.17 of Strasser (1985),

dTV (Pn,γ,h? , Pn,γ,h) ≤
√

2M

2
‖h? − h‖.

4qγ?,h,s(w) exists almost everywhere on (0, 1) under (ii).
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S2.4 Convergence of log-likelihood ratios and convergence

in total variation

Lemma S2.4: Suppose that for hn, g ∈ Hγ, Pn,γ,g / Pn,γ and

Ln,γ(hn)− Ln,γ(g) = oPn,γ (1).

Then dTV (Pn,γ,hn , Pn,γ,g)→ 0.

Proof. By the continuous mapping theorem and Le Cam’s first lemma (e.g. van der

Vaart, 1998, Lemma 6.4),

pn,γ,hn
pn,γ,g

= exp (Ln,γ(hn)− Ln,γ(g))
Pn,γ,g−−−→ 1.

By Le Cam’s first lemma again, Pn,γ,hn / Pn,γ,g. Let φn be arbitrary measurable

functions valued in [0, 1]. Since the φn are uniformly tight, Prohorov’s theorem

ensures that for any arbitrary subsequence (nj)j∈N there exists a further subse-

quence (nm)m∈N such that φnm  φ ∈ [0, 1] under Pnm,γ,g. Therefore by Slutsky’s

Theorem (
φnm ,

pnm,γ,hnm
pnm,γ,g

)
 (φ, 1) under Pnm,γ,g.

By Le Cam’s third Lemma (e.g. van der Vaart, 1998, Theorem 6.6), under Pnm,γ,hnm
the law of φnm converges weakly to the law of φ. Since each φn ∈ [0, 1]

lim
m→∞

[
Pnm,γ,hnmφnm − Pnm,γ,gφnm

]
= 0.

As (nj)j∈N was arbitrary, the preceding display holds also along the original se-

quence.

Corollary S2.1: Suppose that Assumption 3.1 holds and Hη is a linear space

equipped with the semi-norm ‖ · ‖γ. Then, if h, g ∈ Hγ are such that ‖h− g‖γ = 0,

dTV (Pn,γ,h, Pn,γ,g)→ 0.

Proof. By Assumption 3.1, the reverse triangle inequality and σγ(h−g) = ‖h−g‖γ
we have that Ln,γ(h)−Ln,γ(g) = oPn,γ (1). Noting Remark 3.1, apply Lemma S2.4

with each hn = h.
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S2.5 Orthogonal projections

Proposition S2.3: Let H1 and H2 be subspaces of a Hilbert space H. For any

h ∈ H, let h̆ := Π[h|H⊥1 ]. Then,

Π
[
h|(H1 +H2)

⊥] = h̆−Π
[
h
∣∣cl(H1 +H2) ∩H⊥1

]
= h̆−Π

[
h̆
∣∣∣cl(H1 +H2) ∩H⊥1

]
.

Proof. That the last equality in the display holds is an immediate consequence of

the fact that h̆ = h− Π[h|H1] and H1 ⊥ H⊥1 by definition. For the first equality,

by (A.2.11) of Proposition A.2.4 in Bickel, Klaassen, Ritov, and Wellner (1998),

Π [h| cl(H1 +H2)] = Π
[
h| cl(H1 +H2) ∩ [clH1]

⊥]+ Π [h| clH1]

= Π
[
h| cl(H1 +H2) ∩H⊥1

]
+ Π [h| clH1] .

Hence

Π
[
h|(H1 +H2)

⊥] = h− Π [h| cl(H1 +H2)]

= h− Π [h| clH1]− Π
[
h| cl(H1 +H2) ∩H⊥1

]
= h̆− Π

[
h| cl(H1 +H2) ∩H⊥1

]
.

Proposition S2.4: Let H1 and H2 be subspaces of a Hilbert space H. Define

h̆ := Π[h|H⊥1 ] for h ∈ H. Then

cl(H1 +H2) ∩H⊥1 = cl{h̆ : h ∈ H2}.

Proof. Firstly let f ∈ cl(H1 + H2) ∩ H⊥1 . So there are scalars ai, such that

f =
∑∞

i=1 ai(h1,i + h2,i) with each h1,i ∈ H1, h2,i ∈ H2 and f ∈ H⊥1 . Let g :=

−∑∞i=1 aiΠ[h2,i| clH1]. Suppose that f1 :=
∑∞

i=1 aih1,i 6= g. Then if e := f1 − g
one has e ∈ clH1 and ‖e‖ > 0. Therefore,

〈f , e〉 =
∞∑
i=1

ai 〈h2,i , e〉 −
∞∑
i=1

ai 〈Π[h2,i| clH1] , e〉+ 〈e , e〉

=
∞∑
i=1

ai

〈
h̆2,i , e

〉
+ 〈e , e〉

= 〈e , e〉
> 0.
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But this contradicts the fact that that f ∈ H⊥1 as e ∈ clH1. Hence

f =
∞∑
i=1

ai [h2,i − Π[h2,i| clH1]] =
∞∑
i=1

aih̆2,i,

thus f is in cl{h̆ : h ∈ H2}.5
Conversely, let f ∈ cl{h̆ : h ∈ H2}. Then

f =
∞∑
i=1

aih̆2,i =
∞∑
i=1

ai [h2,i − Π[h2,i| clH1]]

Since each h̆2,i = h2,i−Π[h2,i| clH1] ∈ clH1+clH2 ⊂ cl(H1+H2), f ∈ cl(H1+H2).

Moreover, by definition, h̆2,i ∈ H⊥1 . Therefore for any h1 ∈ H1,

〈f , h1〉 =
∞∑
i=1

ai

〈
h̆2,i , h1

〉
= 0,

hence f ∈ H⊥1 . That is, f ∈ cl(H1 +H2) ∩H⊥1 .

Lemma S2.5: Let X be an integrable random vector in RK defined on a probability

space (Ω,F ,P) and let F0 be a sub σ – field of F . Then, E[X|F0] = 0 (P-almost

surely) if and only if E[XZ] = 0 for all bounded F0 – measurable random variables

Z.

Proof. Suppose that E[X|F0] = 0. We have

E[XZ] = E[E[XZ|F0]] = E[E[X|F0]Z] = 0.

Conversely suppose that E[XZ] = 0 for all bounded F0 – measurable random

variables Z. Let A ∈ F0 and set Z := 1A. Clearly EZ2 ≤ 1. Let Y be any of the

conditional expectations E[X|F0]. Then, by definition,∫
A

Y dP =

∫
A

X dP =

∫
XZ dP = E[XZ] = 0.

Now, suppose {Y 6= 0} has positive measure. Then one of {Y > 0} or {Y < 0}
must. Say the first, the argument for the latter is analogous. This is {Y > 0} =

E = ∪n≥1En for En := {Y > 1/n}. So one Ek at least has positive measure. So

5That {h̆ : h ∈ H2} is a linear subspace (and hence equal to its linear span) is clear as it is the

image of the linear subspace H2 under the linear operator Π1 := Π[·|H⊥
1 ]. Hence cl{h̆ : h ∈ H2}

is the closed linear span of {h̆ : h ∈ H2}.
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∫
E
Y dP ≥

∫
Ek
Y dP ≥

∫
Ek

1/k dP = P(Ek)/k > 0. But this is a contradiction

since E ∈ F0.

Corollary S2.2: Let (U,X) be a random vector on a probability space (Ω,F ,P)

with U ∈ L2(P) and E[UU ′|X] non – singular almost surely. Let B ⊂ L2(Ω, σ(U,X),P)

be the set of bounded functions b of (u, x) such that E[b(U,X)U |X] = 0. Then

clB = {UZ : Z is a bounded, σ(X)–measurable random variable}⊥.

Proof. Suppose that b ∈ B. Then E[b(U,X)UZ] = E [E[b(U,X)U |X]Z] = 0.

Conversely suppose that b ∈ L2(Ω, σ(U,X),P) is such that E[b(U,X)UZ] = 0 for

Z any bounded σ(X) – measurable random variable. By Lemma S2.5 this implies

that E[b(U,X)U |X] = 0, whence by Lemma C.7 in Newey (1991) b ∈ clB.

Theorem S2.1: Let H be a Hilbert space. Let (hn)n∈N be a sequence in H, h ∈ H,

(Ln)n∈N be a sequence of closed (proper) linear subspaces of H and L a closed

(proper) linear subspace of H. Set gn := Π(hn|Ln) and g := Π(h|L). If

(i) hn → h ;

(ii) for each f ∈ L, there is a sequence (fn)n∈N and a N ∈ N such that fn → f

and fn ∈ Ln for n ≥ N ,

then gn → g.

Proof. Let Πn denote the projection onto Ln and Π that onto L. We consider

first the case where hn = h for each n ∈ N. Then gn = Πnh. We will show that

any subsequence of (gn)n∈N has a further subsequence which converges to g. In

particular, any subsequence of (gn)n∈N is bounded since ‖Πn‖ = 1. Hence it has

a weakly convergent subsequence, say (gnk)k∈N (Royden and Fitzpatrick, 2010,

Theorem 16.6). Let g? be this weak limit. By self-adjointness and idempotency

of orthogonal projections

〈gnk , gnk〉 = 〈Πnkh , Πnkh〉 = 〈h , Πnkh〉 → 〈h , g?〉 . (S3)

Let f ∈ L. By hypothesis there is a sequence (fn)n∈N with fn → f and fn ∈ Ln
for all sufficiently large n. Hence fnk → f and fnk ∈ Lnk for all sufficiently large

k. Therefore, since h− Πnkh ⇀ h− g?,

〈h− g? , f〉 = lim
k→∞
〈h− gnk , fnk〉 = 0

by Proposition 16.7 in Royden and Fitzpatrick (2010) and the fact that h− gnk ∈

12



L⊥nk for each k. In consequence g? = Πh = g. Therefore, by self-adjointness and

idempotency of Π and (S3)

lim
k→∞
〈gnk , gnk〉 = 〈h , Πh〉 = 〈Πh , Πh〉 = 〈g , g〉 ,

and hence by the Radon – Riesz Theorem (e.g. Royden and Fitzpatrick, 2010, p.

315) gnk → g. As the initial subsequence was arbitrary it follows that gn → g.

To complete the proof let hn → h be an arbitrary convergent sequence. Then

‖gn−g‖ = ‖Πnhn−Πh‖ ≤ ‖Πnhn−Πnh‖+‖Πnh−Πh‖ ≤ ‖hn−h‖+‖Πnh−Πh‖.

The first term on the right hand side converges to zero by assumption; the second

by the case with hn = h proven above.

S2.6 Uniform results under a measure structure

Assume that (Hγ,S, Q) is a finite measure space, where both the σ-algebra S
on Hγ and the finite measure Q are arbitrary. With such a structure uniformity

over “large” subsets holds under measurability assumptions as a consequence of

the pointwise result recorded in Remark 3.4 and and Egorov’s Theorem (see e.g.

Dudley, 2002, Theorem 7.5.1).

Corollary S2.3: Suppose the conditions of Theorem 3.1 hold, (Hγ,S, Q) is a

finite measure space and the functions h = (τ, b) 7→ πn(τ, b) are measurable. Then,

for any ε > 0 there is a K ∈ S such that Q(Hγ \K) < ε and

lim
n→∞

sup
(τ,b)∈K

|πn(τ, b)− π(τ)| = 0,

for πn and π as defined in Remark 3.4.

Proof. Let πn(h) := Pn,γ,hψn,θ and π(h) := 1−P(χ2
r(a) ≤ cr) if r ≥ 1 or π(h) := 0

if r = 0. By Remark 3.4, πn(h) → π(h) pointwise in h ∈ Hγ. π is measurable as

the pointwise limit of measurable functions (e.g. Dudley, 2002, Theorem 4.2.2).

By Egorov’s theorem (e.g. Dudley, 2002, Theorem 7.5.1), πn(h)→ π(h) uniformly

on a K satisfying the given requirements.

One set of sufficient conditions for the measurability requirement in the state-

ment of Corollary S2.3 is: Hγ is a topological space, S its Borel σ-algebra and

each h 7→ Pn,γ,hψn,θ = πn(h) is continuous. The last requirement holds a fortiori
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if each h 7→ Pn,γ,h is continuous in total variation.

If one requires only a uniform version of Corollary 3.1, one may place the

measure structure only on Hγ,0.

Corollary S2.4: Suppose that the conditions of Corollary 3.1 hold, that (Hγ,0,S, Q)

is a finite measure space and that the functions h = (τ, b) 7→ πn(τ, b) are measur-

able. Then, for any ε > 0 there is a K ∈ S such that Q(Hγ,0 \K) < ε and

lim
n→∞

sup
h∈K

Pn,γ,hψn,θ =

α if r ≥ 1

0 if r = 0
.

Proof. Let πn(h) := Pn,γ,hψn,θ and π(h) := α if r ≥ 1 or π(h) := 0 if r = 0.

By Corollary 3.1, πn(h) → π(h) pointwise in h ∈ Hγ,0. Since π is a constant

function it is measurable. By Egorov’s theorem (e.g. Dudley, 2002, Theorem

7.5.1), πn(h) → π(h) = c uniformly on a K satisfying the given requirements.

Hence,

lim
n→∞

sup
h∈K

πn(h) ≤ lim
n→∞

sup
h∈K
|πn(h)− c|+ c = c = π(h).

S2.7 Attaining the power bounds

The proof of Theorem 3.5 relies on the following result.

Theorem S2.2: Let (Ω,F ,P) be a probability space, H a linear space and B ⊂ H

a linear subspace of H. Suppose that Gn is a Gaussian process on (Ω,F ,P) with

index set H and covariance kernel Kn for each n ∈ N and that G is a Gaussian

process on (Ω,F ,P) with index set H and covariance kernel K. Suppose that

Kn(h, g) → K(h, g), h, g ∈ H. Let H be equipped with the positive semi - defi-

nite, symmetric bilinear form defined as 〈h , g〉 := K(h, g) and suppose that H is

separable under the induced pseudometric.

Fix h, g ∈ H and define

Xn := (Gnh,E[Gng|Gn]) , X := (Gh,E[Gg|G ]) ,

where Gn := σ({Gnf : f ∈ B}) and Gn := σ({Gf : f ∈ B}). Then Xn  X.

Proof. We first note that cl{Gb : b ∈ B} is a Hilbert space when viewed as a

subspace of L2, i.e. once functions a.e. equal have been identified. Hence an

orthonormal basis (bj)j∈N ⊂ clB of cl{Gb : b ∈ B} ⊂ L2 exists. Let Gn :=

σ({Gnbi : i ∈ N}) and G := σ({Gbi : i ∈ N}). Let Bm := (b1, . . . , bm), Gmn :=
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σ({Gnb : b ∈ Bm}) and Gm := σ({Gb : b ∈ Bm}). Define

Xm
n := (Gnh,E[Gng|Gmn ]) , Xm := (Gh,E[Gg|Gm]) .

Since Gn, G are Gaussian processes, the conditional expectations in the preceding

display can be written in closed form. Specifically let Zm
n := (Gnh,Gng,Gnb1, . . . ,Gnbm)′

and Zm := (Gnh,Gg,Gnb, . . . ,Gnb)
′. Then

Zm
n ∼ N (0,Σm

n ), Zm ∼ N (0,Σm).

Partition Σm so that it is conformal with Zm
1 = Gh, Zm

2 = Gg and Zm
3 =

(Gnb, . . . ,Gnb)
′, i.e.

Σm =

[Σm]1,1 [Σm]1,2 [Σm]1,3

[Σm]2,1 [Σm]2,2 [Σm]2,3

[Σm]3,1 [Σm]3,2 [Σm]3,3

 ,
and similarly for Σm

n and Zm
n . Then we have

Xm
n = (Gnh, E[Gng|Gmn ]) =

(
Zm
n,1, Z

m
n,2 − [Σm

n ]2,3[Σ
m
n ]−13,3Z

m
n,3

)
,

and similarly

Xm = (Gh, E[Gg|Gm]) =
(
Zm

1 , Z
m
2 − [Σm]2,3[Σ

m]−13,3Z
m
3

)
.

Since Kn(h1, h2) → K(h1, h2) for all h1, h2 ∈ H, Σm
n → Σm as n → ∞ and

therefore the inverses in the preceding displays exist for all sufficiently large n

since Bm is orthonormal. By Σm
n → Σn, Levy’s continuity Theorem and the

Cramér – Wold Theorem, Zm
n  Zm. Hence,

Xm
n  Xm. (S4)

Let Πm be the orthogonal projection onto Sm := Span{Gb : b ∈ Bm}. Then,

Xm = E[Gg|Gm] = E[Gg|Gm] = ΠmGg,

by Theorem 9.1 in Janson (1997). The Sm are such that Sm ⊂ Sm+1 and S :=

cl{Gb : b ∈ B} = cl∪m∈NSm. By Theorem S2.1 and Theorem 9.1 in Janson (1997),
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‖E[Gg|Gm]− E[Gg|G ]‖L2 = ‖ΠmGg − ΠGg‖L2 → 0 and so

Xm  X. (S5)

Define Yn := E[Gnh|Gn], Y m
n := E[Gnh|Gmn ], Y m := E[Gh|Gm] and Y := E[Gh|G].

By Theorem 9.1 in Janson (1997), Yn ∈ cl{Gnb : b ∈ B} and Y m
n ∈ {Gnb : b ∈ Bm},

hence

Yn − Y m
n ∼ N (0, σ2

n,m), σ2
n,m := Var(Yn − Y m

n ).

By Theorem 9.1 in Janson (1997), Yn = E[Gnh|Gn] and Y m
n = E[Gnh|Gm

n ]. There-

fore,

P (‖Xn −Xm
n ‖ > ε) = P (|Yn − Y m

n | > ε) ≤ C exp

(
− ε2

σ2
n,m

)
. (S6)

We show next that σ2
n,m → σ2

m := Var(Y − Y m). For this let f0 := h, fi := bi,

i ∈ N. Consider the restricted processes Fn := (Fn,i)i∈N and F := (Fi)i∈N where

Fn,i := Gnfi+1 and Fi := Gfi+1. Fn and F are random elements in (R∞, d) where

d is the metric given in Example 1.2 of Billingsley (1999). Hence Fn  F in

(R∞, d) by Example 2.4 of Billingsley (1999). By this and the fact that (R∞, d)

is separable (e.g. Billingsley, 1999, Example 1.2), the Skorohod representation

Theorem (e.g. Billingsley, 1999, Theorem 6.7) yields random elements F̃n and

F̃ defined on a common probability space such that F̃n → F̃ surely and with

L(F̃ ) = L(F ) and L(F̃n) = L(Fn). Thus F̃n and F̃ are Gaussian processes. In

particular, Cov(F̃n,i, F̃n,j) = Kn(fi, fj) → K(fi, fj) = Cov(F̃i, F̃j) which implies

each (F̃n,i)n∈N is uniformly square integrable. As (R∞, d) has the topology of

pointwise convergence (Billingsley, 1999, Example 1.2), each F̃n,i → F̃i surely.

Hence F̃n,i
L2−→ F̃i. By the equality in law one has that

Ỹ m
n := E[F̃n,1|σ({F̃n,i : 2 ≤ i ≤ m})] ∼ Y m

n , Ỹn := E[F̃n,1|σ({F̃n,i : i ∈ N, i 6= 1})] ∼ Yn

and

Ỹ m := E[F̃1|σ({F̃i : 2 ≤ i ≤ m})] ∼ Y m, Ỹ := E[F̃1|σ({F̃i : i ∈ N, i 6= 1})] ∼ Y.

Let S̃mn := Span{F̃n,i : 2 ≤ i ≤ m}, S̃n := cl Span{F̃n,i : i ∈ N, i 6= 1}, S̃m :=

Span{F̃i : 2 ≤ i ≤ m} and S̃ := cl Span{F̃i : i ∈ N, i 6= 1} all considered as subsets

of L2. Then

Ỹ m
n = Π[F̃n,1|Smn ], Ỹn = Π[F̃n,1|Sn], Ỹ m = Π[F̃1|Sm], Ỹ = Π[F̃1|S],
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By Theorem 9.1 in Janson (1997). We will apply Theorem S2.1 twice (in L2). It is

straightforward to check the hypotheses are satisfied with (i) Ln := S̃mn , L := S̃m;

(ii) Ln := S̃n, L := S̃ and hn := F̃n,1, h := F̃1 in both cases. Then by Theorem

S2.1,

‖Ỹn − Ỹ m
n − (Ỹ − Ỹ m)‖L2 ≤ ‖Ỹn − Ỹ ‖L2 + ‖Ỹ m

n − Ỹ m‖L2 → 0,

hence σ2
n,m = Var(Yn−Y m

n ) = Var(Ỹn−Ỹ m
n )→ Var(Ỹ −Ỹ m) = Var(Y −Y m) = σ2

m.

The penultimate step is to show that σ2
m → 0. For this, we note that Y =

Π[Gh| cl{Gb : b ∈ B}] and Y m = Π[Gh| Span{Gb : b ∈ Bm}]. Set Lm := Span{Gb :

b ∈ Bm} and L := cl{Gb : b ∈ B}. It is easy to check the hypotheses of Theorem

S2.1 (with m in place of n) hold, with the second following from the choice of Bm.

Hence Y m L2−→ Y and so σ2
m = Var(Y − Y m) → 0. In conjunction with (S6) we

have

lim
m→∞

lim sup
n→∞

P (‖Xn −Xm
n ‖ > ε) ≤ lim

m→∞
lim sup
n→∞

C exp

(
− ε2

σ2
n,m

)
= 0. (S7)

The result now follows by applying Theorem 3.2 in Billingsley (1999), noting that

equations (S4), (S5) and (S7) verify the required hypotheses.

S3 Additional details and proofs for the exam-

ples

S3.1 Single index model

S3.1.1 Proofs of results in the main text

Proof of Proposition 4.1. We verify the conditions of Lemma 3.8. That (each

component of) gn,γ ∈ L0
2(Pγ) follows from the facts that under Assumption 4.1,

for W ∼ Pγ, E [gγ(W )] = E [E [gγ(W )|X]] = 0 and

E
[
gγ,k(W )2

]
. E

[
ε2
(
X2,k −

E[ω(X)X2,k|Vθ]
E[ω(X)|Vθ]

)2
]
. EX2

2,k <∞,
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by ω : RK → [ω,ω] and the first part of (29). For any b ∈ Bγ, if W ∼ Pγ,

E[εb2(ε,X)|X] = 0 by (26) and hence

E [gγ(W )[Dγb](W )] = E
[
ω(X)

(
εf ′(Vθ)

(
X2 −

E[ω(X)X2|Vθ]
E[ω(X)|Vθ]

))
(−φ(ε,X)b1(Vθ) + b2(ε,X))

]
= E

[
−E [εφ(ε,X)|X] f ′(Vθ)ω(X)

(
X2 −

E[ω(X)X2|Vθ]
E[ω(X)|Vθ]

)
b1(Vθ)

]
+ E

[
E [εb2(ε,X)|X] f ′(Vθ)ω(X)

(
X2 −

E[ω(X)X2|Vθ]
E[ω(X)|Vθ]

)]
= E

[
f ′(Vθ)

(
E[ω(X)X2|Vθ]−

E[ω(X)|Vθ]E[ω(X)X2|Vθ]
E[ω(X)|Vθ]

)
b1(Vθ)

]
= 0.

Proof of Proposition 4.2. For condition (i) of Asssumption 3.3, we start by ob-

serving that

1√
n

n∑
i=1

ĝn,θ,i − gγ(Wi) =
5∑
l=1

al
1√
n

[
mn∑
i=1

Rl,n,i +
n∑

i=mn+1

Rl,n,i

]
,

for some aj ∈ {−1, 1} and

R1,n,i := ω(Xi)(f̂n,i(Vθ,i)− f(Vθ,i))f
′(Vθ,i)(X2,i − Z0(Vθ,i))

R2,n,i := ω(Xi)(Yi − f(Vθ,i))
(
f ′(Vθ,i)− f̂ ′n,i(Vθ,i)

)
(X2,i − Z0(Vθ,i))

R3,n,i := ω(Xi)(Yi − f(Vθ,i))f̂ ′n,i(Vθ,i)
(
Ẑ0,n,i(Vθ,i)− Z0(Vθ,i)

)
R4,n,i := ω(Xi)(f̂n,i(Vθ,i)− f(Vθ,i))

(
f ′(Vθ,i)− f̂ ′n,i(Vθ,i)

)
(X2,i − Z0(Vθ,i))

R5,n,i := ω(Xi)(f̂n,i(Vθ,i)− f(Vθ,i))f̂ ′n,i(Vθ,i)
(
Ẑ0,n,i(Vθ,i)− Z0(Vθ,i)

)
.

It suffices to verify that one of conditions (i) or (ii) of Lemma S3.3 is satisfied with

Yn,i = Rl,n,i with i ranging over either 1, . . . ,mn or mn + 1, . . . , n. For l = 4, 5

I show that condition (i) holds and for l = 1, 2, 3, I show that condition (ii) is

satisfied.

First suppose that 1 ≤ i ≤ mn. Let Cn = (Wmn+1, . . . ,Wn) and note that each

Ẑk,n,i(Vθ,i) is σ(Vθ,i, Cn) – measurable for k = 0, 1, 2, 3, 4. Additionally f(Vθ,i),

f ′(Vθ,i), ω(Xi) and X2,i−Z0(Vθ,i) are bounded uniformly in i under our hypothe-

ses and there is a sequence of events En with probability approaching one on

which Rl,n,i ≤ rn and for all large enough n ∈ N, f̂n,i(Vθ,i), f̂ ′n,i(Vθ,i), Ẑ1,n,i(Vθ,i)

are bounded above uniformly in i and Ẑ2,n,i(Vθ,i) is bounded above and below
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uniformly in i. Since

Ẑ0,n,i(Vθ,i)−Z0(Vθ,i) =
(Ẑ1,n,i(Vθ,i)− Z1(Vθ,i))Z2(Vθ,i) + (Z2(Vθ,i)− Ẑ2,n,i(Vθ,i))Z1(Vθ,i)

Z2(Vθ,i)Ẑ2,n,i(Vθ,i)

on these sets we also have

E
[∥∥∥Ẑ0,n,i(Vθ,i)− Z0(Vθ,i)

∥∥∥2∣∣∣∣Cn] . r2n. (S8)

l = 1: the first part of condition (ii) follows by the law of iterated expectations

and independence since E[ω(Xi)(X2,i−Z0(Vθ,i))|Vθ,i] = 0. The second part follows

with δn . r2n due to the uniform boundedness noted above and R3,n,i ≤ rn on En.

l = 2: the first part of condition (ii) follows by the law of iterated expectations

and independence since E[εi|Xi] = 0. The second part follows with δn . r2n due

to the uniform boundedness noted above, E[ε2|X] ≤ C from equation (29) and

R4,n,i ≤ rn on En.

l = 3: the first part of condition (ii) follows by the law of iterated expectations

and independence since E[εi|Xi] = 0. The second part follows with δn . r2n due

to the uniform boundedness noted above, E[ε2|X] ≤ C and equation (S8) which

holds on En.

l = 4: By the uniform boundedness noted above and the (conditional) Cauchy

– Schwarz inequality,

E[‖R4,n,i‖|Cn] . E
[∣∣∣f̂n,i(Vθ,i)− f(Vθ,i)

∣∣∣ ∣∣∣f ′(Vθ,i)− f̂ ′n,i(Vθ,i)∣∣∣∣∣∣Cn] ,
and the right hand side is upper bounded by R3,n,iR4,n,i = o(n−1/2) on En.

l = 5: By the uniform boundedness noted above and the (conditional) Cauchy

– Schwarz inequality,

E[‖R4,n,i‖|Cn] . E
[∣∣∣f̂n,i(Vθ,i)− f(Vθ,i)

∣∣∣ ∥∥∥Ẑ0,n,i(Vθ,i)− Z0(Vθ,i)
∥∥∥∣∣∣Cn] ,

and, given equation (S8), the right hand side is upper bounded by some constant

multiple of rnR3,n,i = o(n−1/2) on En.

The case where mn + 1 ≤ i ≤ n is analogous with Cn = (W1, . . . ,Wmn).

For part (ii) of Asssumption 3.3, we show that ‖V̌n,θ − Vγ‖ = oPnγ (νn). This

suffices since in the case where V̂n,θ is constructed as in subsection S2.1, it implies

that equation (S2) holds and hence the desired result follows by by Proposition

S2.1. In the case where Vγ is full rank and V̌n,θ = V̂n,θ this directly gives consistency
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of V̂n,θ for Vγ and the result follows by the continuous mapping theorem.

For V̆γ := Pngγg′γ,

V̌n,θ−Vγ = V̌n,θ− V̆γ+ V̆γ−Vγ =
1

n

n∑
i=1

[
ĝn,θ,iĝ

′
n,θ,i − gγ(Wi)gγ(Wi)

′]+ 1√
n
Gn[gγg

′
γ].

For the second term on the right hand side, Pγ[(gγ,lgγ,k)
2] <∞ by E[ε4] <∞ and

the boundedness of all the other terms in (28) under Assumption 4.3. Hence by

the central limit theorem, 1√
n
Gn[gγg

′
γ] = OPnγ (n−1/2). For the remaining term,

1

n

n∑
i=1

(ĝn,θ,i,k − gγ,k(Wi))
2 .

5∑
l=1

1

n

[
mn∑
i=1

R2
l,n,i,k +

n∑
i=mn+1

R2
l,n,i,k

]
.

For l = 1, 2, 3 we showed above that if 1 ≤ i ≤ mn and Cn = (Wmn+1, . . . ,Wn)

then E[R2
l,n,i,k|Cn] . r2n on En. We will show this also holds for l = 4, 5 with

1 ≤ i ≤ mn and Cn = (Wmn+1, . . . ,Wn) (the case with mn + 1 ≤ i ≤ n with

Cn = (W1, . . . ,Wmn) is once again analogous). For l = 4 or l = 5, by the uniform

boundedness (for all large enough n) we have

E
[
R2
l,n,i,k|Cn

]
. E

[(
f̂n,i(Vθ,i)− f(Vθ,i)

)2∣∣∣∣Cn] ,
and the right hand side term is bounded above by r2n on En. Hence, by Markov’s

inequality 1
n

[∑mn
i=1R

2
l,n,i,k +

∑n
i=mn+1R

2
l,n,i,k

]
= OPnγ (r2n) for l = 1, . . . , 5, which

implies that the same is true of 1
n

∑n
i=1 ‖ĝn,θ,i, − gγ(Wi)‖2. Therefore, by Cauchy

– Schwarz

∥∥∥V̌n,θ − V̆γ∥∥∥
2

=

∥∥∥∥∥ 1

n

n∑
i=1

ĝn,θ,i (ĝn,θ,i − gγ(Wi))
′ + (ĝn,θ,i − gγ(Wi)) gγ(Wi)

′

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥ĝn,θ,i (ĝn,θ,i − gγ(Wi))
′∥∥

2
+

1

n

n∑
i=1

‖(ĝn,θ,i − gγ(Wi)) gγ(Wi)
′‖2

≤
(

1

n

n∑
i=1

‖ĝn,θ,i‖2
)1/2(

1

n

n∑
i=1

‖ĝn,θ,i − gγ(Wi)‖2
)1/2

+

(
1

n

n∑
i=1

‖ĝn,θ,i − gγ(Wi)‖2
)1/2(

1

n

n∑
i=1

‖gγ(Wi)‖2
)1/2

= OPnγ (rn).
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S3.1.2 The LAN condition

Here I provide examples of local perturbations Pn,γ,h and lower level conditions

under which the LAN condition in Assumption 4.2 holds. I will consider two

models, (A) and (B). (B) is restricted such that f is an increasing function. In

both cases the function ϕn,2(b1, b2) has the form

ϕn,2(b1, b2) = (b1, b2ζ)/
√
n (S9)

and Bγ,2 is taken to be the set of functions b2 : R1+K → R such that b2 is bounded,

e 7→ b2(e, x) is continuously differentiable with bounded derivative and equation

(26) holds.6

In case (A), Bγ,1 = BA
γ,1 := C1

b (D), the class of functions which are bounded

and continuously differentiable with bounded derivative on D . In case (B) Bγ,1 =

BB
γ,2 := C1

b (D) ∩ I (D), for I (D) the set of functions from D → R which are

monotone increasing, ensuring that f + b1/
√
n is always a monotone increasing

function.

Proposition S3.1: Let Hγ = Rdθ × BA
γ,1 × Bγ,2 and Hγ = Rdθ = BB

γ,1 × Bγ,2

in Model A and B respectively. Then, if Assumption 4.1 holds, e 7→
√
ζ(e, x) is

continuously differentiable, Wn =
∏n

i=1 R1+K, ν is invariant under the function

Fγ(y, x) := (y − f(x1 + x′2θ), x) for any γ ∈ Γ and pn,γ,h = pnγ+ϕn(h) with pγ as

in (23) and ϕn as given by equations (25) & (S9), Assumption 4.2 holds for both

Model A and Model B.

Proof. The product space and product measure parts of Assumption 3.5 holds by

the corresponding Assumptions in the Proposition. That each Pγ � ν follows

from the definition of pγ in (23).

Define γt(h) := γ + t(τ, b1, b2ζ) for h = (τ, b1, b2) and t ∈ [0,∞). We first note

that – as is easy to check – the corresponding measures Pγt(h) ∈ {Pγ : γ ∈ Γ}
for all small enough t for both Model A and Model B. We now verify the condi-

tions of Lemma 1.8 in van der Vaart (2002). Firstly, t 7→ √pγt(h) is continuously

differentiable everywhere since√
pγt(h)(W ) =

√
ζ(Y − f(Vθ+tτ )− tb1(Vθ+tτ ), X)

√
(1 + tb2(Y − f(Vθ+tτ )− tb1(Vθ+tτ ), X)),

which is a composition of continuously differentiable functions for t small enough

that (1+tb2) is bounded away from zero. This ensures that qt(W ) :=
d log pγs(h)(W )

ds
|s=t

6Motivation for the conditions in (26) is given following Proposition S3.1.
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is defined for small enough t. Writing vt := Vθ+tτ and et := Y − f(vt)− tb1(vt) this

has the form

qt(W ) :=− φ(et, X)[f ′(vt)X
′
2τ + tb′1(vt)X

′
2τ + b1(vt)]

+
b2(et, X)− tb′2(et, X)[f ′(vt)X

′
2τ + tb′1(vt)X

′
2τ + b1(vt)]

1 + tb2(et, X)
.

(S10)

By inspection, this is continuous everywhere as the composition of continuous

functions. For some ρ > 0, note that by the boundedness of f ′, b1, b
′
1, b2, b

′
2 and

1/(1 + tb2) and equation (24) for some positive constant C <∞,∫
|qt(W )|2+ρ dPγt(h) ≤ CE

[(
|φ(ε,X)|2+ρ + 1

)
‖X‖2+ρ

]
<∞.

This implies that for any tn → t, (qtn(W )2)n∈N is uniformly Pγtn (h) – integrable.

Combination with qtn(W )2 → qt(W )2 (everywhere) yields∫
qtn(W )2pγtn (h)(W )λ→

∫
qt(W )2pγt(h)(W )λ.

Applying Lemma 1.8 in van der Vaart (2002) demonstrates that equation (20)

holds, with Aγh as in (21). Lemma 1.7 of van der Vaart (2002) ensures that

Aγh ∈ L0
2(Pγ). The form of Aγh reveals that it is a linear map on Hη. That it is

bounded follows from

‖Aγh‖2 ≤ C1E
[
φ(ε,X)2‖X‖2

]
‖τ‖2 + E

[
φ(ε,X)2

]
‖b1‖2 + ‖b2‖2 ≤ C2‖h‖2,

where C1, C2 ∈ (0,∞) are positive constants. Apply Lemma 3.7 to complete the

proof.

Motivation for the conditions on b2 Equation (26) imposes 3 conditions

on the functions b2, i.e. the score functions corresponding to the perturbation

of the density function ζ. As the first and last such conditions, i.e. that b2

is mean zero with finite second moment is a requirement of any score function

(cf. Assumption 3.1 or Lemma 1.7 in van der Vaart, 2002) here I discuss the

motivation for condition that E[εb2(ε,X)|X] = 0. In particular, I will heuristically

argue that “well-behaved” parametric submodels lead to scores with this property.

Let ζβ(e, x) denote a parametric family of density functions of (ε,X) with respect

to ν1 ⊗ ν2 such that the marginal density of X, ι(x) =
∫
ζβ(e, x) dν1(e), does not

depend on β. Provided the parametric family is sufficiently well – behaved, scores
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for β in the model {ζβ : β ∈ B} for B some open set, have the form ∇β log ζβ = ϕβ.

The conditional expectation of this score can be written (X-a.s.)∫
eϕβ(e,X)

ζβ(e,X)∫
ζβ(e,X) dν1(e)

dν1(e) =

∫
e
∇βζβ(e,X)

ζβ(e,X)

ζβ(e,X)∫
ζβ(e,X) dν1(e)

dν1(e)

=

∫
e
∇βζβ(e,X)∫
ζβ(e,X) dν1(e)

dν1(e).

Provided the derivatives exist, since ∇βe = 0 and ∇βι(x) = 0,

∇βe
ζβ(e, x)∫

ζβ(e, x) dν1(e)
= e

∇βζβ(e, x)∫
ζβ(e, x) dν1(e)

.

Additionally (X-a.s.)

E[ε|X] =

∫
e

ζβ(e,X)∫
ζβ(e,X) dν1(e)

dν1(e) = 0 =⇒ ∇β

∫
e

ζβ(e,X)∫
ζβ(e,X) dν1(e)

dν1(e) = 0.

If the last derivative can be taken inside the integral, combination of these displays

yields∫
eϕβ(e,X)

ζβ(e,X)∫
ζβ(e,X) dν1(e)

dν1(e) =

∫
∇βe

ζβ(e,X)∫
ζβ(e,X) dν1(e)

dν1(e) = 0.

Thus any score ϕβ in such a well-behaved parametric submodel must satisfy the

property imposed on b2.

Ensuring pγ is a probability density That pγ is a valid probability density

with ν̃ = ν follows immediately from (23) if ν is invariant with respect to

Fγ(y, x) = (y − f(x1 + x′2θ), x) (S11)

for each γ ∈ Γ, i.e. [ν ◦ F−1γ ] = ν. In such a case, clearly pγ ≥ 0 by (23) and by

the invariance∫
pγ dν =

∫
ζ ◦ Fγ dν =

∫
ζ d[ν ◦ F−1γ ] =

∫
ζ dν = 1.

Such invariance of ν holds in important special cases. Specifically, suppose that

ε|X has conditional density ζ1,x with respect to λ and ζ2 is the marginal density

of X with respect to ν2. Then ζ(e, x) = ζ1,x(e)ζ2(x) is a density with respect to

ν := λ⊗ ν2 To see that ν is invariant under Fγ, let A = A1 × A2 ⊂ R× RK be a

measurable rectangle and define Gγ,x(z) := z − f(x1 + x′2θ). Then (e, x) ∈ Fγ(A)
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if and only if x ∈ A2 and e ∈ Gγ,x(A1). Hence, by Tonelli’s Theorem

ν(Fγ(A)) =

∫
1A2(x)

[∫
1Gγ,x(A1)(e) dλ(e)

]
dν2(x) =

∫
A2

λ(Gγ,x(A1)) dν2(x).

Since JGγ,x(z) = 1, by change of variables

λ(Gγ,x(A1)) =

∫
Gγ,x(A1)

dλ =

∫
A1

| det JGγ,x| dλ =

∫
A1

dλ = λ(A1),

for each x. Hence,

[ν◦F−1γ ](A) = ν(Fγ(A)) =

∫
A2

λ(Gγ,x(A1)) dν2 =

∫
A2

λ(A1) dν2 = λ(A1)×ν2(A2) = ν(A).

Since the measurable rectangles form a separating class, it follows that ν◦F−1γ = ν.

S3.1.3 Uniform local regularity

As noted in section 4.1, in the single index model the proposed C(α) test is locally

regular as defined in Definition 2. Here I discuss strengthening this to the uniform

local regularity required by Definition 2.2. I will place a psuedometric structure

on Hγ as defined in Proposition S3.1 for Model A.7

There are many possible options. I outline two possibilities to establish asymp-

totic equicontinuity in total variation of h 7→ Pn,γ,h. The first establishes this on

Hγ,0, and thus may be used to establish that the proposed test controls the null

rejection probability in a locally uniform manner (Corollary 3.4). The second re-

quires a stronger norm on Bγ,1, but establishes the asymptotic equicontinuity on

all subsets of the form KB
γ := {(τ, b1, b2) ∈ Hγ : supv∈D |b′1(v)| ≤ B} ⊂ Hγ.

Asymptotic equicontinuity on Hγ,0 One seemingly natural approach is as

follows. Under Assumption 4.1,
∫
φ(e, x)2ζ(e, x) dν < ∞ and hence

∫
b1(x1 +

x′2θ)
2φ(e, x)2ζ(e, x) dν < ∞ since b1 is bounded on D . In consequence Hγ,0 is a

subspace of the linear space

Sγ := {0}×
{
b1 ∈ C1

b (D) : b1(x1 + x′2θ) =: b̆1(e, x) ∈ L2(R1+K , φ2ζ)
}
×L2(R1+K , ζ).

7It suffices to consider Model A since the corresponding Hγ = HA
γ = Rdθ × BAγ,1 × Bγ,2 is a

superset of HB
γ := Rdθ ×BBγ,1 ×Bγ,2, the space considered in Model B. Hence if the collection

formed by the functions h 7→ Pn,γ,h with domain Hγ are shown to be asymptotically equicon-
tinuous on a subset K ⊂ Hγ , they are also a fortiori asymptotically equicontinuous on K ∩HB

γ

when their domain is restricted to HB
γ .
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Sγ can be equipped with the seminorm:8

‖h‖ := ‖(0, b1, b2)‖ :=

√∫
b1(x1 + x′2θ)

2φ(e, x)2ζ(e, x) dν + ‖b2‖2L2(R1+K ,ζ)
. (S12)

I will additionally assume that

E
[
φ(ε,X)2|X

]
≥ c > 0, (ε,X) ∼ ζ. (S13)

This ensures that the L2(R1+K , φ2ζ) norm is stronger than the L2(R1+K , ζ) norm

on the subspace we consider.9 The condition in (S13) is mild: if ε|X has a Lebesgue

density ζε|X , then E [φ(ε,X)2|X = x] is the Fisher information for the location

family with densities ζε|X(e − µ, x) (for µ ∈ R). Under very weak regularity

conditions on e 7→ ζε|X(e, x), this is bounded below by 1/E[ε2|X = x] (e.g. Kagan,

Linnik, and Rao, 1973, Theorem 13.1.1), which is itself lower bounded under the

condition imposed in equation (29).

Hγ,0 can then be considered as a pseudometric space with the induced pseu-

dometric d1(h1, h2) = ‖h1 − h2‖. With this structure I obtain the asymptotic

equicontinuity in total variation required by Lemma 3.1 under Assumptions 4.1,

4.2, (S13) and that
√
ζ(e, x) is continuously differentiable in its first argument as

in Proposition S3.1.

Proposition S3.2: Let Hγ,0 = {0}×BA
γ,1×Bγ,2 and equip it with the pseudometric

d1 induced by the seminorm (S12). Suppose that Assumptions 4.1, 4.2 & equation

(S13) hold and that e 7→
√
ζ(e, x) is continuously differentiable. Then h 7→ Pn,γ,h

is asymptotically equicontinuous in total variation on Hγ,0.

Proof. It suffices to show limn→∞ dTV (Pn,γ,hn , Pn,γ,h) = 0 for hn → h, hn, h ∈ Hγ,0.

Let qn,γ,b1 := p(θ,f+b1/
√
n,ζ) such that

pn,γ,hn(W )

pn,γ,h(W )
=
qn,γ,b1,n(W )

qn,γ,b1(W )
× 1 + b2,n(Y − f(Vθ)− b1,n(Vθ)/

√
n,X)

1 + b2(Y − f(Vθ)− b1(Vθ)/
√
n,X)

.

8Here L2(A,w) := L2(A,A, µ, w) for a measure space (A,A, µ) and a weight function w : A →
[0,∞) is the weighted L2 space consisting of all functions f such that

∫
f2w dµ < ∞. This is

just a L2 space: one has that L2(A,A, µ, w) = L2(A,A, ν) where ν(S) :=
∫
S
w dµ. In the main

text, I omit the σ-field A and measure µ from the notation: the σ-field is always the Borel
σ-field and the measure should be clear from context.

9If there exists a C > 0 such that E
[
φ(ε,X)2|X

]
≤ C < ∞, then the converse also holds and

the two norms are equivalent on this subspace.
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By Assumption 4.2, Remark 3.1 and Lemma S2.4 it suffices to show that each of

n∑
i=1

log
qn,γ,b1,n(Wi)

qn,γ,b1(Wi)
,

n∑
i=1

log
1 + b2,n(Yi − f(Vθ,i)− b1,n(Vθ,i)/

√
n,Xi)/

√
n

1 + b2(Yi − f(Vθ,i)− b1(Vθ,i)/
√
n,Xi)/

√
n

,

(S14)

are oPn,γ (1). For the former we use Lemma S2.3 applied to the measures Qn,γ,b1

on Wn which correspond to qnn,γ,b1 ; note that Qn,γ,b1 = Pn,γ,(0,b1,0). The set Γ is a

subset of a linear space by Asssumption 4.1. Equip the linear space C1
b (D) with

the seminorm

‖b1‖ :=

√∫
b1(x1 + x′2θ)

2φ(e, x)2ζ(e, x) dν,

and let ϕ be the linear map ϕ(b1) := (0, b1, 0). Similarly to as noted in the

proof of Proposition S3.1, each γ+ sϕ(b1) ∈ Γ if V is taken to be a small enough

neighbourhood of 0 in C1
b (D); this also ensures that condition (i) of Lemma S2.3

holds given Assumption 4.1. Condition (ii) holds by the Assumption that e 7→√
ζ(e, x) is continuously differentiable and the chain rule. For condition (iii) with

uγ,b1,s(w) :=
∂ log pγ+t(0,b1,0)(w)

∂t |t=s
we have (cf. equation (S10))

uγ?,b1,s(W ) = −φ(Y − f(Vθ)− b̃1(Vθ)− sb1(Vθ), X)b1(Vθ),

for γ? = γ + (0, b̃1, 0), b̃1 ∈ V . Under Pγ?+sϕ(b1),(
Y − f(Vθ)− b̃1(Vθ)− sb1(Vθ), X

)
∼ ζ.

Hence, with (ε,X) ∼ ζ,

Pγ?+sϕ(b1)
[
u2γ?,b1,s

]
≤ E

[
φ(ε,X)2b1(Vθ)

2
]

= ‖b1‖2.

By Lemma S2.3 one then has that {b1 7→ Qn,γ,b1 : n ≥ N} is equicontinuous in

total variation for some N ∈ N. By the definition of the seminorm in (S12), if

hn → h, then b1,n → b1 and so dTV (Qn,γ,b1 , Qn,γ,b1,n) → 0. By Lemma 2.4 in

Strasser (1985)

lim
n→∞

∫ ∣∣∣∣qnn,γ,b1,npnn,γ
−
qnn,γ,b1
pnn,γ

∣∣∣∣ dPn,γ = 0 =⇒
n∏
i=1

qn,γ,b1,n(Wi)

pn,γ(Wi)
−

n∏
i=1

qn,γ,b1(Wi)

pn,γ(Wi)
= oPn,γ (1),
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and hence

n∑
i=1

[
log qn,γ,b1,n(Wi)− log qn,γ,b1(Wi)

]
=

n∑
i=1

log
qn,γ,b1,n(Wi)

qn,γ,b1(Wi)
= oPn,γ (1)

by the continuous mapping theorem, which establishes the required condition

for the first term in (S14). For the second term, let h̃n := (0, b1,n, 0). Since

dTV (Pn,γ,(0,b1,0), Pn,γ,h̃n) → 0, Pn,γ,(0,b1,0) / . Pn,γ,h̃n . Combined with Remark 3.1

and Assumption 4.2 this reveals that it suffices to show that that the sum on the

right hand side of (S14) converges to zero in Pn,γ,h̃n – probability. For this, we

verify the conditions of Lemma S3.4, which we will apply with the arrays formed

by (en,b1,n,i, Xi) and (en,b1,i, Xi), where en,b1,i := Yi − f(Vθ,i)− b1(Vθ,i)/
√
n. Under

Pn,γ,h̃n , (en,b1,n,i, Xi) ∼ ζ and so

E
[
b2,n(en,b1,n,i, Xi)− b2(en,b1,n,i, Xi)

]2 ≤ ‖b2,n − b2‖2L2(ζ)
→ 0 (S15)

Note that

en,b1,n,i − en,b1,i =
b1(Vθ,i)− b1,n(Vθ,i)√

n
,

and since b2 is continuously differentiable in the first argument, with bounded

derivative,

|b2(en,b1,n,i, Xi)− b2(en,b1,i, Xi)| .
|b1(Vθ,i)− b1,n(Vθ,i)|√

n
. (S16)

By equation (S13), E[b1,n(Vθ,i) − b1(Vθ,i)]2 → 0 under ζ and hence – analogously

to in (S15) –

E
[
b2(en,b1,n,i, Xi)− b2(en,b1,i, Xi)

]2
. ‖b1,n − b1‖2L2(ζ)

→ 0.

Since the data are i.i.d across rows, this verifies (S32). For (S33) by the definition

of Bγ,2, under Pn,γ,h̃n , Eb2,n(en,b1,n,i, Xi) = Eb2(en,b1,n,i, Xi) = 0 and by (S16),

E
[∣∣b2(en,b1,n,i, Xi)− b2(en,b1,i, Xi)

∣∣] . n−1/2‖b1,n − b1‖L1(ζ) = o(n−1/2).

As data are i.i.d. across rows, this verifies (S33). Apply Lemma S3.4.

Asymptotic equicontinuity on class of subsets of Hγ To show asymptotic

equicontinuity on subsets of Hγ note that Hγ is itself a linear space and equip it
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with the seminorm

‖h‖ := ‖(τ, b1, b2)‖ :=
√
‖τ‖2 + sup

v∈D
|b1(v)|2 + ‖b2‖L2(R1+K,ζ)2 . (S17)

Under the pseudometric d2(h1, h2) := ‖h1 − h2‖ induced by this norm, I show

asymptotic equicontinuity in total variation over the subsets KB
γ := {(τ, b1, b2) ∈

Hγ : supv∈D |b′1(v)| ≤ B}.

Proposition S3.3: Let Hγ,0 = Rdθ×BA
γ,1×Bγ,2 and equip it with the pseudometric

d2 induced by the seminorm (S17). Suppose that Assumptions 4.1, 4.2 hold and

that e 7→
√
ζ(e, x) is continuously differentiable. Then h 7→ Pn,γ,h is asymptotically

equicontinuous in total variation on each KB
γ .

Proof. Let hn = (τn, b1,n, b2,n) → (τ, b1, b2) = h with hn, h ∈ KB
γ . It suffices to

show that limn→∞ dTV (Pn,γ,hn , Pn,γ,h) = 0. Let qn,γ,τ,b1 := p(θ+τ/√n,f+b1/
√
n,ζ) such

that

pn,γ,hn(W )

pn,γ,h(W )
=
qn,γ,τn,b1,n(W )

qn,γ,τ,b1(W )
× 1 + b2,n(Y − f(Vθ̃n)− b1,n(Vθn)/

√
n,X)

1 + b2(Y − f(Vθn)− b1(Vθn)/
√
n,X)

,

where θ̃n := θ+ τn/
√
n and θn := θ+ τ/

√
n. By Assumption 4.2, Remark 3.1 and

Lemma S2.4 it suffices to show that each of

n∑
i=1

log
qn,γ,τn,b1,n(Wi)

qn,γ,τ,b1(Wi)
,

n∑
i=1

log
1 + b2,n(Yi − f(Vθ̃n,i)− b1,n(Vθ̃n,i)/

√
n,Xi)/

√
n

1 + b2(Yi − f(Vθn,i)− b1(Vθn,i)/
√
n,Xi)/

√
n

,

(S18)

are oPn,γ (1). For the former we will appeal to Lemma S2.3. Let Qn,γ,τ,b1 be the

measure on Wn corresponding to qnn,γ,τ,b1 and note that this is equal to Pn,γ,(τ,b1,0).

The set Γ is a subset of a linear space by Asssumption 4.1. The set Rdθ × Bγ,1

can be viewed as a normed linear space by equipping it with the norm ‖(τ, b1)‖ :=

‖(τ, b1, 0)‖ where the right hand side norm is that in (S17). K̃B
γ := {(τ, b1) ∈

Rdθ × Bγ,1 : supv∈D |b′1|(v) ≤ B} is a subset of this space. Define the linear map

ϕ(τ, b1) := (τ, b1, 0). Similarly to as noted in the proof of Proposition S3.1, each

γ + sϕ(τ, b1) ∈ Γ if V , the intersection of a neighbourhood of 0 in Rdθ × Bγ,1

and K̃B
γ , is taken small enough, which also ensures that condition (i) of Lemma

S2.3 holds given Assumption 4.1. Condition (ii) holds by the Assumption that

e 7→
√
ζ(e, x) is continuously differentiable and the chain rule. For condition (iii)
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with uγ,τ,b1,s(w) :=
∂ log pγ+t(τ,b1,0)(w)

∂t |t=s
we have (cf. equation (S10))

uγ?,τ,b1,s(W ) = −φ(Y − f(Vθ+τ̃+sτ )− b̃1(Vθ+τ̃+sτ )− sb1(Vθ+τ̃+sτ ), X)

×
[
f ′(Vθ+τ̃+sτ )X

′
2τ + b̃′1(Vθ+τ̃+sτ )X

′
2τ + sb′1(Vθ+τ̃+sτ )X

′
2τ + b1(Vθ+τ̃+sτ )

]
,

for γ? = γ + (τ̃ , b̃1, 0), (τ̃ , b̃1, 0) ∈ V . Under Pγ?+sϕ(τ,b1),(
Y − f(Vθ+τ̃+sτ )− b̃1(Vθ+τ̃+sτ )− sb1(Vθ+τ̃+sτ ), X

)
∼ ζ.

By the definition of V and f ∈ C1
b (D), |f ′| ≤ F , |b̃′1| ≤ B and |b′1| ≤ B. Hence,

for (ε,X) ∼ ζ,

Pγ?+sϕ(h)
[
u2γ?,τ,b1,s

]
≤ 2E

[
φ(ε,X)2(2B + F )2(X ′2τ)2

]
+ 2E

[
φ(ε,X)2b1(Vθ+τ̃+sτ )

2
]

≤ 2(2B + F )2‖τ‖2E
[
φ(ε,X)2‖X2‖2

]
+ 2E

[
φ(ε,X)2

]
sup
v∈D
|b1(v)|2

. ‖(τ, b1)‖2

by Assumption 4.1. By Lemma S2.3 one then has that {(τ, b1) 7→ Qn,γ,τ,b1 : n ≥
N} is equicontinuous in total variation on each K̃B

γ for some N ∈ N. By the

definition of the seminorm in (S12), if hn → h, then ‖(τn, b1,n)− (τ, b1)‖ → 0 and

so dTV (Qn,γ,τ,b1 , Qn,γ,τ,b1,n)→ 0. By Lemma 2.4 in Strasser (1985)

lim
n→∞

∫ ∣∣∣∣qnn,γ,τn,b1,npnn,γ
−
qnn,γ,τ,b1
pnn,γ

∣∣∣∣ dPn,γ = 0 =⇒
n∏
i=1

qn,γ,τn,b1,n(Wi)

pn,γ(Wi)
−

n∏
i=1

qn,γ,τ,b1(Wi)

pn,γ(Wi)
= oPn,γ (1),

and hence

n∑
i=1

[
log qn,γ,τn,b1,n(Wi)− log qn,γ,τ,b1(Wi)

]
=

n∑
i=1

log
qn,γ,τn,b1,n(Wi)

qn,γ,τ,b1(Wi)
= oPn,γ (1)

by the continuous mapping theorem, which establishes the required condition

for the first term in (S18). For the second term, let h̃n := (τn, b1,n, 0). Since

dTV (Pn,γ,(τ,b1,0), Pn,γ,h̃n) → 0, Pn,γ,(τ,b1,0) / . Pn,γ,h̃n . Combined with Remark 3.1

and Assumption 4.2 this reveals that it suffices to show that that the sum on

the right hand side of (S18) converges to zero in Pn,γ,h̃n – probability. For this,

we verify the conditions of Lemma S3.4, which we will apply with the arrays

formed by (en,τn,b1,n,i, Xi) and (en,τ,b1,i, Xi), where en,τ,b1,i := Yi − f(Vθ+n−1/2τ,i) −
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b1(Vθ+n−1/2τ,i)/
√
n. Under Pn,γ,h̃n , (en,τn,b1,n,i, Xi) ∼ ζ and so

E
[
b2,n(en,τn,b1,n,i, Xi)− b2(en,τn,b1,n,i, Xi)

]2 ≤ ‖b2,n − b2‖2L2(ζ)
→ 0 (S19)

Note that

en,τn,b1,n,i−en,τ,b1,i =
b1(Vθ+n−1/2τ,i)− b1,n(Vθ+n−1/2τn,i)√

n
+f(Vθ+n−1/2τ,i)−f(Vθ+n−1/2τn,i).

and since b2 is continuously differentiable in the first argument with bounded

derivative, f ∈ C1
b (D), and b1 has its derivative uniformly bounded by B,

|b2(en,τn,b1,n,i, Xi)− b2(en,τ,b1,i, Xi)|

.
‖X2‖‖τ − τn‖

n
+

supv∈D |b1(v)− b1,n(v)|+ ‖X2‖‖τ − τn‖√
n

(S20)

By the choice of norm and Assumption 4.1 the expected value of the square of the

right hand side converges to zero, hence

E
[
b2(en,τn,b1,n,i, Xi)− b2(en,τ,b1,i, Xi)

]2 → 0.

Since the data are i.i.d across rows, this verifies (S32). For (S33) by the definition

of Bγ,2, under Pn,γ,h̃n , Eb2,n(en,τn,b1,n,i, Xi) = Eb2(en,τn,b1,n,i, Xi) = 0 and by (S20)

and Assumption 4.1

E
[∣∣b2(en,b1,n,i, Xi)− b2(en,b1,i, Xi)

∣∣] . n−1/2
[
sup
v∈D
|b1(v)− b1,n(v)|+ ‖τ − τn‖

]
= o(n−1/2).

As data are i.i.d. across rows, this verifies (S33). Apply Lemma S3.4.

S3.2 IV model with non-parametric first stage

S3.2.1 Proofs of results in the main text

Proof of Lemma 4.1. We first note that E[EiEj|Z] = [J(Z)−1]i,j for i, j ∈ {1, 2}
where J(Z) is nonsingular by equation (37). The same equation combined with

Proposition 2.8.4 in Bernstein (2009) also implies that q1(J(Z)) exists and is pos-

itive. Letting ξ = ξγ(W ) = (Y −X ′θ − Z ′1β,X − π(Z), Z) we have

l̇γ(W ) :=
(
l̇γ,1(W )′, l̇γ,2(W )′

)′
= −φ1(ξ)(X ′, Z ′1)

′

[Dγ,1b1](W ) := −φ2(ξ)′b1(Z), [Dγ,2b2](W ) := b2(ξ).
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We first project l̇γ and Dγ,1b1 onto the orthocomplement of {Dγ,2b2 : b2 ∈ Bγ,2}.
By Corollary S2.2 and Proposition A.3.5 in Bickel et al. (1998) these projections

are, respectively:

l̆γ(W ) = E [−φ1(ξ)[X
′, Z ′1]

′U ′|Z]E [UU ′|Z]
−1
U

[D̆γ,1b1](W ) = E [−b1(Z)′φ2(ξ)U
′|Z]E [UU ′|Z]

−1
U

for U = (ε, υ′)′ = (Y −X ′θ−Z ′1β,X ′−π(Z)′)′. Denoting K := dβ, and evaluating

the first conditional expectation using (37) we obtain:

l̆γ(W ) =

[
π(Z)

Z1

] [
1 0′K

]
J(Z)−1U = π(Z)V1 ,

[D̆γ,1b1](W ) = b1(Z)′
[
0K IK

]
J(Z)−1U = b1(Z)′V2 .

By Propositions S2.3 and S2.4 l̃γ can now be found by projecting l̆γ onto the

orthocomplement of {D̆γ,1b1 : b1 ∈ Bγ,1} = {b1(Z)′V2 : b1 ∈ Bγ,1}. That this

projection is l̃γ follows from the observation that (a)

E
[
l̃γ(W )b1(Z)′V2

]
= E

[
[π(Z)′, Z ′1]

′ [
V1 − E[V1V

′
2 |Z]E[V2V

′
2 |Z]−1V2

]
V ′2b1(Z)

]
= E

[
[π(Z)′, Z ′1]

′ E
[
V1V

′
2 − E[V1V

′
2 |Z]E[V2V

′
2 |Z]−1V2V

′
2 |Z
]
b1(Z)

]
= E

[
[π(Z)′, Z ′1]

′ [E[V1V
′
2 |Z]− E[V1V

′
2 |Z]E[V2V

′
2 |Z]−1E[V2V

′
2 |Z]

]
b1(Z)

]
= 0,

and (b) the components of [π(Z)′, Z ′1]
′ E[V1V

′
2 |Z]E[V2V

′
2 |Z]−1V2 are in in cl{b1(Z)′V2 :

b1 ∈ Bγ,1}. This follows as E‖ [π(Z)′, Z ′1]
′ E[V1V

′
2 |Z]E[V2V

′
2 |Z]−1V2‖2 <∞ by equa-

tion (37) and Assumption 4.4, and any such component may be arbitrarily well

approximated by b1,n(Z)′V2 for bounded measurable functions b1,n ∈ Bγ,1 since the

set of such functions is dense in L2. The first equality in the final claim follows

from Example A.2.1 in Bickel et al. (1998). For the second equality note that with

Q(Z) := J(Z)−1

E1 −Q(Z)1,2Q(Z)−12,2E2 =
[[

1 0′K

]
−Q(Z)1,2Q(Z)−12,2

[
0K IK

]]
Q(Z)U

=
[[
Q(Z)1,1 Q(Z)1,2

]
−Q(Z)1,2Q(Z)−12,2

[
Q(Z)2,1 Q(Z)2,2

]]
U

=
[
Q(Z)1,1 −Q(Z)1,2Q(Z)−12,2Q(Z)2,1 0K

]
U.
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The result then follows from the the block matrix inversion formula (e.g. Propo-

sition 2.8.7 in Bernstein (2009)) and direct calculation.

Proof of Lemma 4.2. For the first part of the Lemma observe that by the moment

conditions in Assumption 4.4 and the bounds on J(Z) in (37), ¯̀
γ ∈ L2(Pγ).

Moreover, by the definition of Bγ,2, with M := E[XZ ′1]E[Z1Z
′
1]
−1,

E
[
¯̀
γ(W )b2(ξ)

]
= q1(J̄)E [(π(Z)−MZ1)E [εb2(U,Z)|Z]] = 0;

by equation (37):

E
[
¯̀
γ(W )φ2(ξ)

′b1(Z)
]

= q1(J̄)E [(π(Z)−MZ1)E [εφ2(ε, υ, Z)′|Z] b1(Z)] = 0;

and since E[υ|Z] = 0 by Assumption 4.4,

E
[
¯̀
γ(W )φ1(ξ)b

′
0Z1

]
= q1(J̄)E [E [εφ1(ε, υ, Z)|Z] (π(Z)Z ′1 −MZ1Z

′
1)] b0

= −q1(J̄)
[
E[π(Z)Z ′1]− E[XZ ′1]E[Z1Z

′
1]
−1E[Z1Z

′
1]
]
b0

= −q1(J̄)
[
E[π(Z)Z ′1]− E[π(Z)Z ′1]E[Z1Z

′
1]
−1E[Z1Z

′
1]
]
b0

= 0.

The the second claim in the Lemma follows immediately if J(Z) = J̄ a.s..

Proof of Proposition 4.3. Assumptions 4.4, 4.5 and Lemma 4.2 (with equation

(37)) establish that the conditions of Lemma 3.8 are satisfied.

Proof of Proposition 4.4. Let gγ := ¯̀
γ for consistency of notation. Let βn = β +

bn,0/
√
n with bn,0 → b0 ∈ Rdβ . Let Ŭn,i, J̆n, Ĕn,i, ğn,θ,i, V̆n,θ, Λ̆n,θ and r̆n,θ be formed

analogously to Ûn,i, Ĵn, Ên,i, ĝn,θ,i, V̂n,θ, Λ̂n,θ and r̂n,θ (as defined in and around

equations (40) – (42)) with βn in place of β̂n. By Assumption 4.6, β̂n ∈ Sn. It

suffices to show that Assumption 3.3 holds for ğn,θ := 1√
n

∑n
i=1 ğn,θ,i, Λ̆n,θ and r̆n,θ

(e.g. Hoesch, Lee, and Mesters, 2024, Lemma S3.1).

For Assumption 3.3 part (i), by Lemma S3.1,

1√
n

n∑
i=1

[ğn,θ,i − gγ(Wi)] =
4∑
l=1

Rn,l = oPn,γ (1).

For Assumption 3.3 parts (ii) and (iii) we first establish the rate of convergence of
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V̌n,θ. We have

V̌n,θ − Vγ =
1

n

n∑
i=1

[
ğn,θ,iğ

′
n,θ,i − gγ(Wi)gγ(Wi)

′]+
1√
n
Ggγg′γ. (S21)

For the first right hand side term, we have by Cauchy — Schwarz,∥∥∥∥∥ 1

n

n∑
i=1

[
ğn,θ,iğ

′
n,θ,i − gγ(Wi)gγ(Wi)

′]∥∥∥∥∥ .
[

4∑
l=1

Sn,l

][
1

n

n∑
i=1

‖ğn,θ,i‖2 +
1

n

n∑
i=1

‖gγ(Wi)‖2
]
.

Under Assumption 4.4, E‖gγ(Wi)‖2 < ∞, hence 1
n

∑n
i=1 ‖gγ(Wi)‖2 = OPn,γ (1) by

Markov’s inequality. By Lemma S3.1 1
n

∑n
i=1 ‖ğn,θ,i − gγ(Wi)‖2 .

∑4
l=1 Sn,l =

OPn,γ (δ
2
n + n−1). Using this gives

1

n

n∑
i=1

‖ğn,θ,i‖2 .
1

n

n∑
i=1

‖ğn,θ,i − gγ(Wi)‖2 +
1

n

n∑
i=1

‖gγ(Wi)‖2 = OPn,γ (1),

hence the first right hand side term in (S21) is OPn,γ (δ
2
n + n−1) as

∑4
l=1 Sn,l =

OPn,γ (δ
2
n + n−1) by Lemma S3.1.

For the second right hand side term, by Assumption 4.6 E‖gγ(W )‖4 < ∞.

Hence by the central limit theorem Ggγg′γ = OPn,γ (1) and so the second right

hand side term in (S21) is OPn,γ (n
−1/2). Putting these pieces together yields

‖V̌n,θ − Vγ‖ = OPn,γ (δ
2
n + n−1/2). The proof is then complete by the choice of rate

in Assumption 4.6 and Proposition S2.1.

S3.2.2 The LAN condition

Here I provide examples of local perturbations Pn,γ,h and lower level conditions

under which the LAN condition in Assumption 4.5 holds. Let

ϕn,1(b1) := b1/
√
n, ϕn,2(b2) := ζb2/

√
n, (b1, b2) ∈ Bγ,1 ×Bγ,2, (S22)

where Bγ,1 is the space bounded functions b1 : RdZ → Rdθ and Bγ,2 the space of

bounded functions b2 : RK → R which are continuously differentiable in their first

1 + dθ components with bounded derivative and such that (35) hold.

Proposition S3.4: Let Hγ := Rdθ × Bγ. Then, if Assumption 4.4 holds, u 7→√
ζ(u, z) is continuously differentiable and pn,γ,h = pnγ+ϕn(h) with pγ as in (33)

and ϕn as in (34) & (S22), Assumption ?? holds.
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Proof. We being by noting that due to the definition of Bγ,1 and Bγ,2, for all

large enough n each pγ+ϕn(h) is a valid density and γ + ϕn(h) ∈ Γ. Given the

product construction of Pn,γ,h Assumption 3.5 is satisfied and to apply Lemma 3.7

it remains to verify differentiability in quadratic mean as in (20) (with hn = h).

Let qγ,τ,b,t := p(θ,η)+t(τ,(b0,b1,b2ζ)), t ∈ [0,∞) and abbreviate qγ := qγ,0,0,0. Analo-

gously to above, for all small enough τ, b and t, this is a probability density and

(θ, η) + t(τ, (b0, b1, b2ζ)) ∈ Γ. Letting

l̇γ(W ) := −φ(Y −X ′θ − Z ′1β,X − π(Z), Z)

[
X

Z1

]
,

it suffices to show that∫ [
q
1/2
γ,τ,b,t − q1/2γ −

t

2

(
(τ ′, b′0)l̇γ − φ′b1 + b2

)
q1/2γ

]2
dν = o(t2) as t ↓ 0. (S23)

For this we will verify the conditions of Lemma 7.6 in van der Vaart (1998). That

t 7→ √qγ,τ,b,t is continuously differentiable follows from the assumed continuous dif-

ferentiability of (e, v) 7→
√
ζ(e, v, z). Denote by ιs the derivative of t 7→ log qγ,τ,b,t

at t = s. Under qγ,τ,b,s, ιs(W ) has the same law as

Es := −φ1(ε, υ, Z)[X ′, Z ′1](τ
′, b′0)

′ − φ2(ε, υ, Z)′b1(Z)

+
b2(ε, υ, Z)− sb2,1(ε, υ, Z)[X ′, Z ′1](τ

′, b′0)− sb2,2(ε, υ, Z)′b1(Z)

1 + sb2(ε, υ, Z)
,

where b2,i indicates the derivative of (e, v) 7→ b2(e, v, z) in the i-th argument. It

suffices to show that EE2
sn → EE2

s for all sn → s in a neighbourhood of zero. In

particular, take a neighbourhood U := [0, δ) such that 1 + sb2(ε, υ, Z) is bounded

below (as b2 is bounded). That E2
sn → E2

s pointwise is evident, hence it suffices

to demonstrate that (E2
sn)n∈N is uniformly integrable. We do so by exhibiting a

dominating function. Let

E2 := C
[
φ1(ε, υ, Z)2[‖X‖2 + ‖Z‖2] + ‖φ2(ε, υ, Z)‖2 + ‖X‖2 + ‖Z‖2 + 1

]
for some positive constant C. Provided C is taken large enough, by the moment

conditions in Assumption 4.4 and the boundedness of b1, b2, E
2
s ≤ E2 a.s. and

EE2 < ∞. Thus (E2
sn)n∈N is uniformly integrable, concluding the demonstration

that the conditions of Lemma 7.6 in van der Vaart (1998) are satisfied and hence,

(S23) holds.
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Motivation for the conditions on b2 Equation (35) imposes two conditions

on b2, i.e. the score corresponding to the density function ζ. The first simply

requires b2 to be mean-zero, which is a requirement of any score function (cf.

Assumption 3.1 or Lemma 1.7 in van der Vaart, 2002). The second requires that

E[Ub2(U,Z)|Z] = 0. Here I will heuristically argue that “well-behaved” parametric

submodels lead to scores with this property. This argument is essentially identical

to that for the single index model given in Section S3.1.2. Let ζβ(u, z) denote

a parametric family of density functions of (U,Z) with respect to ν1 ⊗ ν2 such

that the marginal density of Z, ι(z) =
∫
ζβ(u, z) dν1(u), does not depend on β.

Provided the parametric family is sufficiently well – behaved, scores for β in the

model {ζβ : β ∈ B} for B some open set, have the form ∇β log ζβ = ϕβ. The

conditional expectation of this score can be written (Z-a.s.)∫
uϕβ(u, Z)

ζβ(u, Z)∫
ζβ(u, Z) dν1(u)

dν1(u) =

∫
u
∇βζβ(u, Z)

ζβ(u, Z)

ζβ(u, Z)∫
ζβ(u, Z) dν1(u)

dν1(u)

=

∫
u
∇βζβ(u, Z)∫
ζβ(u, Z) dν1(u)

dν1(u).

Provided the derivatives exist, since ∇βu = 0 and ∇βι(z) = 0,

∇βu
ζβ(u, z)∫

ζβ(u, z) dν1(u)
= u

∇βζβ(u, z)∫
ζβ(u, z) dν1(u)

.

Additionally (Z-a.s.)

E[ε|Z] =

∫
u

ζβ(u, Z)∫
ζβ(u, Z) dν1(u)

dν1(u) = 0 =⇒ ∇β

∫
u

ζβ(u, Z)∫
ζβ(u, Z) dν1(u)

dν1(u) = 0.

If the last derivative can be taken inside the integral, combination of these displays

yields∫
uϕβ(u, Z)

ζβ(u, Z)∫
ζβ(u, Z) dν1(u)

dν1(u) =

∫
∇βu

ζβ(u, Z)∫
ζβ(u, Z) dν1(u)

dν1(u) = 0.

Thus any score ϕβ in such a well-behaved parametric submodel must satisfy the

property imposed on b2.

Ensuring pγ is a probability density The discussion here is similar to the

case of the single index model treated in section S3.1.2. In particular, similarly to

in that case, pγ is a valid probability density with respect to ν̃ = ν if ν is invariant
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with respect to

Fγ(y, x, z) := (y − x′θ − z′1β, x− π(z), z)

for each γ ∈ Γ, i.e. [ν ◦ F−1γ ] = ν. In this case evidently pγ ≥ 0 by (33) and by

the invariance∫
pγ dν =

∫
ζ ◦ Fγ dν =

∫
ζ d[ν ◦ F−1γ ] =

∫
ζ dν = 1.

This invariance holds, for example, in the important special case where U |Z is

continuously distributed. Suppose that U |Z has (conditional) density ζ1,z with

respect to Lebesgue measure λ and ζ2 is the marginal density of Z with respect to

some dominating measure ν2. Then ζ(u, z) = ζ1,z(u)ζ2(z) is a density with respect

to ν := λ ⊗ ν2. Let A = A1 × A2 ⊂ R1+dθ × RdZ be a measurable rectangle and

define

Gγ,z(y, x) =

[
y − x′θ − z′1β
x− π(z)

]
=⇒ JGγ,z(y, x) =

[
1 −θ′
0 I

]
.

Then (u, z) ∈ Fγ(A) if and only if z ∈ A2 and u ∈ Gγ,z(A1). By Tonelli’s theorem

ν(Fγ(A)) =

∫
1A2(z)

[∫
1Gγ,z(A1)(u) dλ(u)

]
dν2(z) =

∫
A2

λ(Gγ,z(A1)) dν2(z).

Since | det JGγ,z(z)| = 1, by change of variables

λ(Gγ,z(A1)) =

∫
Gγ,z(A1)

dλ =

∫
A1

| det JGγ,z(z)| dλ =

∫
A1

dλ = λ(A1),

for each z. Hence,

[ν◦F−1γ ](A) = ν(Fγ(A)) =

∫
A2

λ(Gγ,z(A1)) dν2(z) =

∫
A2

λ(A1) dν2 = λ(A1)×ν2(A2) = ν(A).

Since the measurable rectangles form a separating class, ν ◦ F−1γ = ν.

S3.2.3 Uniform local regularity

Here I discuss strengthening the local regularity of the proposed C(α) test as

discussed in Section 4.2 to the uniform local regularity of Definition 2.2. I place

a (pseudo-)metric structure on Hγ := Rdθ ×Bγ as defined in Proposition S3.4. In
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particular, Hγ can be viewed as a linear subspace of10

Rdθ × Rdβ ×
dθ∏
k=1

L2(RK , φ2
1+kζ)× L2(R1+dθ , ζ), (S24)

since we may identify each b1 ∈ Bγ,1 with a b̃1 : RK → Rdθ according to b̃1(u, z) :=

b1(z) and each such b̃1 has components b̃1,k ∈ L2(RK , φ2
1+kζ) since b1,k is bounded

and hence under Assumption 4.4∫
b̃1,k(u, z)

2φ1+k(u, z)
2ζ(u, z) dν =

∫
b1,k(z)2φ1+k(u, z)

2ζ(u, z) dν <∞.

Equip Hγ with the corresponding norm

‖h‖ =

√√√√‖(τ ′, b′0)′‖22 +

dθ∑
k=1

∫
b1,k(z)2φ1+k(u, z)2ζ(u, z) dν +

∫
b2(u, z)2ζ(u, z) dν.

(S25)

I will additionally assume that

E
[
φ1+k(U,Z)2|Z

]
≥ c > 0, (U,Z) ∼ ζ. (S26)

This is a mild condition which ensures that the L2(RK , φ2ζ) norm is stronger than

the L2(RK , ζ) norm on considered subspace (cf. the discussion following equation

(S13)). Hγ can then be considered a (pseudo-)metric space under d(h1, h2) =

‖h1 − h2‖. With this structure I obtain the asymptotic equicontinuity in total

variation required by Lemma 3.1.

Proposition S3.5: Suppose that Assumptions 4.4, 4.5 and equation (S26) hold,

u 7→
√
ζ(u, z) is continuously differentiable and Pn,γ,h is as in Proposition S3.4.

Then h 7→ Pn,γ,h is asymptotically equicontinuous in total variation on Hγ.

Proof. Let hn → h. It suffices to show that limn→∞ dTV (Pn,γ,hn , Pn,γ,h) = 0. Let

ξn,γ,h := (Y −X ′[θ + τ/
√
n]− Z ′1[β + b0/

√
n], X − π(Z)− b1(Z)/

√
n, Z),

and qn,γ,h := ζ(ξn,γ,h), so that we have

pn,γ,hn(W )

pn,γ,h(W )
=
qn,γ,hn(W )

qn,γ,h(W )
× 1 + b2,n(ξn,γ,hn)/

√
n

1 + b2(ξn,γ,h)/
√
n
.

10Cf. footnote 8.
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By Proposition S3.4, Remark 3.1 and Lemma S2.4 it therefore suffices to show

that

n∑
i=1

log
qn,γ,hn(Wi)

qn,γ,h(Wi)
= oPn,γ (1),

n∑
i=1

log
1 + b2,n(ξn,γ,hn,i)/

√
n

1 + b2(ξn,γ,h,i)/
√
n

= oPn,γ (1). (S27)

Each qn,γ,h is a probability density function; let Qn,γ,h be the probability measure

corresponding to qnn,γ,h. We now show that for some N ∈ N, {h 7→ Qn,γ,h : n ≥ N}
is equicontinuous in total variation on Hγ by verifying the conditions of Lemma

S2.3. The set Γ is a subset of a linear space by Assumption 4.4; let Hγ is a (semi-

)normed linear space as discused immediately prior to the statement of Proposition

S3.5 with the seminorm given by (S25). Note that Qn,γ,h = Pn,γ,(τ,b0,b1,0) for

h = (τ, b) and let ϕ(h) := (τ, b0, b1, 0). Similarly to as noted in Proposition S3.4,

each γ + sϕ(h) ∈ Γ for all h ∈ V when the latter is taken as a sufficiently small

neighbourhood of zero 0 in Hγ. In conjunction with the fact that Qn,γ,h is the

n–fold product of Pγ+(τ,b0,b1,0)/
√
n, where Pγ has density (33), this ensures that

condition (i) is satisfied. Condition (ii) holds as√
qγ+t(τ,b0,b1,0)(W ) =

√
ζ(Y −X ′[θ + tτ ]− Z ′1[β + tb0], X − π(Z)− tb1(Z), Z),

is continuously differentiable in t on [0, 1] for each W , all γ ∈ Γ and (τ, b0, b1, 0) ∈ V
by the chain rule. For (iii), letting uγ,h,s(w) :=

∂ log qγ+t(τ,b0,b1,0)(w)

∂t |t=s
we have

uγ?,h,s(W ) = −φ(Y−X ′[θ+τ̃+sτ ]−Z ′1[β+b̃0+sb0], X−π(Z)−b̃1−sb1(Z), Z)′

[
X ′τ + Z ′1b0

b1(Z)

]
,

for any γ? = γ + (τ̃ , b̃0, b̃1, 0), (τ̃ , b̃0, b̃1, 0) ∈ V . Under Qγ?+sϕ(h),

(Y −X ′[θ + τ̃ + sτ ]− Z ′1[β + b̃0 + sb0], X − π(Z)− b̃1(Z)− sb1(Z), Z) ∼ ζ.

Hence with (ε, υ, Z) ∼ ζ, by Assumption 4.4 and equation (S25),

Qγ?+sϕ(h)[u
2
γ?,h,s] ≤ E

[
φ1(ε, υ, Z)2

] [
‖τ‖2 + ‖b0‖2

]
+

dθ∑
k=1

E
[
φ1+k(ε, υ, Z)2b1,k(Z)2

]
. ‖h‖2.

By Lemma S2.3 {h 7→ Qn,γ,h : n ≥ N} is equicontinuous in total variation on Hγ.

Hence (e.g. Strasser, 1985, Lemma 2.4)∫ ∣∣∣∣qnn,γ,hnpnγ
−
qnn,γ,h
pnγ

∣∣∣∣ dPn,γ =

∫ ∣∣qnn,γ,hn − qnn,γ,h∣∣ dν̃n → 0,
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which implies
n∏
i=1

qn,γ,hn(Wi)

pγ(Wi)
−

n∏
i=1

qn,γ,h(Wi)

pγ(Wi)
= oPn,γ (1),

and so

n∑
i=1

[log qn,γ,hn(Wi)− log qn,γ,h(Wi)] =
n∑
i=1

log
qn,γ,hn(Wi)

qn,γ,h(Wi)
= oPn,γ (1)

by the continuous mapping theorem, which establishes the first condition in (S27).

For the second condition in (S27), let h̃ := (τ, b0, b1, 0) and h̃n := (τn, b0n , b1,n, 0).

A consequence of the equicontinuity in total variation of {h 7→ Qn,γ,h : n ≥ N}
is dTV (Pn,γ,h̃, Pn,γ,h̃n) → 0, hence Pn,γ,h̃ / . Pn,γ,h̃n . Combined with Remark 3.1

and Assumption 4.5 this reveals that it suffices to show that that the sum on the

right hand side of (S27) converges to zero in Pn,γ,h̃n – probability. For this, we

verify the conditions of Lemma S3.4, which we will apply with the arrays formed

by ξn,γ,hn,i and ξn,γ,h,i. Under Pn,γ,h̃n , ξn,γ,hn,i ∼ ζ and so

E [b2,n(ξn,γ,hn,i)− b2(ξn,γ,hn,i)]2 ≤ ‖b2,n − b2‖2L2(ζ)
→ 0. (S28)

Note that

ξn,γ,hn,i − ξn,γ,h,i = n−1/2(X ′i[τ − τn] + Z ′1,i[b0 − b0,n], b1(Zi)− b1,n(Zi), 0)

and since b2 is continuously differentiable in its first two arguments, with bounded

derivative,

|b2(ξn,γ,hn,i)− b2(ξn,γ,hn,i)| .
|X ′i[τ − τn]|+ |Z ′1,i[b0 − b0,n]|+ |b1(Zi)− b1,n(Zi)|√

n
.

(S29)

By equation (S26), E[b1,n(Zi) − b1(Zi)]
2 → 0 under ζ. Since ‖Xi‖2 and ‖Z1,i‖2

have finite L2(ζ) norm – analogously to in (S28) –

E [b2(ξn,γ,hn,i)− b2(ξn,γ,h,i)]2 . (‖τ − τn‖22 + ‖b0 − b0,n‖22 + ‖b1,n − b1‖2L2(ζ)
)→ 0.

As the data are i.i.d across rows, this verifies (S32). By the definition of Bγ,2,

under Pn,γ,h̃n , Eb2,n(ξn,γ,hn,i) = Eb2(ξn,γ,hn,i) = 0 and by (S29) and the fact that
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‖Xi‖ and ‖Z1,i‖ have finite L1(ζ) norm,

E [|b2(ξn,γ,hn,i)− b2(ξn,γ,hn,i)|] . n−1/2(‖(τ, b0)− (τn, b0,n)‖1 + ‖b1,n − b1‖L1(ζ))

= o(n−1/2).

As data are i.i.d. across rows, this verifies (S33). Apply Lemma S3.4.

S3.2.4 Supporting lemmas

Lemma S3.1: In the setting of Proposition 4.4:

(i) ‖M̂n −M‖ = OPn,γ (n
−1/2);

(ii) 1
n

∑n
i=1 ‖Ŭn,i − Ui‖2 = OPn,γ (δ

2
n + n−1);

(iii) ‖J̆n − J̄‖ = OPn,γ (δ
2
n + n−1/2);

(iv) ‖J̆−1n − J̄−1‖ = OPn,γ (δ
2
n + n−1/2);

(v) Rn,1 = 1√
n

∑n
i=1 q(J̆n)Ŭn,i

[
M − M̂n

]
Z1,i = oPn,γ (1);

(vi) Rn,2 = 1√
n

∑n
i=1 q(J̆n)Ŭn,i [π̂n,i(Zi)− π(Zi)] = oPn,γ (1);

(vii) Rn,3 = 1√
n

∑n
i=1 q(J̆n)(Ŭn,i − Ui)f(Zi) = oPn,γ (1);

(viii) Rn,4 = 1√
n

∑n
i=1(q(J̆n)− q(J̄)Uif(Zi) = oPn,γ (1);

(ix) Sn,1 = 1
n

∑n
i=1 ‖q(J̆n)Ŭn,i

[
M − M̂n

]
Z1,i‖2 = OPn,γ (n

−1);

(x) Sn,2 = 1
n

∑n
i=1 ‖q(J̆n)Ŭn,i [π̂n,i(Zi)− π(Zi)] ‖2 = OPn,γ (δ

2
n);

(xi) Sn,3 = 1
n

∑n
i=1 ‖q(J̆n)(Ŭn,i − Ui)f(Zi)‖2 = OPn,γ (n

−1);

(xii) Sn,4 = 1
n

∑n
i=1 ‖(q(J̆n)− q(J̄)Uif(Zi)‖2 = OPn,γ (δ

4
n + n−1);

with q(J) = e′1J
−1−J−11,2 [J−12,2 ]−1[0′K , IK ]J−1, M̂n :=

[
1
n

∑n
i=1XiZ

′
1,i

] [
1
n

∑n
i=1 Z1,iZ

′
1,i

]−1
,

M := E [XZ ′1]E [Z1Z
′
1]
−1, f(Zi) := π(Zi)−MZ1,i and f̂n,i(Zi) := π̂n,i(Zi)−M̂nZ1,i.

Proof. First observe that

q(J) = [ J−1
1,1 J−1

1,2 ]−J−11,2 [J−12,2 ]−1 [ J−1
2,1 J−1

2,2 ] = [ J−1
1,1−J

−1
1,2 [J

−1
2,2 ]
−1J−1

2,1 0′ ] = q1(J)e′1 = [ (J1,1)−1 0′ ] ,

with q1(J) := J−11,1 − J−11,2 [J−12,2 ]−1J−12,1 = (J1,1)
−1 (cf. Proposition 2.8.7 in Bern-

stein (2009)). Abbreviate π̃n,i(Zi) := π̂n,i(Zi) − π(Zi). By Propositions S3.4

& S3.5, Remark 3.1, Lemma 2.15 and Remark 18.3 (both) in Strasser (1985),

Pn,γ / . Pn,γ,(0,b0,n,0,0), which we will henceforth abbreviate to Pn,γ,b0,n .

(i) By the moment conditions in Assumption 4.4, E ‖XZ ′1‖2 <∞ and E ‖Z1Z
′
1‖2 <

∞ (under Pn,γ). Since the samples are i.i.d., then by the central limit theo-
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rem ∥∥∥∥∥∥
[

1

n

n∑
i=1

XiZ
′
1,i

][
1

n

n∑
i=1

Z1,iZ
′
1,i

]−1
−M

∥∥∥∥∥∥ = OPn,γ (n
−1/2).

(ii) ‖Ŭn,i−Ui‖2 . (Ŭn,i,1−Ui,1)2 + ‖Ŭn,i,2−Ui,2‖2, so we will handle the sample

means of the two right hand side terms separately. The first is

1

n

n∑
i=1

(Ŭn,i,1 − Ui,1)2 = (βn − β)
1

n

n∑
i=1

Z1,iZ
′
1,i(βn − β) = OPn,γ (n

−1).

The second is

1

n

n∑
i=1

‖Ŭn,i,2 − Ui,2‖2 =
1

n

n∑
i=1

‖π̂n,i(Zi)− π(Zi)‖2 = OPn,γ (n
−1)

Let Fn be the sets on which (43) holds and fix any ε > 0. Then for all large

enough n ∈ N and K large enough, by Markov’s inequality

Pn,γ

(
1

n

n∑
i=1

‖π̃n,i(Zi)‖2 > Kδ2n

)
≤ Pn,γ

(
1Fn

1

n

n∑
i=1

‖π̃n,i(Zi)‖2 > Kδ2n

)
+ Pn,γF

{
n

≤ K−1δ−2n

[
1

n

n∑
i=1

E
[
1Fn,iE

[
‖π̃n,i(Zi)‖2|Cn,j

]]]
+ ε/2

< ε.

where the expectation is under Pn,γ and Fn,i ⊃ Fn is the Cn,j – measurable

set on which the bound (43) holds for index i.

(iii) One has

‖J̆n−J̄‖ ≤
1

n

n∑
i=1

‖Ŭn,i‖
∥∥∥Ŭn,i − Ui∥∥∥+

1

n

n∑
i=1

∥∥∥Ŭn,i − Ui∥∥∥ ‖Ui‖+
∥∥∥∥∥ 1

n

n∑
i=1

UiU
′
i − E[UiU

′
i ]

∥∥∥∥∥ .
The last right hand side term is OPn,γ (n

−1/2) by the CLT given the moment

conditions and sampling assumption in Assumption 4.4. Using these same

assumptions with Markov’s inequality, the Cauchy – Schwarz inequality and

(ii) yields that the other two right hand side terms are OPn,γ (δ
2
n + n−1).

(iv) This follows from (iii) and the identity A−1−B−1 = A−1(B−A)B−1, noting

that (iii) also implies that ‖J̆−1n ‖ = OPn,γ (1).
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(v) Note that q is continuous and ‖q(J̄)‖ is finite by equation (37). We have

R′n,1 = q(J̆n)

[
1

n

n∑
i=1

Z ′1,iUi +
1

n

n∑
i=1

Z ′1,i(Ŭn,i − Ui)
]
√
n[M − M̂n]′.

q(J̆n) is OPn,γ (1) by continuity and (iii);
√
n‖M − M̂n‖ = OPn,γ (1) by (i);

1
n

∑n
i=1 Z

′
1,iUi converges to zero in probability by the weak law of large num-

bers; 1
n

∑n
i=1 Z

′
1,i(Ŭn,i−Ui) also converges to zero in probability, by the mo-

ment conditions in Assumption 4.4 along with (ii) and the Cauchy – Schwarz

inequality.

(vi) We have

Rn,2 =
1√
n

n∑
i=1

q(J̆n)Ŭn,i [π̂n,i(Zi)− π(Zi)]

=
1√
n

n∑
i=1

q1(J̆n)ε̆n,i [π̂n,i(Zi)− π(Zi)]

= q1(Ĵn)

[
1

n

n∑
i=1

π̃n,i(Zi)Z
′
1,i

]
√
n(β − βn) + q1(Ĵn)

1√
n

n∑
i=1

π̃n,i(Zi)εi.

(S30)

By Cauchy – Schwarz, Assumption 4.4 and the argument in (ii),∥∥∥∥∥ 1

n

n∑
i=1

π̃n,i(Zi)Z
′
1,i

∥∥∥∥∥ ≤
[

1

n

n∑
i=1

‖π̃n,i(Zi)‖2
]1/2 [

1

n

n∑
i=1

‖Z1,i‖2
]1/2

= oPn,γ (1).

Since by (iii) q1(J̆n) = OPn,γ (1) and the same holds for
√
n(β− βn), the first

term on the last line in (S30) is oPn,γ (1). By (iii) q1(J̆n) = OPn,γ (1). We may

split the (scaled) sum into

1√
n

mn∑
i=1

π̃n,i(Zi)εi +
1√
n

n∑
i=mn+1

π̃n,i(Zi)εi,

where mn = bn/2c. We show the first term is oPn,γ (1); the argument for the

second term is analogous. By Assumptions 4.4 and 4.6, with Fn,i ∈ σ(Cn,j)
as in (ii), F 1

n := ∩mni=1Fn,i ∈ σ(Cn,2) and expectations under Pn,γ, for i 6= k

with i, k ≤ mn,

E
[
1F 1

n
π̃n,i(Zi)εiεkπ̃n,k(Zk)εi

∣∣ Zi, Cn,2] = E
[
π̃n,i(Zi)E[εi|Zi]1F 1

n
εkπ̃n,k(Zk)

]
= 0
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and for i ≤ mn, by equation (37), for some constant C ∈ (0,∞),

E
[
ε2i ‖π̃n,i(Zi)‖21F 1

n

]
= E

[
E
[
ε2i |Zi, Cn,2

]
1F 1

n
‖π̃n,i(Zi)‖2

]
≤ CE

[
1F 1

n
E
[
‖π̃n,i(Zi)‖2|Cn,2

]]
≤ Cδ2n.

Hence, by Markov’s inequality,

Pn,γ

(∣∣∣∣∣ 1√
n

mn∑
i=1

π̃n,i(Zi)εi

∣∣∣∣∣ > ε

)
≤ Pn,γ

(
1F 1

n

∣∣∣∣∣ 1√
n

mn∑
i=1

π̃n,i(Zi)εi

∣∣∣∣∣ > ε

)
+ Pn,γF

{
n

≤ 1

n

mn∑
i=1

E
[
1F 1

n
E
[
‖π̃n,i(Zi)‖2|Cn,2

]]
+ o(1)

≤ mnCδn/n+ o(1)

= o(1).

(vii) We have

Rn,3 =
1√
n

n∑
i=1

q(J̆n)(Ŭn,i − Ui)f(Zi)

= q1(J̆n)
1√
n

n∑
i=1

(ε̆n,i − εi)f(Zi)

= q1(J̆n)

[
1

n

n∑
i=1

f(Zi)Z
′
1,i

]
√
n(β − βn)

= oPn,γ (1),

by (iii), Assumption 4.4 and the CLT, as

E [f(Z)Z1] = E
[
π(Z)Z ′1 − E[π(Z)Z ′1]E[Z1Z

′
1]
−1Z1Z

′
1

]
= 0.

(viii) Since E[Uf(Z)] = E[E[U |Z]f(Z)] = 0 and q(J̆n)
Pn,γ−−→ q(J̄) by (iii), the

moment conditions in Assumption 4.4 allow the application of the CLT to

yield

Rn,4 = (q(J̆n)− q(J̄)
1√
n

n∑
i=1

Uif(Zi) = oPn,γ (1).

(ix) Note that

ε̆2n,i − ε2i = (ε̆n,i − εi)(ε̆n,i + εi) = 2(β − βn)′Z1,iεi + (β − βn)′Z1,iZ
′
1,i(β − βn).
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Therefore

1

n

n∑
i=1

ε̆2n,i‖Z1,i‖2 =
1

n

n∑
i=1

ε2i ‖Z1,i‖2 + 2‖β − βn‖
1

n

n∑
i=1

‖Z1,i‖3|εi|+ ‖β − βn‖2
1

n

n∑
i=1

‖Z1,i‖4

= OPn,γ (1),

by the moment conditions in Assumption 4.4 combined with Hölder’s in-

equality. Therefore by (i) and (iii) along with the continuity of q,

1

n

n∑
i=1

‖q(J̆n)Ŭn,i

[
M − M̂n

]
Z1,i‖2 ≤ q1(J̆n)

∥∥∥M − M̂n

∥∥∥2 1

n

n∑
i=1

ε̆2n,i‖Z1,i‖2 = OPn,γ (n
−1).

(x) We have

Sn,1 =
1

n

n∑
i=1

‖q(J̆n)Ŭn,i [π̂n,i(Zi)− π(Zi)] ‖2 = q1(J̆n)2
1

n

n∑
i=1

ε̆2n,i‖π̂n,i(Zi)−π(Zi)‖2.

By (iii) along with the continuity of q, and the fact that β̂n is
√
n – consistent,

it will suffice to show that 1
n

∑n
i=1 ε̆

2
n,i‖π̂n,i(Zi) − π(Zi)‖2 = OPn,γ (δ

2
n). For

this it suffices to show that

1

n

mn∑
i=1

‖π̂n,i(Zi)−π(Zi)‖2ε̆2n,i = OPn,γ (δ
2
n),

1

n

n∑
i=mn+1

‖π̂n,i(Zi)−π(Zi)‖2ε̆2n,i = OPn,γ (δ
2
n).

We will show the first; the second follows analogously. By contiguity it

suffices to show the conclusion under Pn,γ,b0,n . In particular, by Markov’s

inequality, for all large enough n ∈ N and large enough K

Pn,γ,b0,n

(
1

n

mn∑
i=1

ε̆2n,i‖π̃n,i(Zi)‖2 > Kδ2n

)

≤ Pn,γ,b0,n

(
1F 1

n

1

n

mn∑
i=1

ε̆2n,i‖π̃n,i(Zi)‖2 > Kδ2n

)
+ Pn,γ,b0,nF

{
n

≤ K−1δ−2n

[
1

n

mn∑
i=1

E
[
1F 1

n
E
[
‖π̃n,i(Zi)‖2ε̆2n,i|Cn,2

]]]
+ ε/2,

as Pn,γ,b0,nF
{
n → 0 by contiguity. Note that the distribution of (ε̆n,i, Zi)|Cn,2

under Pn,γ,b0,n is that of (εi, Zi)|Cn,2 under Pn,γ given the independence of

Cn,2 from each Wi with 1 ≤ i ≤ mn ensured (under either measure) by the

product structure. Therefore, under Pn,γ,b0,n , E[ε̆2n,i|Zi, Cn,2] ≤ C by equation
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(37) and hence

E
[
1F 1

n
E
[
‖π̃n,i(Zi)‖2ε̆2n,i|Cn,2

]]
. E

[
1F 1

n
E
[
‖π̃n,i(Zi)‖2|Cn,2

]]
≤ δ2n,

where the last inequality follows by the definition of F 1
n . Combing the two

preceding displays yields

1

n

mn∑
i=1

‖π̂n,i(Zi)− π(Zi)‖2ε̆2n,i = OPn,γ,b0,n
(δ2n) = OPn,γ (δ

2
n),

with the last equality following by contiguity.

(xi) Since ‖f(Zi)‖2 ≤ 2 [‖π(Zi)‖2 + ‖M‖2‖Z1,i‖2], by the moment conditions in

Assumption 4.4 and Cauchy – Schwarz,

1

n

n∑
i=1

‖Z1,i‖2‖f(Zi)‖2 = OPn,γ (1).

Therefore by the fact that q is continuous and (iii)

1

n

n∑
i=1

‖q(J̆n)(Ŭn,i − Ui)f(Zi)‖2 ≤ q(J̆n)2
1

n

n∑
i=1

‖ε̆n,i − εi‖2‖f(Zi)‖2

= q(J̆n)2‖β − βn‖2
1

n

n∑
i=1

‖Z1,i‖2‖f(Zi)‖2

= OPn,γ (n
−1).

(xii) Noting the bound on ‖f(Zi)‖2 in the previous item by the moment conditions

in Assumption 4.4 and Cauchy – Schwarz,

1

n

n∑
i=1

‖εi‖2‖f(Zi)‖2 = OPn,γ (1).

Since q1(J) is locally Lipschitz at any non-singular J , combining the above

with (iii) yields

1

n

n∑
i=1

‖(q(J̆n)−q(J̄)Uif(Zi)‖2 ≤ (q1(J̆n)−q1(J̄))2
1

n

n∑
i=1

‖Ui‖2‖f(Zi)‖2 = OPn,γ (δ
4
n+n−1).

Lemma S3.2: Suppose that Assumption 4.4 holds and that for each i = 1, . . . , 1 +
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dα =: K

lim
|ui|→∞

|ui|ζ(u, z) = 0, (pointwise) ν–a.e..

Then, the second two conditions in (37) hold.

Proof. First note that all the integrals exist by the moment conditions in Ass-

sumption 4.4. To evaluate them we integrate by parts. To simplify the notation

we use a different notation from the main text: ζ̃i and φ̃i will denote the derivative

and logarithmic derivative of ζ with respect to ui. That is, φ̃1 = φ1 and φ̃i = φ2,i−1

for i ≥ 2 and similarly for ζ. Then for the first condition∫
uiφ̃i(u, z)ζ(u, z) dν(u, z) =

[
lim
ui→∞

uiζ(u, z)− lim
ui→−∞

uiζ(u, z)

]
−
∫
ζ(u, z) dν(u, z) = −1.

For j 6= i,∫
uiφ̃j(u, z)ζ(u, z) dν(u, z) =

∫ ∫
ui

∫
ζ̃j(u, z) duj d(u1, . . . , uj−1, uj+1, . . . , uK) dνZ(z) = 0,

where the equality follows because we may integrate by parts to find∫
ζ̃j(u, z) duj =

[
lim
ui→∞

ζ(u, z)− lim
ui→−∞

ζ(u, z)

]
−
∫

0× ζ(u, z) duj = 0, (S31)

where the limits are zero as ζ is a density function with respect to λK × νZ .

For the second condition let j ∈ {2, . . . , K}. Firstly we have∫
u1ujφ1(u, z)ζ(u, z) dν(u, z) =

∫ ∫
uj

∫
u1ζ̃1(u, z) du1 d(u2, . . . , uK) dνZ(z)

= −
∫ ∫

uj

∫
ζ(u, z) du1 d(u2, . . . , uK) dνZ(z)

= −
∫
ujζ(u, z) dν(u, z)

= 0

since E[υ] = 0 and∫
u1ζ̃1(u, z) du1 =

[
lim
u1→∞

u1ζ(u, z)− lim
u1→−∞

u1ζ(u, z)

]
−
∫
ζ(u, z) du1 = −

∫
ζ(u, z) du1.
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Secondly suppose that also i ∈ {2, . . . , K} and note that using (S31):∫
uiujφ̃1(u, z)ζ(u, z) dν(u, z) =

∫ ∫
uiuj

∫
ζ̃1(u, z) du1 d(u2, . . . , uK) dνZ(z) = 0.

S3.3 Some technical tools

Lemma S3.3: Let (mn)n∈N be an increasing sequence of natural numbers such that

mn ≤ n, (Yn,i)n∈N,1≤i≤mn a triangular array of random vectors and Cn a collection

of random variables. Suppose that with probability approaching one either

(i) E [‖Yn,i‖|Cn] ≤ δnn
−1/2 for some δn → 0 and all i ≤ mn; or

(ii) For each component Yn,i,s of Yn,i and any i 6= j ≤ mn, E[Yn,i,sYn,j,s|Cn] = 0

almost surely and E[Y 2
n,i,s|Cn] ≤ δn for some δn → 0 and all i ≤ mn.

Then 1√
mn

∑mn
i=1 Yn,i converges to zero in probability.

Proof. If condition (i) holds, E
∥∥∥m−1/2n

∑mn
i=1 Yn,i

∥∥∥ ≤ δnm
1/2
n n−1/2 → 0. If condition

(ii) holds, E
(
m
−1/2
n

∑mn
i=1 Yn,i,s

)2
= m−1n

∑mn
i=1 EY 2

n,i,s ≤ δn → 0 for each compo-

nent Yn,i,s of Yn,i. In either case the claim then follows by Markov’s inequality.

Lemma S3.4: Suppose that (Yn,i)n∈N,1≤i≤n and (Zn,i)n∈N,1≤i≤n are triangular arrays

of random vectors, independent along rows and (bn)n∈N a sequence of functions

such that each E[bn(Yn,i)
2] exists and b a bounded function such that as n→∞,

max
1≤i≤n

E
[
(bn(Yn,i)− b(Yn,i))2

]
= o(1), max

1≤i≤n
E
[
(b(Yn,i)− b(Zn,i))2

]
= o(1)

(S32)

and

max
1≤i≤n

E [bn(Yn,i)− b(Zn,i)] = o(n−1/2). (S33)

Then, with Pn the law of (Yn,1, Zn,1, . . . , Yn,n, Zn,n),

ln :=
n∑
i=1

log
1 + bn(Yn,i)/

√
n

1 + b(Zn,i)/
√
n

= oPn(1).

Proof. (S32) implies that (bn(Yn,i))n∈N,1≤i≤n is uniformly square Pn – integrable.
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The Lindeberg condition therefore holds for bn(Yn,i)/
√
n:

lim
n→∞

n∑
i=1

E
[
bn(Yn,i)

2

n
1
{
|bn(Yn,i)| > δ

√
n
}]

≤ lim
n→∞

sup
1≤i≤n

E
[
bn(Yn,i)

21
{
|bn(Yn,i)| > δ

√
n
}]

= 0,

for any δ > 0, which implies that (e.g. Gut, 2005, Remark 7.2.4):

max
1≤i≤n

|bn(Yn,i)|√
n

Pn−→ 0. (S34)

Let ε ∈ (0, 1) be fixed and define

En :=

{
max
1≤i≤n

|bn(Yn,i)|/
√
n ≤ ε

}
, Fn :=

{
max
1≤i≤n

|b(Zn,i)|/
√
n ≤ ε

}
.

Since b is bounded, PnFn → 1; PnEn → 1 follows from (S34). Hence PnFn∩En →
1. On En∩Fn we can perform a two-term Taylor expansion of log(1+x) to obtain

log(1+bn(Yn,i)/
√
n)− log(1 + b(Zn,i)/

√
n)

=
bn(Yn,i)√

n
− 1

2

bn(Yn,i)
2

n
− b(Zn,i)√

n
+

1

2

b(Zn,i)
2

n

+R

(
bn(Yn,i)√

n

)
−R

(
b(Zn,i)√

n

)
,

where |R(x)| ≤ |x|3. It follows that

ln =
1√
n

n∑
i=1

bn(Yn,i)− b(Zn,i)−
1

2

1

n

n∑
i=1

[bn(Yn,i)
2 − b(Zn,i)2]

+
n∑
i=1

R

(
bn(Yn,i)√

n

)
−R

(
b(Zn,i)√

n

)
.

We will show that the remainder terms vanish. In particular, one has

n∑
i=1

∣∣∣∣R(bn(Yn,i)√
n

)∣∣∣∣ ≤ n∑
i=1

∣∣∣∣bn(Yn,i)√
n

∣∣∣∣ ∣∣∣∣bn(Yn,i)
2

n

∣∣∣∣
≤ max

1≤i≤n

|bn(Yn,i)|√
n

1

n

n∑
i=1

bn(Yn,i)
2,
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by Markov’s inequality, the fact that bn(Yn,i) is uniformly L2 – bounded and (S34),

the right hand side term converges to zero in Pn – probability. With b an upper

bound for b,
n∑
i=1

∣∣∣∣R(b(Zn,i)√
n

)∣∣∣∣ ≤ n−1/2
1

n

n∑
i=1

b→ 0,

hence the left hand side in the display above is oPn(1). Thus,

ln =
1√
n

n∑
i=1

bn(Yn,i)− b(Zn,i)−
1

2

1

n

n∑
i=1

[bn(Yn,i)
2 − b(Zn,i)2] + oPn(1),

and it remains to show that 1√
n

∑n
i=1 bn(Yn,i) − b(Zn,i) and 1

n

∑n
i=1[bn(Yn,i)

2 −
b(Zn,i)

2] also converge to zero in probability. For the second of these we have

Pn

(∣∣∣∣∣ 1n
n∑
i=1

[bn(Yn,i)
2 − b(Zn,i)2]

∣∣∣∣∣ > ε

)

≤ ε−1
1

n

n∑
i=1

E
[
bn(Yn,i)

2 − b(Zn,i)2
]

≤ ε−1 max
1≤i≤n

E
[
bn(Yn,i)

2 − b(Zn,i)2
]

= ε−1 max
1≤i≤n

E [(bn(Yn,i)− b(Zn,i)) (bn(Yn,i) + b(Zn,i))]

→ 0,

by Markov’s inequality, the Cauchy–Schwarz inequality, (S32), the fact that b is

bounded and bn(Yn,i) is (uniformly) L2 bounded. For the remaining term, we start

by noting that by (S33) it suffices to show that

1√
n

n∑
i=1

b̃n(Yn,i)− b̃(Zn,i) Pn−→ 0,

for b̃n(Yn,i) := bn(Yn,i) − E [bn(Yn,i)] and b̃(Zn,i) := b(Zn,i) − E [b(Zn,i)]. By (S32),

(S33), the row-wise independence and Markov’s inequality:

Pn

(∣∣∣∣∣ 1√
n

n∑
i=1

b̃n(Yn,i)− b̃(Zn,i)
∣∣∣∣∣ > ε

)
≤ 1

ε2
1

n

n∑
i=1

E
[(
b̃n(Yn,i)− b̃(Zn,i)

)2]
→ 0.

This completes the proof that ln
Pn−→ 0, as required.
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S4 Additional simulation details & results

S4.1 Single index model

S4.1.1 Design 1

The fj functions used in simulation Design 1 are plotted in Figures S1 – S4. Tables

S1 – S8 display the empirical rejection frequencies for 4 alternative specifications

for the distribution of ε: (1) ε|ξ ∼
√

5(−1)ξ Beta(2, 3) with ξ ∼ Bernoulli(1/2);

(2) ε = ξ/
√

3/2 with ξ ∼ t(6); (3) ε ∼ N (0, log(2 + (X1 + X2θ)
2)); (4) ε ∼

N (0, 1 + sin(X1)
2).11 These distributions are referred to as ηi for i = 1, 2, 3, 4 in

what follows, with N (0, 1) being denoted η0. As in the N (0, 1) case considered

in the main text, the Ŝ test is close to the nominal 5% level in all simluation

designs considered. In contrast, the Wald test is often oversized, with the degree

of over-rejection varying across the simulation designs.

Tables S9 and S10 consider the sensitivity of the empirical rejection frequency

of the Ŝ test to ν. In both cases, the test displays under-rejection for sufficiently

large ν, but is otherwise relatively insensitive to this parameter.

S4.1.2 Design 2

The fj functions used in simulation Design 2 are defined as follows. Let b(x) :=

1{x > 0} exp(−1/x), a bump function and form the smooth transition function

a(x) := b(x)/(b(x) + b(1 − x)). Then let g(v; a, b) := 1/(1 + exp(−(x − b)/a)), a

logistic function. The double logistic functions used are then defined as

f1(v) := 8g(v, 0.25, 0) ;

f2(v) := 4
[
1{4v ≤ −1}g(4v, 0.4,−3)

+ 1{1− < 4v ≤ 1}a((4v + 1)/2)(1 + g(1, 0.4, 3)− g(−1, 0.4,−3))

+ 1{4v > 1}(1 + g(4v, 0.4, 3))
]

;

f3(v) := 4
[
1{3v ≤ −1}g(3v, 0.2,−3)

+ 1{1− < 3v ≤ 1}a((3v + 1)/2)(1 + g(1, 0.2, 3)− g(−1, 0.2,−3))

+ 1{3v > 1}(1 + g(2v, 0.2, 3))
]
.

(S35)

These functions are plotted in Figure S5 and their derivatives are plotted in Figure

S6.

11The second distribution for ε is based on the corresponding simulation design in Kuchibhotla
and Patra (2020).
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S4.2 IV model

Here I report (i) some additional results from the simulation designs in the main

text and (ii) the results of some additional simulation designs, extending the

simulation study in section 4.2.1 of the main text. In all designs, I consider

n ∈ {200, 400, 600}. Empirical rejection frequencies are computed based on 5000

simulated data sets in Designs 1, 3, 4 and 2500 simulated data sets in Design 2.

The πj functions used in the simulations are plotted in Figures S8 – S10.

S4.2.1 Additional results from simulation designs 1 & 2

Design 1: Univariate, just identified Table S15 records the empirical rejec-

tion frequencies of the Ŝ tests in Design 1 with k = 3 fixed and k chosen by AIC /

BIC as ν is varied. These results demonstrate that the choice of ν plays a limited

role in most of the simulation designs. For the weakly identified designs a larger ν

seems to be necessary to avoid some overejection. For the non-linear designs, the

degree of overrejection observed here when ν is chosen too small is limited and

remains substantially below that of the TSLS Wald and GMM tests (as recorded

in Table 9) in all cases. For the linear designs the degree of overrejection is slightly

larger and similar to that shown by the TSLS Wald test (and subtantially below

that shown by the GMM tests).

Design 2: Bivariate, just identified Tables S16 and S17 report the empirical

rejection frequencies of the considered tests when (i) π1 and π2 have the same

form, but with j fixed at 3 for π2 and (ii) where π2 is always linear with j = 3.

These tables show qualitative the same patterns as Table 10 in the main text:

the Ŝ tests based on Legendre polynomials and AR test always show rejection

frequencies close to the nominal level. The Ŝ test with OLS estimates is either

close to the nominal level or underrejects, depending on the particular sub-design.

The TSLS Wald test tends to overreject as do the GMM tests.

Tables S18, S19, S20 and S21 correspond, respectively, to the designs of Ta-

bles 10, 11, S16 and S17 and show that in these designs, the empirical rejection

frequencies are relatively insensitive to the choice of ν.

Figures S11 – S19 display power surfaces in the settings of Figures 7 – 15 with

the number of polynomials k chosen by information criteria. As noted in the main

text, choosing k by AIC yields power surfaces which are similar to those with

k = 3 fixed; choosing k by BIC tends to provide slightly lower power.

Finally, figures S20 – S25 display power surfaces where π1 is either exponential
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or logistic and π2 is linear. These show qualitatively similar behaviour to the

power surfaces in the main text. One notable case is the strongly identified case

with π1 exponential and π2 linear (Figure S20) here the AR test is able to detect

violations of the null in θ2 but not θ1 – as the identfying information pertaining to

the latter cannot be captured by a linear first stage – whilst the Ŝ test can detect

violations in any direction.

S4.2.2 Additional simulation designs

Design 3: Univariate, just identified, heteroskedastic This design is the

same as Design 1 in the main text with the addition of heteroskedastic errors.

In particular, dθ = 1, Z1 = 1 and Z2 ∼ N(0, 1) is univariate. The considered

π(Z) = π(Z2) are the exponential, logistic and linear functions detailed in Table

8 and plotted in Figures S8 – S10, for j = 1, 2, 3. I draw (ε̃, υ̃) from a multivariate

normal distribution with unit variances and covariance 0.95 and set[
ε

υ

]
=

[√
1 + sin(Z2)2 0

0
√

1 + cos(Z2)2

][
ε̃

υ̃

]
.

The same tests are considered as in Design 1 in the main text, with the AR and

TSLS tests adapted to account for heteroskedasticity (following Andrews, Stock,

and Sun (2019) for the AR test) and the GMM tests using a (feasible) efficient

weighting matrix.

The empirical rejection frequencies under the null for each of these tests are

reported in Table S22 with ν = 0.1, which reveal that similar patterns hold in

this heteroskedastic design: the null rejection probability of the Ŝ tests is well

controlled in all scenarios, with some conservativeness for high j and rejection

rates close to the nominal 5% level for lower j. The behaviour of the other tests

is also similar to as in Design 1: the AR test always yields a rejection frequency

of around 5%, whilst the TSLS Wald test generally provides a rejection frequency

close to the nominal level when j is low, but begins to overreject as j increases.

The same pattern is seen for the four GMM tests which exhibit substantial over-

rejection in weakly identified settings (i.e. high j). The sensitivity of the rejection

frequencies to the choice of ν is examined in Table S23, which reveals qualitatively

the same behaviour as in Design 1.

The power of the Ŝ tests and the AR test in this design is examined in figures

S26 – S28. The results are similar to the homoskedastic case. In particular, in the

case with π exponential the AR test provides very little power across all j, whilst
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the Ŝ tests provide substantial power for j = 1, 2. For logistic π, the AR test

and those Ŝ tests provide comparable power. Finally for the linear π simulations,

the AR test provides the most power. In the case j = 1, the OLS based Ŝ tests

provides comparable power to the AR test with the Legendre polynomial based

test not far behind; both Ŝ tests perform slightly worse when j = 2.

Design 4: Univariate, over identified This design is based on Design 1 in

the main text with the difference that Z2 is bivariate whilst X remains scalar.

In particular, dθ = 1, Z1 = 1 and Z2 ∼ N(0,Var(Z2)) where Var(Z2) = [ 1 0.4
0.4 1 ].

I draw (ε, υ) from a multivariate normal distribution with unit variances and

covariance 0.95. π is formed by taking the mean of two of exponential, logistic

and linear functions,12 one evaluated at Z2,1 and the other at Z2,2.

The Ŝ tests considered estimate π by either (i) OLS or (ii) series regressions

using tensor product bases formed of Legendre polynomials, both with ν = 0.1.

I additionally report the results of GMM Wald and LM tests using these tensor

product bases as instruments and the TSLS Wald test and AR, LM (Kleibergen,

2002) and CLR (Moreira, 2003) tests.13

Tables S24 reports the empirical rejection frequencies of the Ŝ tests and the

other considered tests. Similar to the other designs, the Ŝ tests have empirical

rejection frequencies which do not substantially exceed the nominal 5% level in

any of the considered cases. When OLS is used to estimate π, the Ŝ displays

some underrejection for the weakly identified designs and where πj is exponential.

The other tests behave as one would expect: each of the “usual” weak-instrument

robust tests (AR, LM & CLR) have rejection rates which are close to the nominal

5% level across all simulation designs. As in other designs, the TSLS Wald and

GMM based tests display rejection frequencies close to the nominal 5% level in

(some of the) strongly identified cases, but overreject substantially as identification

weakens.

Table S25 investigates the sensitivity of the (Legendre polynomial based) Ŝ

tests to the choice of ν. For the weakly identified designs a larger ν seems to be

necessary to avoid some slight overejection. Nevertheless, the overrejection found

when ν is too small is minor in each case and substantially below that observed

for the TSLS Wald or GMM based tests.

The power of the Ŝ, AR, LM and CLR tests is plotted in figures S29 – S31.

12as detailed in Table 8 and plotted in Figures S8 – S10.
13The CLR test is implemented using the p-value approximation given by Andrews, Moreira,

and Stock (2007).
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Similar to in Design 1, in the exponential case only the Ŝ tests (with π estimated

non-parametrically) provide non-trivial power. These tests appear to have better

finite sample performace either for k fixed at 3 or when k is chosen by AIC. For the

logistic case, the Ŝ test based on Legendre polynomials or OLS are competitive

with the CLR and LM tests and provide more power than the AR test when k is

fixed at 3; when k is chosen by AIC the power declines slightly; using BIC causes

a substantial power decline. In the linear case, unsurprisingly the LM and CLR

tests provide the most power, with the AR test providing slightly more than the

Legendre based Ŝ test.

S5 Tables and Figures

Figure S1: Index functions fj(v) = 5 exp(−v2/2c2j)
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Figure S2: Derivatives f ′j(v) of index functions fj(v) = 5 exp(−v2/2c2j)
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Figure S3: Index functions fj(v) = 25 (1 + exp(−v/cj))−1
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Figure S4: Derivatives f ′j(v) of index functions fj(v) = 25 (1 + exp(−v/cj))−1
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Figure S5: Double logistic index functions as in (S35)
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Figure S6: Derivatives of double logistic index functions as in (S35)
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Table S1: ERF (%) ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2), fj(v) =
5 exp(−v2/2c2j )

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 5.94 5.66 5.08 5.46 5.20 4.98
600 4.90 5.06 4.34 5.64 5.40 4.90
800 5.56 5.82 5.26 5.16 4.88 4.50

Wald

400 14.24 22.14 13.82 14.36 18.70 13.78
600 11.24 22.30 14.24 12.04 16.74 12.16
800 11.14 20.24 14.92 8.98 14.34 11.12

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.
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Table S2: ERF (%) ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2), fj(v) =
25 (1 + exp(−v/cj))−1

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 4.92 5.02 4.86 6.26 5.94 5.62
600 4.56 4.40 4.74 4.90 4.96 4.90
800 4.40 4.52 4.56 4.90 4.42 4.46

Wald

400 6.94 12.62 13.06 8.12 10.86 9.72
600 5.78 10.62 15.90 6.08 8.48 9.18
800 5.70 8.64 17.84 5.56 7.92 11.08

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.

Table S3: ERF (%) ε = ξ/
√

3/2, ξ ∼ t(6), fj(v) = 5 exp(−v2/2c2j )

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 5.86 5.58 5.64 5.30 5.14 4.64
600 5.60 5.50 5.36 5.76 5.66 5.14
800 5.58 5.32 5.42 5.70 5.62 5.56

Wald

400 14.64 23.16 13.80 14.52 18.72 13.22
600 12.18 23.34 13.94 11.84 16.92 12.78
800 11.26 19.70 14.44 10.70 16.44 11.48

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.
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Table S4: ERF (%) ε = ξ/
√

3/2, ξ ∼ t(6), fj(v) = 25 (1 + exp(−v/cj))−1

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 5.32 5.16 5.16 6.02 5.52 5.32
600 5.32 5.44 5.34 5.62 5.36 5.26
800 5.12 5.26 5.20 5.66 5.42 5.40

Wald

400 7.36 12.94 12.90 8.40 11.56 9.10
600 6.54 10.74 15.76 6.64 9.36 9.30
800 5.88 9.24 16.92 6.42 8.46 12.38

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.

Table S5: ERF (%) ε ∼ N (0, log(2 + (X1 +X2θ)
2)), fj(v) = 5 exp(−v2/2c2j )

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 5.84 5.70 5.30 5.36 5.26 5.12
600 5.38 5.36 5.20 5.66 5.32 4.86
800 5.52 5.50 5.50 5.74 6.06 5.70

Wald

400 18.46 30.50 14.08 19.42 23.14 15.64
600 15.12 29.20 15.06 14.90 21.86 15.46
800 13.60 24.72 17.08 14.02 21.70 14.98

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.
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Table S6: ERF (%) ε ∼ N (0, log(2 + (X1 +X2θ)
2)), fj(v) = 25 (1 + exp(−v/cj))−1

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 5.36 5.30 5.26 6.20 5.68 5.38
600 5.40 5.34 5.42 5.50 5.54 5.52
800 5.28 5.26 5.26 5.82 5.26 5.46

Wald

400 5.88 13.52 14.90 6.64 12.94 10.84
600 4.76 10.36 20.26 5.30 10.70 11.40
800 4.30 8.82 21.86 4.56 9.64 14.28

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.

Table S7: ERF (%) ε ∼ N (0, 1 + sin(X1)
2), fj(v) = 5 exp(−v2/2c2j )

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 5.76 5.42 5.74 5.38 5.42 5.06
600 5.50 5.54 5.20 5.82 5.48 5.40
800 5.60 5.30 5.50 5.62 5.82 5.40

Wald

400 18.48 22.82 14.28 17.72 20.36 14.58
600 14.22 27.06 14.96 14.46 19.36 14.54
800 13.70 25.38 14.38 12.06 19.52 13.50

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.
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Table S8: ERF (%) ε ∼ N (0, 1 + sin(X1)
2), fj(v) = 25 (1 + exp(−v/cj))−1

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 5.28 5.10 5.18 6.06 5.68 5.24
600 5.38 5.26 5.50 5.44 5.32 5.24
800 5.02 5.10 5.04 5.66 5.42 5.46

Wald

400 8.48 14.88 12.14 8.68 13.12 10.00
600 7.90 13.10 14.10 6.80 11.60 9.90
800 7.40 11.60 16.98 6.16 9.54 11.56

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.

Figure S7: ERF (%) ε ∼ N (0, 1), index function as in (S35), X = (Z1, 0.2Z2+0.4Z2+
0.8)
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Based on 5000 Monte carlo replications. The Zk ∼ U(−3/2, 3/2) are independently drawn.
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Table S9: ERF (%) fj(v) = 5 exp(−v2/2c2j )

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n j 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0

ε ∼ η0

400 1 5.86 5.86 5.86 5.86 5.86 4.06 5.30 5.30 5.30 5.30
400 2 1.32 5.58 5.58 5.58 5.58 0.34 5.14 5.14 5.14 5.14
400 3 0.38 5.12 5.64 5.64 5.64 0.16 4.30 4.64 4.64 4.64

600 1 5.60 5.60 5.60 5.60 5.60 3.88 5.76 5.76 5.76 5.76
600 2 0.94 5.50 5.50 5.50 5.50 0.28 5.66 5.66 5.66 5.66
600 3 0.44 5.08 5.36 5.36 5.36 0.06 4.96 5.14 5.14 5.14

800 1 5.58 5.58 5.58 5.58 5.58 3.74 5.70 5.70 5.70 5.70
800 2 0.76 5.32 5.32 5.32 5.32 0.18 5.62 5.62 5.62 5.62
800 3 0.34 5.20 5.42 5.42 5.42 0.08 5.42 5.56 5.56 5.56

ε ∼ η1

400 1 5.94 5.94 5.94 5.94 5.94 3.76 5.46 5.46 5.46 5.46
400 2 1.38 5.66 5.66 5.66 5.66 0.10 5.20 5.20 5.20 5.20
400 3 0.38 4.66 5.08 5.08 5.08 0.04 4.68 4.98 4.98 4.98

600 1 4.90 4.90 4.90 4.90 4.90 3.90 5.64 5.64 5.64 5.64
600 2 1.08 5.06 5.06 5.06 5.06 0.14 5.40 5.40 5.40 5.40
600 3 0.38 4.12 4.34 4.34 4.34 0.06 4.78 4.90 4.90 4.90

800 1 5.56 5.56 5.56 5.56 5.56 4.08 5.16 5.16 5.16 5.16
800 2 0.78 5.82 5.82 5.82 5.82 0.12 4.88 4.88 4.88 4.88
800 3 0.16 5.02 5.26 5.26 5.26 0.06 4.42 4.50 4.50 4.50

ε ∼ η2

400 1 5.18 5.18 5.18 5.18 5.18 4.06 6.04 6.04 6.04 6.04
400 2 1.30 5.14 5.14 5.14 5.14 0.50 5.86 5.86 5.86 5.86
400 3 0.44 4.34 4.56 4.58 4.58 0.22 5.28 5.64 5.64 5.64

600 1 5.44 5.44 5.44 5.44 5.44 3.70 5.50 5.50 5.50 5.50
600 2 0.92 5.42 5.42 5.42 5.42 0.28 5.38 5.38 5.38 5.38
600 3 0.34 4.84 5.14 5.14 5.14 0.14 5.10 5.24 5.24 5.24

800 1 5.32 5.32 5.32 5.32 5.32 3.14 5.10 5.10 5.10 5.10
800 2 0.74 5.62 5.62 5.62 5.62 0.22 5.14 5.14 5.14 5.14
800 3 0.26 4.86 5.12 5.12 5.12 0.14 5.40 5.58 5.58 5.58

ε ∼ η3

400 1 5.84 5.84 5.84 5.84 5.84 5.08 5.36 5.36 5.36 5.36
400 2 1.62 5.70 5.70 5.70 5.70 0.64 5.26 5.26 5.26 5.26
400 3 0.56 4.94 5.30 5.30 5.30 0.32 4.86 5.12 5.12 5.12

600 1 5.38 5.38 5.38 5.38 5.38 5.30 5.66 5.66 5.66 5.66
600 2 1.26 5.36 5.36 5.36 5.36 0.46 5.32 5.32 5.32 5.32
600 3 0.40 4.94 5.20 5.20 5.20 0.14 4.74 4.86 4.86 4.86

800 1 5.52 5.52 5.52 5.52 5.52 5.58 5.74 5.74 5.74 5.74
800 2 0.94 5.50 5.50 5.50 5.50 0.50 6.06 6.06 6.06 6.06
800 3 0.36 5.36 5.50 5.50 5.50 0.14 5.50 5.70 5.70 5.70

ε ∼ η4

400 1 5.76 5.76 5.76 5.76 5.76 5.18 5.38 5.38 5.38 5.38
400 2 2.22 5.42 5.42 5.42 5.42 0.64 5.42 5.42 5.42 5.42
400 3 0.70 5.28 5.74 5.74 5.74 0.32 4.80 5.06 5.06 5.06

600 1 5.50 5.50 5.50 5.50 5.50 5.52 5.82 5.82 5.82 5.82
600 2 2.00 5.54 5.54 5.54 5.54 0.46 5.48 5.48 5.48 5.48
600 3 0.70 5.02 5.20 5.20 5.20 0.14 5.32 5.40 5.40 5.40

800 1 5.60 5.60 5.60 5.60 5.60 5.46 5.62 5.62 5.62 5.62
800 2 1.66 5.30 5.30 5.30 5.30 0.52 5.82 5.82 5.82 5.82
800 3 0.38 5.34 5.50 5.50 5.50 0.18 5.28 5.40 5.40 5.40

Notes: Based on 5000 Monte carlo replications. The Zk ∼ U(−1, 1)
are independently drawn.
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Table S10: ERF (%) fj(v) = 25 (1 + exp(−v/cj))−1

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n j 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0

ε ∼ η0

400 1 5.32 5.32 5.32 5.32 5.32 6.02 6.02 6.02 6.02 6.02
400 2 5.16 5.16 5.16 5.16 5.16 5.38 5.52 5.52 5.52 5.52
400 3 0.50 5.16 5.16 5.16 5.16 0.22 5.32 5.32 5.32 5.32

600 1 5.32 5.32 5.32 5.32 5.32 5.62 5.62 5.62 5.62 5.62
600 2 5.44 5.44 5.44 5.44 5.44 5.32 5.36 5.36 5.36 5.36
600 3 0.28 5.34 5.34 5.34 5.34 0.06 5.26 5.26 5.26 5.26

800 1 5.12 5.12 5.12 5.12 5.12 5.66 5.66 5.66 5.66 5.66
800 2 5.26 5.26 5.26 5.26 5.26 5.40 5.42 5.42 5.42 5.42
800 3 0.32 5.20 5.20 5.20 5.20 0.08 5.40 5.40 5.40 5.40

ε ∼ η1

400 1 4.92 4.92 4.92 4.92 4.92 6.26 6.26 6.26 6.26 6.26
400 2 5.02 5.02 5.02 5.02 5.02 5.88 5.94 5.94 5.94 5.94
400 3 0.40 4.86 4.86 4.86 4.86 0.10 5.62 5.62 5.62 5.62

600 1 4.56 4.56 4.56 4.56 4.56 4.90 4.90 4.90 4.90 4.90
600 2 4.40 4.40 4.40 4.40 4.40 4.94 4.96 4.96 4.96 4.96
600 3 0.50 4.74 4.74 4.74 4.74 0.08 4.90 4.90 4.90 4.90

800 1 4.40 4.40 4.40 4.40 4.40 4.90 4.90 4.90 4.90 4.90
800 2 4.52 4.52 4.52 4.52 4.52 4.42 4.42 4.42 4.42 4.42
800 3 0.22 4.56 4.56 4.56 4.56 0.08 4.46 4.46 4.46 4.46

ε ∼ η2

400 1 5.06 5.06 5.06 5.06 5.06 6.24 6.24 6.24 6.24 6.24
400 2 5.14 5.14 5.14 5.14 5.14 5.56 5.72 5.72 5.72 5.72
400 3 0.66 5.34 5.34 5.34 5.34 0.20 5.62 5.62 5.62 5.62

600 1 5.44 5.44 5.44 5.44 5.44 5.70 5.70 5.70 5.70 5.70
600 2 5.38 5.38 5.38 5.38 5.38 5.32 5.54 5.54 5.54 5.54
600 3 0.46 5.38 5.38 5.38 5.38 0.14 5.62 5.62 5.62 5.62

800 1 5.44 5.44 5.44 5.44 5.44 5.82 5.82 5.82 5.82 5.82
800 2 4.96 4.96 4.96 4.96 4.96 5.56 5.60 5.60 5.60 5.60
800 3 0.26 4.98 4.98 4.98 4.98 0.16 5.68 5.68 5.68 5.68

ε ∼ η3

400 1 5.36 5.36 5.36 5.36 5.36 6.20 6.20 6.20 6.20 6.20
400 2 5.30 5.30 5.30 5.30 5.30 5.56 5.68 5.68 5.68 5.68
400 3 0.72 5.26 5.26 5.26 5.26 0.40 5.38 5.38 5.38 5.38

600 1 5.40 5.40 5.40 5.40 5.40 5.50 5.50 5.50 5.50 5.50
600 2 5.34 5.34 5.34 5.34 5.34 5.52 5.54 5.54 5.54 5.54
600 3 0.58 5.42 5.42 5.42 5.42 0.22 5.52 5.52 5.52 5.52

800 1 5.28 5.28 5.28 5.28 5.28 5.82 5.82 5.82 5.82 5.82
800 2 5.26 5.26 5.26 5.26 5.26 5.24 5.26 5.26 5.26 5.26
800 3 0.52 5.26 5.26 5.26 5.26 0.14 5.46 5.46 5.46 5.46

ε ∼ η4

400 1 5.28 5.28 5.28 5.28 5.28 6.06 6.06 6.06 6.06 6.06
400 2 5.10 5.10 5.10 5.10 5.10 5.68 5.68 5.68 5.68 5.68
400 3 1.22 5.18 5.18 5.18 5.18 0.32 5.24 5.24 5.24 5.24

600 1 5.38 5.38 5.38 5.38 5.38 5.44 5.44 5.44 5.44 5.44
600 2 5.26 5.26 5.26 5.26 5.26 5.32 5.32 5.32 5.32 5.32
600 3 0.88 5.50 5.50 5.50 5.50 0.16 5.24 5.24 5.24 5.24

800 1 5.02 5.02 5.02 5.02 5.02 5.66 5.66 5.66 5.66 5.66
800 2 5.10 5.10 5.10 5.10 5.10 5.42 5.42 5.42 5.42 5.42
800 3 0.76 5.04 5.04 5.04 5.04 0.22 5.46 5.46 5.46 5.46

Notes: Based on 5000 Monte carlo replications. The Zk ∼ U(−1, 1)
are independently drawn.
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Table S11: ERF (%) ε|ξ ∼
√

5(−1)ξ Beta(2, 3), index function as in (S35)

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 6.40 6.22 5.50 7.12 6.42 5.54
600 5.86 5.52 5.26 5.92 5.86 5.26
800 5.60 5.22 4.90 5.26 5.72 5.08

Wald

400 13.32 7.22 3.66 14.28 7.96 3.76
600 11.70 7.34 2.66 12.46 7.62 2.12
800 10.22 6.36 1.14 9.84 7.04 1.14

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−3/2, 3/2) are independently drawn.

Table S12: ERF (%) ε = ξ/
√

3/2, ξ ∼ t(6),, index function as in (S35)

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 6.32 6.34 5.88 6.48 5.56 5.16
600 6.12 5.50 5.08 6.26 5.52 5.24
800 5.76 5.56 4.38 5.52 5.32 4.86

Wald

400 13.12 8.52 3.68 13.62 7.94 3.62
600 11.20 6.82 2.50 11.84 7.18 2.30
800 11.28 6.30 1.64 10.72 7.12 1.14

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−3/2, 3/2) are independently drawn.
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Table S13: ERF (%) ε ∼ N (0, log(2 + (X1 +X2θ)
2)), index function as in (S35)

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 6.74 6.42 6.28 6.74 6.32 5.78
600 6.32 5.60 5.74 5.56 5.94 5.42
800 5.64 5.64 4.80 6.20 5.28 5.18

Wald

400 11.36 9.58 5.74 10.96 9.22 5.64
600 9.38 7.20 2.92 8.96 7.84 3.00
800 7.46 7.04 1.80 8.78 7.10 1.76

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−3/2, 3/2) are independently drawn.

Table S14: ERF (%) ε ∼ N (0, log(2 + (X1 +X2θ)
2)), index function as in (S35)

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 6.42 5.72 6.54 6.40 6.02 5.92
600 6.30 5.50 5.46 5.28 5.36 5.92
800 5.56 5.56 5.26 5.88 5.64 5.18

Wald

400 10.50 8.80 5.86 12.02 9.80 5.64
600 9.22 7.56 3.48 9.66 7.62 3.46
800 7.80 6.58 2.38 8.00 7.50 2.62

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−3/2, 3/2) are independently drawn.
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Figure S8: πj(z) = 5 exp(−z2/2c2j)
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Figure S9: πj(z) = 25(1 + exp(−z/cj))−1
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Figure S10: πj(z) = cjz
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Table S15: Empirical rejection frequencies, Design 1

k = 6 AIC BIC

n j 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0

Exponential

200 1 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.70 5.70 5.70 5.70 5.70
200 2 6.16 6.16 6.16 6.16 6.16 6.16 6.16 6.16 6.16 6.16 6.20 6.20 6.20 6.20 6.20
200 3 6.14 9.32 9.32 9.32 9.32 6.14 9.32 9.32 9.32 9.32 6.38 9.00 9.00 9.00 9.00

400 1 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.08 5.08 5.08 5.08 5.08
400 2 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.60 5.60 5.60 5.60 5.60
400 3 3.18 8.70 8.70 8.70 8.70 3.18 8.70 8.70 8.70 8.70 3.72 8.40 8.40 8.40 8.40

600 1 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30
600 2 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.40 5.40 5.40 5.40 5.40
600 3 2.14 7.92 7.92 7.92 7.92 2.14 7.92 7.92 7.92 7.92 2.64 7.86 7.86 7.86 7.86

Logistic

200 1 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.52 4.52 4.52 4.52 4.52
200 2 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.78 4.78 4.78 4.78 4.78
200 3 6.80 9.20 9.20 9.20 9.20 6.80 9.20 9.20 9.20 9.20 6.92 8.64 8.64 8.64 8.64

400 1 4.86 4.86 4.86 4.86 4.86 4.60 4.60 4.60 4.60 4.60 4.54 4.54 4.54 4.54 4.54
400 2 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.00 5.00 5.00 5.00 5.00
400 3 4.26 8.58 8.58 8.58 8.58 4.26 8.58 8.58 8.58 8.58 4.62 7.96 7.96 7.96 7.96

600 1 5.46 5.46 5.46 5.46 5.46 5.30 5.30 5.30 5.30 5.30 4.76 4.76 4.76 4.76 4.76
600 2 5.46 5.46 5.46 5.46 5.46 5.46 5.46 5.46 5.46 5.46 5.44 5.44 5.44 5.44 5.44
600 3 3.68 8.08 8.08 8.08 8.08 3.68 8.08 8.08 8.08 8.08 3.92 7.62 7.62 7.62 7.62

Linear

200 1 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.50 5.50 5.50 5.50 5.50
200 2 7.04 8.56 8.56 8.56 8.56 7.04 8.56 8.56 8.56 8.56 7.06 8.14 8.14 8.14 8.14
200 3 4.66 11.38 11.38 11.38 11.38 4.66 11.38 11.38 11.38 11.38 5.28 10.60 10.60 10.60 10.60

400 1 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32
400 2 5.08 7.98 7.98 7.98 7.98 5.08 7.98 7.98 7.98 7.98 5.18 7.48 7.48 7.48 7.48
400 3 1.12 12.14 12.14 12.14 12.14 1.12 12.14 12.14 12.14 12.14 2.08 11.34 11.34 11.34 11.34

600 1 5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.62 5.62 5.62 5.62 5.62
600 2 4.30 7.44 7.44 7.44 7.44 4.30 7.44 7.44 7.44 7.44 4.62 7.26 7.26 7.26 7.26
600 3 0.28 11.18 11.18 11.18 11.18 0.28 11.18 11.18 11.18 11.18 0.66 10.48 10.48 10.48 10.48

Notes: Based on 5000 Monte carlo replications. All tests use Legendre polynomials to estimate π.
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Table S16: Empirical rejection frequencies, IV, Design 2, π1, π2 same form with
j = 5 for π2

Ŝ AR TSLS W GMM W GMM LM

n j OLS k = 3 AIC BIC

Exponential

200 1 2.62 5.70 5.58 5.30 5.28 21.00 93.88 54.52
200 2 1.74 5.76 5.68 5.26 5.28 25.84 95.02 56.78
200 3 0.92 5.50 5.46 5.06 5.28 36.94 99.40 76.08

400 1 0.24 5.78 5.78 5.22 5.20 20.02 78.92 39.90
400 2 0.06 5.68 5.68 5.62 5.20 24.14 81.04 40.68
400 3 0.02 6.48 6.48 5.68 5.20 35.00 95.40 59.42

600 1 0.08 5.82 5.82 5.22 5.34 20.96 68.12 31.50
600 2 0.00 5.80 5.80 5.46 5.34 25.24 69.98 32.28
600 3 0.00 6.34 6.34 6.24 5.34 36.68 88.00 48.02

Logistic

200 1 5.78 5.54 3.98 4.02 5.28 8.88 87.08 47.96
200 2 5.68 5.62 5.66 5.36 5.28 8.48 85.84 47.24
200 3 4.56 5.16 5.14 4.84 5.28 8.72 95.36 60.26

400 1 5.92 6.02 5.56 4.96 5.20 7.38 66.74 32.40
400 2 5.78 5.92 5.92 5.68 5.20 7.24 65.46 31.32
400 3 4.52 6.16 6.16 5.80 5.20 7.42 79.14 42.14

600 1 5.92 5.40 5.00 4.14 5.34 7.04 53.42 27.08
600 2 5.84 5.26 5.26 4.98 5.34 6.88 52.02 26.38
600 3 4.12 5.94 5.94 5.62 5.34 6.94 63.94 32.82

Linear

200 1 5.08 5.34 5.30 4.96 5.28 17.48 99.54 83.06
200 2 4.24 5.18 5.16 4.92 5.28 15.28 99.74 85.92
200 3 2.38 5.74 5.78 5.34 5.28 15.28 99.98 95.46

400 1 5.04 6.10 6.10 5.98 5.20 12.72 98.56 77.96
400 2 3.74 6.30 6.30 5.96 5.20 11.96 98.86 79.30
400 3 0.34 6.92 6.92 6.20 5.20 12.16 99.96 91.84

600 1 5.14 5.24 5.24 4.94 5.34 12.22 96.84 74.44
600 2 3.72 6.24 6.24 5.74 5.34 11.42 97.12 74.04
600 3 0.00 6.04 6.04 5.58 5.34 11.34 99.78 88.42

Notes: Based on 2500 Monte carlo replications. k = 3 indicates that each univariate
series forming the tensor series has k = 3.
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Table S17: Empirical rejection frequencies, IV, Design 2, π2 = c3Z2,2

Ŝ AR TSLS W GMM W GMM LM

n j OLS k = 3 AIC BIC

Exponential

200 1 2.74 5.82 5.68 5.34 5.28 13.08 99.66 83.68
200 2 2.22 5.94 5.84 5.32 5.28 17.98 99.70 85.30
200 3 1.40 5.24 5.22 4.94 5.28 29.20 99.94 92.38

400 1 0.40 6.02 6.02 5.64 5.20 9.38 98.66 78.10
400 2 0.10 5.94 5.94 5.58 5.20 14.16 98.92 79.46
400 3 0.06 6.56 6.56 5.88 5.20 26.64 99.68 86.80

600 1 0.10 5.72 5.72 5.22 5.34 8.96 96.94 74.46
600 2 0.00 5.82 5.82 5.50 5.34 14.40 97.46 75.12
600 3 0.00 6.40 6.40 5.80 5.34 27.80 99.22 82.16

Logistic

200 1 5.16 5.60 4.42 4.64 5.28 18.22 99.62 82.86
200 2 5.10 5.62 5.56 5.40 5.28 17.94 99.62 83.70
200 3 4.52 5.30 5.30 5.04 5.28 14.74 99.80 86.88

400 1 5.00 6.16 5.94 5.12 5.20 13.22 98.72 78.72
400 2 5.02 6.16 6.16 5.94 5.20 13.04 98.70 79.14
400 3 4.00 6.28 6.28 5.94 5.20 11.84 99.04 80.50

600 1 5.20 5.60 4.72 4.12 5.34 12.52 97.32 74.84
600 2 5.14 5.46 5.46 5.14 5.34 12.36 97.18 75.16
600 3 3.72 6.32 6.32 5.88 5.34 11.34 97.44 74.64

Linear

200 1 5.08 5.34 5.30 4.96 5.28 17.48 99.54 83.06
200 2 4.24 5.18 5.16 4.92 5.28 15.28 99.74 85.92
200 3 2.38 5.74 5.78 5.34 5.28 15.28 99.98 95.46

400 1 5.04 6.10 6.10 5.98 5.20 12.72 98.56 77.96
400 2 3.74 6.30 6.30 5.96 5.20 11.96 98.86 79.30
400 3 0.34 6.92 6.92 6.20 5.20 12.16 99.96 91.84

600 1 5.14 5.24 5.24 4.94 5.34 12.22 96.84 74.44
600 2 3.72 6.24 6.24 5.74 5.34 11.42 97.12 74.04
600 3 0.00 6.04 6.04 5.58 5.34 11.34 99.78 88.42

Notes: Based on 2500 Monte carlo replications. k = 3 indicates that each univariate
series forming the tensor series has k = 3.
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Table S18: Empirical rejection frequencies, IV, Design 2, π1,j = π2,j

k = 3 AIC BIC

n j 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0

Exponential

200 1 4.88 4.88 4.88 4.88 4.88 4.80 4.80 4.80 4.80 4.80 4.90 4.90 4.90 4.90 4.90
200 2 5.44 5.44 5.44 5.44 5.44 5.40 5.40 5.40 5.40 5.40 5.14 5.14 5.14 5.14 5.14
200 3 5.50 5.08 5.08 5.08 5.08 5.46 5.04 5.04 5.04 5.04 5.06 4.76 4.76 4.76 4.76

400 1 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.64 4.64 4.64 4.64 4.64
400 2 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.82 4.82 4.82 4.82 4.82
400 3 6.48 5.88 5.88 5.88 5.88 6.48 5.88 5.88 5.88 5.88 5.68 5.44 5.44 5.44 5.44

600 1 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.80 4.80 4.80 4.80 4.80
600 2 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.08 5.08 5.08 5.08 5.08
600 3 6.34 6.28 6.28 6.28 6.28 6.34 6.28 6.28 6.28 6.28 6.24 6.10 6.10 6.10 6.10

Logistic

200 1 4.56 4.56 4.56 4.56 4.56 1.86 1.86 1.86 1.86 1.86 2.42 2.42 2.42 2.42 2.42
200 2 4.52 4.52 4.52 4.52 4.52 4.56 4.56 4.56 4.56 4.56 4.56 4.56 4.56 4.56 4.56
200 3 5.16 4.98 4.98 4.98 4.98 5.14 4.96 4.96 4.96 4.96 4.84 4.70 4.70 4.70 4.70

400 1 5.14 5.14 5.14 5.14 5.14 3.34 3.34 3.34 3.34 3.34 3.12 3.12 3.12 3.12 3.12
400 2 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.80 4.80 4.80 4.80 4.80
400 3 6.16 5.76 5.76 5.76 5.76 6.16 5.76 5.76 5.76 5.76 5.80 5.72 5.72 5.72 5.72

600 1 4.40 4.40 4.40 4.40 4.40 3.64 3.64 3.64 3.64 3.64 3.32 3.32 3.32 3.32 3.32
600 2 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.54 4.54 4.54 4.54 4.54
600 3 5.94 5.46 5.46 5.46 5.46 5.94 5.46 5.46 5.46 5.46 5.62 5.10 5.10 5.10 5.10

Linear

200 1 4.92 4.92 4.92 4.92 4.92 4.90 4.90 4.90 4.90 4.90 4.68 4.68 4.68 4.68 4.68
200 2 5.02 4.90 4.90 4.90 4.90 4.98 4.86 4.86 4.86 4.86 4.80 4.72 4.72 4.72 4.72
200 3 5.74 5.20 5.20 5.20 5.20 5.78 5.20 5.20 5.20 5.20 5.34 5.06 5.06 5.06 5.06

400 1 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 4.68 4.68 4.68 4.68 4.68
400 2 5.78 5.60 5.60 5.60 5.60 5.78 5.60 5.60 5.60 5.60 5.60 5.52 5.52 5.52 5.52
400 3 6.92 6.08 6.08 6.08 6.08 6.92 6.08 6.08 6.08 6.08 6.20 5.70 5.70 5.70 5.70

600 1 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.72 4.72 4.72 4.72 4.72
600 2 5.58 5.42 5.42 5.42 5.42 5.58 5.42 5.42 5.42 5.42 5.30 5.10 5.10 5.10 5.10
600 3 6.04 6.52 6.52 6.52 6.52 6.04 6.52 6.52 6.52 6.52 5.58 5.92 5.92 5.92 5.92

Notes: Based on 2500 Monte carlo replications. k = 3 indicates that each univariate series forming the
tensor series has k = 3.
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Table S19: Empirical rejection frequencies, IV, Design 2, π2,j = cjZ2,2

k = 3 AIC BIC

n j 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0

Exponential

200 1 4.74 4.74 4.74 4.74 4.74 4.68 4.68 4.68 4.68 4.68 4.66 4.66 4.66 4.66 4.66
200 2 5.54 5.54 5.54 5.54 5.54 5.44 5.44 5.44 5.44 5.44 4.90 4.90 4.90 4.90 4.90
200 3 5.24 5.02 5.02 5.02 5.02 5.22 5.00 5.00 5.00 5.00 4.94 4.78 4.78 4.78 4.78

400 1 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.96 4.96 4.96 4.96 4.96
400 2 5.62 5.70 5.70 5.70 5.70 5.62 5.70 5.70 5.70 5.70 5.36 5.42 5.42 5.42 5.42
400 3 6.56 6.52 6.52 6.52 6.52 6.56 6.52 6.52 6.52 6.52 5.88 5.86 5.86 5.86 5.86

600 1 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.22 4.22 4.22 4.22 4.22
600 2 5.64 5.70 5.70 5.70 5.70 5.64 5.70 5.70 5.70 5.70 5.40 5.48 5.48 5.48 5.48
600 3 6.40 6.02 6.02 6.02 6.02 6.40 6.02 6.02 6.02 6.02 5.80 6.08 6.08 6.08 6.08

Logistic

200 1 4.80 4.80 4.80 4.80 4.80 3.38 3.38 3.38 3.38 3.38 3.64 3.64 3.64 3.64 3.64
200 2 5.54 5.56 5.56 5.56 5.56 5.58 5.60 5.60 5.60 5.60 5.28 5.30 5.30 5.30 5.30
200 3 5.30 5.04 5.04 5.04 5.04 5.30 5.04 5.04 5.04 5.04 5.04 4.92 4.92 4.92 4.92

400 1 5.22 5.22 5.22 5.22 5.22 4.40 4.40 4.40 4.40 4.40 4.12 4.12 4.12 4.12 4.12
400 2 5.90 6.02 6.02 6.02 6.02 5.90 6.02 6.02 6.02 6.02 5.70 5.82 5.82 5.82 5.82
400 3 6.28 6.26 6.26 6.26 6.26 6.28 6.26 6.26 6.26 6.26 5.94 6.10 6.10 6.10 6.10

600 1 4.68 4.68 4.68 4.68 4.68 4.22 4.22 4.22 4.22 4.22 3.86 3.86 3.86 3.86 3.86
600 2 5.26 5.48 5.48 5.48 5.48 5.26 5.48 5.48 5.48 5.48 4.96 5.08 5.08 5.08 5.08
600 3 6.32 5.92 5.92 5.92 5.92 6.32 5.92 5.92 5.92 5.92 5.88 5.42 5.42 5.42 5.42

Linear

200 1 4.92 4.92 4.92 4.92 4.92 4.90 4.90 4.90 4.90 4.90 4.68 4.68 4.68 4.68 4.68
200 2 5.02 4.90 4.90 4.90 4.90 4.98 4.86 4.86 4.86 4.86 4.80 4.72 4.72 4.72 4.72
200 3 5.74 5.20 5.20 5.20 5.20 5.78 5.20 5.20 5.20 5.20 5.34 5.06 5.06 5.06 5.06

400 1 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04 4.68 4.68 4.68 4.68 4.68
400 2 5.78 5.60 5.60 5.60 5.60 5.78 5.60 5.60 5.60 5.60 5.60 5.52 5.52 5.52 5.52
400 3 6.92 6.08 6.08 6.08 6.08 6.92 6.08 6.08 6.08 6.08 6.20 5.70 5.70 5.70 5.70

600 1 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.72 4.72 4.72 4.72 4.72
600 2 5.58 5.42 5.42 5.42 5.42 5.58 5.42 5.42 5.42 5.42 5.30 5.10 5.10 5.10 5.10
600 3 6.04 6.52 6.52 6.52 6.52 6.04 6.52 6.52 6.52 6.52 5.58 5.92 5.92 5.92 5.92

Notes: Based on 2500 Monte carlo replications. k = 3 indicates that each univariate series forming the
tensor series has k = 3.
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Table S20: Empirical rejection frequencies, IV, Design 2, π1, π2 same form with
j = 3 for π2

k = 3 AIC BIC

n j 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0

Exponential

200 1 5.70 5.70 5.70 5.70 5.70 5.58 5.58 5.58 5.58 5.58 5.30 5.30 5.30 5.30 5.30
200 2 5.76 5.74 5.74 5.74 5.74 5.68 5.66 5.66 5.66 5.66 5.26 5.24 5.24 5.24 5.24
200 3 5.50 5.08 5.08 5.08 5.08 5.46 5.04 5.04 5.04 5.04 5.06 4.76 4.76 4.76 4.76

400 1 5.78 5.88 5.88 5.88 5.88 5.78 5.88 5.88 5.88 5.88 5.22 5.36 5.36 5.36 5.36
400 2 5.68 5.78 5.78 5.78 5.78 5.68 5.78 5.78 5.78 5.78 5.62 5.66 5.66 5.66 5.66
400 3 6.48 5.88 5.88 5.88 5.88 6.48 5.88 5.88 5.88 5.88 5.68 5.44 5.44 5.44 5.44

600 1 5.82 5.90 5.90 5.90 5.90 5.82 5.90 5.90 5.90 5.90 5.22 5.24 5.24 5.24 5.24
600 2 5.80 6.10 6.10 6.10 6.10 5.80 6.10 6.10 6.10 6.10 5.46 5.70 5.70 5.70 5.70
600 3 6.34 6.28 6.28 6.28 6.28 6.34 6.28 6.28 6.28 6.28 6.24 6.10 6.10 6.10 6.10

Logistic

200 1 5.54 5.54 5.54 5.54 5.54 3.98 4.00 4.00 4.00 4.00 4.02 4.04 4.04 4.04 4.04
200 2 5.62 5.64 5.64 5.64 5.64 5.66 5.68 5.68 5.68 5.68 5.36 5.38 5.38 5.38 5.38
200 3 5.16 4.98 4.98 4.98 4.98 5.14 4.96 4.96 4.96 4.96 4.84 4.70 4.70 4.70 4.70

400 1 6.02 6.12 6.12 6.12 6.12 5.56 5.62 5.62 5.62 5.62 4.96 5.10 5.10 5.10 5.10
400 2 5.92 6.10 6.10 6.10 6.10 5.92 6.10 6.10 6.10 6.10 5.68 5.88 5.88 5.88 5.88
400 3 6.16 5.76 5.76 5.76 5.76 6.16 5.76 5.76 5.76 5.76 5.80 5.72 5.72 5.72 5.72

600 1 5.40 5.64 5.64 5.64 5.64 5.00 5.16 5.16 5.16 5.16 4.14 4.36 4.36 4.36 4.36
600 2 5.26 5.64 5.64 5.64 5.64 5.26 5.64 5.64 5.64 5.64 4.98 5.20 5.20 5.20 5.20
600 3 5.94 5.46 5.46 5.46 5.46 5.94 5.46 5.46 5.46 5.46 5.62 5.10 5.10 5.10 5.10

Linear

200 1 5.34 5.30 5.30 5.30 5.30 5.30 5.28 5.28 5.28 5.28 4.96 4.96 4.96 4.96 4.96
200 2 5.18 4.96 4.96 4.96 4.96 5.16 4.94 4.94 4.94 4.94 4.92 4.90 4.90 4.90 4.90
200 3 5.74 5.20 5.20 5.20 5.20 5.78 5.20 5.20 5.20 5.20 5.34 5.06 5.06 5.06 5.06

400 1 6.10 6.26 6.26 6.26 6.26 6.10 6.26 6.26 6.26 6.26 5.98 6.10 6.10 6.10 6.10
400 2 6.30 6.34 6.34 6.34 6.34 6.30 6.34 6.34 6.34 6.34 5.96 6.18 6.18 6.18 6.18
400 3 6.92 6.08 6.08 6.08 6.08 6.92 6.08 6.08 6.08 6.08 6.20 5.70 5.70 5.70 5.70

600 1 5.24 6.14 6.14 6.14 6.14 5.24 6.14 6.14 6.14 6.14 4.94 5.58 5.58 5.58 5.58
600 2 6.24 5.98 5.98 5.98 5.98 6.24 5.98 5.98 5.98 5.98 5.74 5.42 5.42 5.42 5.42
600 3 6.04 6.52 6.52 6.52 6.52 6.04 6.52 6.52 6.52 6.52 5.58 5.92 5.92 5.92 5.92

Notes: Based on 2500 Monte carlo replications. k = 3 indicates that each univariate series forming the
tensor series has k = 3.
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Table S21: Empirical rejection frequencies, IV, Design 2, π2 = c5Z2,2

k = 3 AIC BIC

n j 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0

Exponential

200 1 5.82 5.80 5.80 5.80 5.80 5.68 5.66 5.66 5.66 5.66 5.34 5.34 5.34 5.34 5.34
200 2 5.94 5.92 5.92 5.92 5.92 5.84 5.82 5.82 5.82 5.82 5.32 5.28 5.28 5.28 5.28
200 3 5.24 5.02 5.02 5.02 5.02 5.22 5.00 5.00 5.00 5.00 4.94 4.78 4.78 4.78 4.78

400 1 6.02 6.38 6.38 6.38 6.38 6.02 6.38 6.38 6.38 6.38 5.64 5.80 5.80 5.80 5.80
400 2 5.94 6.26 6.26 6.26 6.26 5.94 6.26 6.26 6.26 6.26 5.58 5.94 5.94 5.94 5.94
400 3 6.56 6.52 6.52 6.52 6.52 6.56 6.52 6.52 6.52 6.52 5.88 5.86 5.86 5.86 5.86

600 1 5.72 6.68 6.68 6.68 6.68 5.72 6.68 6.68 6.68 6.68 5.22 5.82 5.82 5.82 5.82
600 2 5.82 6.74 6.74 6.74 6.74 5.82 6.74 6.74 6.74 6.74 5.50 6.00 6.00 6.00 6.00
600 3 6.40 6.02 6.02 6.02 6.02 6.40 6.02 6.02 6.02 6.02 5.80 6.08 6.08 6.08 6.08

Logistic

200 1 5.60 5.58 5.58 5.58 5.58 4.42 4.44 4.44 4.44 4.44 4.64 4.64 4.64 4.64 4.64
200 2 5.62 5.58 5.58 5.58 5.58 5.56 5.54 5.54 5.54 5.54 5.40 5.36 5.36 5.36 5.36
200 3 5.30 5.04 5.04 5.04 5.04 5.30 5.04 5.04 5.04 5.04 5.04 4.92 4.92 4.92 4.92

400 1 6.16 6.48 6.48 6.48 6.48 5.94 6.26 6.26 6.26 6.26 5.12 5.44 5.44 5.44 5.44
400 2 6.16 6.30 6.30 6.30 6.30 6.16 6.30 6.30 6.30 6.30 5.94 6.06 6.06 6.06 6.06
400 3 6.28 6.26 6.26 6.26 6.26 6.28 6.26 6.26 6.26 6.26 5.94 6.10 6.10 6.10 6.10

600 1 5.60 6.26 6.26 6.26 6.26 4.72 5.72 5.72 5.72 5.72 4.12 4.92 4.92 4.92 4.92
600 2 5.46 6.16 6.16 6.16 6.16 5.46 6.16 6.16 6.16 6.16 5.14 5.66 5.66 5.66 5.66
600 3 6.32 5.92 5.92 5.92 5.92 6.32 5.92 5.92 5.92 5.92 5.88 5.42 5.42 5.42 5.42

Linear

200 1 5.34 5.30 5.30 5.30 5.30 5.30 5.28 5.28 5.28 5.28 4.96 4.96 4.96 4.96 4.96
200 2 5.18 4.96 4.96 4.96 4.96 5.16 4.94 4.94 4.94 4.94 4.92 4.90 4.90 4.90 4.90
200 3 5.74 5.20 5.20 5.20 5.20 5.78 5.20 5.20 5.20 5.20 5.34 5.06 5.06 5.06 5.06

400 1 6.10 6.26 6.26 6.26 6.26 6.10 6.26 6.26 6.26 6.26 5.98 6.10 6.10 6.10 6.10
400 2 6.30 6.34 6.34 6.34 6.34 6.30 6.34 6.34 6.34 6.34 5.96 6.18 6.18 6.18 6.18
400 3 6.92 6.08 6.08 6.08 6.08 6.92 6.08 6.08 6.08 6.08 6.20 5.70 5.70 5.70 5.70

600 1 5.24 6.14 6.14 6.14 6.14 5.24 6.14 6.14 6.14 6.14 4.94 5.58 5.58 5.58 5.58
600 2 6.24 5.98 5.98 5.98 5.98 6.24 5.98 5.98 5.98 5.98 5.74 5.42 5.42 5.42 5.42
600 3 6.04 6.52 6.52 6.52 6.52 6.04 6.52 6.52 6.52 6.52 5.58 5.92 5.92 5.92 5.92

Notes: Based on 2500 Monte carlo replications. k = 3 indicates that each univariate series forming the
tensor series has k = 3.
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Figure S11: πi exponential with j = 1 (i = 1, 2)
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Figure S12: π1 exponential with j = 1, π2 exponential with j = 3
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Figure S13: π1 exponential with j = 3, π2 exponential with j = 3
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Figure S14: πi logistic with j = 1 (i = 1, 2)
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Figure S15: π1 logistic with j = 1, π2 logistic with j = 3
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Figure S16: π1 logistic with j = 3, π2 logistic with j = 3
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Figure S17: πi linear with j = 1 (i = 1, 2)
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Figure S18: π1 linear with j = 1, π2 linear with j = 3

−0.3
−0.2

−0.1
0.0

0.1
0.2

0.3

θ2

−0.3
−0.2
−0.1

0.0
0.1

0.2
0.3

θ
1

0.0

0.2

0.4

0.6

0.8

1.0
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Figure S19: π1 linear with j = 3, π2 linear with j = 3
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Figure S20: π1 exponential with j = 1, π2 linear with j = 1
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Figure S21: π1 exponential with j = 1, π2 linear with j = 3
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Figure S22: π1 exponential with j = 3, π2 linear with j = 3
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Figure S23: π1 logistic with j = 1, π2 linear with j = 1
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Figure S24: π1 logistic with j = 1, π2 linear with j = 3

−0.02

−0.01

0.00

0.01

0.02

θ2

−0.3
−0.2
−0.1

0.0
0.1

0.2
0.3

θ
1

0.0

0.2

0.4

0.6

0.8

1.0

(a) AR

−0.02

−0.01

0.00

0.01

0.02

θ2

−0.3
−0.2
−0.1

0.0
0.1

0.2
0.3

θ
1

0.0

0.2

0.4

0.6

0.8

1.0
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Figure S25: π1 logistic with j = 3, π2 linear with j = 3

−0.02

−0.01

0.00

0.01

0.02

θ2

−0.3
−0.2
−0.1

0.0
0.1

0.2
0.3

θ
1

0.0

0.2

0.4

0.6

0.8

1.0

(a) AR

−0.02

−0.01

0.00

0.01

0.02

θ2

−0.3
−0.2
−0.1

0.0
0.1

0.2
0.3

θ
1

0.0

0.2

0.4

0.6

0.8

1.0
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Table S22: Empirical rejection frequencies, Design 3

Ŝ AR TSLS W GMM W GMM LM

n j OLS k = 6 AIC BIC

Exponential

200 1 0.78 5.64 5.64 5.60 5.54 1.24 20.10 5.22
200 2 0.28 6.28 6.28 6.22 5.54 4.62 31.56 6.10
200 3 0.04 6.30 6.30 6.32 5.54 23.32 71.74 22.60

400 1 0.06 5.12 5.12 5.06 5.46 1.48 13.74 5.20
400 2 0.02 5.52 5.52 5.62 5.46 4.32 20.96 5.50
400 3 0.00 2.68 2.68 3.20 5.46 22.78 53.20 14.82

600 1 0.02 5.14 5.14 5.08 5.78 1.44 10.98 5.34
600 2 0.00 5.80 5.80 5.84 5.78 4.78 16.76 5.60
600 3 0.00 1.42 1.42 1.94 5.78 22.50 43.78 12.54

Logistic

200 1 4.78 5.00 4.84 4.82 5.54 5.36 9.10 4.64
200 2 4.78 4.84 4.84 4.76 5.54 5.16 16.50 5.04
200 3 2.22 6.88 6.88 6.86 5.54 8.36 59.20 19.24

400 1 5.24 5.06 4.94 4.62 5.46 5.52 6.56 4.48
400 2 5.24 4.88 4.88 4.88 5.46 5.50 11.38 5.08
400 3 2.02 3.84 3.84 4.26 5.46 6.48 40.42 13.50

600 1 5.52 5.42 5.28 4.92 5.78 5.76 6.56 5.40
600 2 5.52 5.30 5.30 5.30 5.78 5.70 10.12 5.62
600 3 2.10 3.16 3.16 3.46 5.78 6.76 31.58 11.78

Linear

200 1 4.78 5.50 5.50 5.50 5.54 4.98 21.00 5.96
200 2 2.28 7.04 7.04 7.04 5.54 7.62 52.44 15.88
200 3 0.16 5.30 5.30 5.66 5.54 16.36 93.76 48.02

400 1 5.24 5.26 5.26 5.24 5.46 5.28 14.04 5.48
400 2 2.24 4.70 4.70 4.92 5.46 6.02 35.14 11.64
400 3 0.02 1.28 1.28 2.12 5.46 11.96 88.48 41.48

600 1 5.52 5.70 5.70 5.74 5.78 5.86 12.52 6.06
600 2 2.94 3.98 3.98 4.40 5.78 6.34 27.20 10.52
600 3 0.00 0.40 0.40 0.84 5.78 11.32 83.64 37.48

Notes: Based on 5000 Monte carlo replications.
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Table S23: Empirical rejection frequencies, Design 3

k = 6 AIC BIC

n j 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0

Exponential

200 1 5.64 5.64 5.64 5.64 5.64 5.64 5.64 5.64 5.64 5.64 5.60 5.60 5.60 5.60 5.60
200 2 6.28 6.30 6.30 6.30 6.30 6.28 6.30 6.30 6.30 6.30 6.22 6.24 6.24 6.24 6.24
200 3 6.30 9.68 9.68 9.68 9.68 6.30 9.68 9.68 9.68 9.68 6.32 9.34 9.34 9.34 9.34

400 1 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.06 5.06 5.06 5.06 5.06
400 2 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.62 5.62 5.62 5.62 5.62
400 3 2.68 9.34 9.34 9.34 9.34 2.68 9.34 9.34 9.34 9.34 3.20 9.16 9.16 9.16 9.16

600 1 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.08 5.08 5.08 5.08 5.08
600 2 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.84 5.84 5.84 5.84 5.84
600 3 1.42 8.54 8.54 8.54 8.54 1.42 8.54 8.54 8.54 8.54 1.94 8.42 8.42 8.42 8.42

Logistic

200 1 5.00 5.00 5.00 5.00 5.00 4.84 4.84 4.84 4.84 4.84 4.82 4.82 4.82 4.82 4.82
200 2 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.76 4.76 4.76 4.76 4.76
200 3 6.88 9.58 9.58 9.58 9.58 6.88 9.58 9.58 9.58 9.58 6.86 9.06 9.06 9.06 9.06

400 1 5.06 5.06 5.06 5.06 5.06 4.94 4.94 4.94 4.94 4.94 4.62 4.62 4.62 4.62 4.62
400 2 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88
400 3 3.84 8.94 8.94 8.94 8.94 3.84 8.94 8.94 8.94 8.94 4.26 8.60 8.60 8.60 8.60

600 1 5.42 5.42 5.42 5.42 5.42 5.28 5.28 5.28 5.28 5.28 4.92 4.92 4.92 4.92 4.92
600 2 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30
600 3 3.16 8.54 8.54 8.54 8.54 3.16 8.54 8.54 8.54 8.54 3.46 8.22 8.22 8.22 8.22

Linear

200 1 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50
200 2 7.04 9.00 9.00 9.00 9.00 7.04 9.00 9.00 9.00 9.00 7.04 8.56 8.56 8.56 8.56
200 3 5.30 11.34 11.34 11.34 11.34 5.30 11.34 11.34 11.34 11.34 5.66 10.76 10.76 10.76 10.76

400 1 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.24 5.24 5.24 5.24 5.24
400 2 4.70 8.42 8.42 8.42 8.42 4.70 8.42 8.42 8.42 8.42 4.92 8.10 8.10 8.10 8.10
400 3 1.28 12.10 12.10 12.10 12.10 1.28 12.10 12.10 12.10 12.10 2.12 11.48 11.48 11.48 11.48

600 1 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.74 5.74 5.74 5.74 5.74
600 2 3.98 7.84 7.84 7.84 7.84 3.98 7.84 7.84 7.84 7.84 4.40 7.72 7.72 7.72 7.72
600 3 0.40 10.90 10.90 10.90 10.90 0.40 10.90 10.90 10.90 10.90 0.84 10.38 10.38 10.38 10.38

Notes: Based on 5000 Monte carlo replications.
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Figure S26: Design 3, πj(z) = 5 exp(−z2/2c2j)
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Figure S27: Design 3, πj(z) = 25(1 + exp(−z/cj))−1
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Figure S28: Design 3, πj(z) = cjz
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Figure S29: Design 4, πj(z) = 5 exp(−z2/2c2j)
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Table S24: Empirical rejection frequencies, IV, Design 4, π1 = π2

Ŝ AR LM CLR TSLS W GMM W GMM LM

n j OLS k = 3 AIC BIC

Exponential

200 1 1.02 4.80 4.80 4.48 4.84 4.98 5.06 18.12 26.14 12.80
200 2 0.30 5.98 5.96 5.56 4.84 5.18 5.02 35.52 59.94 27.04
200 3 0.04 6.38 6.32 6.00 4.84 5.12 5.00 60.74 99.80 85.28

400 1 0.02 5.42 5.42 5.12 5.38 5.12 5.54 17.70 14.98 9.20
400 2 0.00 6.00 6.00 6.04 5.38 5.24 5.52 35.98 35.12 17.64
400 3 0.00 7.22 7.22 6.94 5.38 5.30 5.54 61.34 97.02 75.28

600 1 0.00 4.82 4.82 4.70 5.04 5.26 5.36 17.48 11.92 8.46
600 2 0.00 5.50 5.50 5.46 5.04 5.54 5.26 35.34 25.74 14.42
600 3 0.00 5.70 5.70 5.44 5.04 5.54 5.32 61.38 92.20 67.24

Logistic

200 1 5.40 4.60 1.32 2.78 4.84 5.40 6.86 5.44 6.10 5.72
200 2 5.42 5.32 5.26 5.00 4.84 5.36 6.72 5.62 9.64 7.14
200 3 3.58 6.32 6.26 5.62 4.84 5.48 6.60 13.60 97.44 77.14

400 1 5.12 5.22 4.28 2.70 5.38 5.30 6.52 5.18 5.52 5.36
400 2 4.88 5.48 5.48 5.14 5.38 5.34 6.60 5.04 7.20 5.80
400 3 1.92 7.38 7.38 6.86 5.38 5.16 6.24 9.82 86.10 60.82

600 1 5.10 4.58 4.36 2.28 5.04 5.36 6.50 5.28 5.36 5.50
600 2 5.06 4.98 4.98 4.94 5.04 5.38 6.54 5.22 6.70 5.72
600 3 1.16 6.22 6.22 5.80 5.04 5.38 6.36 8.58 74.12 49.12

Linear

200 1 5.32 5.68 5.62 5.10 4.84 5.44 6.74 5.86 25.98 14.34
200 2 3.80 6.26 6.20 5.62 4.84 5.42 6.72 11.74 94.78 69.16
200 3 0.14 6.22 6.10 5.66 4.84 5.26 5.92 42.12 100.00 97.30

400 1 4.74 5.92 5.92 5.32 5.38 5.32 6.48 5.48 15.60 9.72
400 2 2.94 7.18 7.18 6.72 5.38 5.22 6.30 8.92 78.00 51.38
400 3 0.00 7.40 7.40 6.78 5.38 5.04 5.72 30.70 99.88 95.96

600 1 5.02 5.32 5.32 5.26 5.04 5.40 6.56 5.46 12.44 8.62
600 2 2.64 6.44 6.44 5.98 5.04 5.42 6.38 7.92 63.18 40.16
600 3 0.00 4.52 4.52 4.32 5.04 5.26 6.02 25.00 99.52 94.34

Notes: Based on 5000 Monte carlo replications.
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Table S25: Empirical rejection frequencies, IV, Design 4, π1 = π2, Ŝ tests

k = 3 AIC BIC

n j 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0 10−1 10−3 10−5 10−7 0

Exponential

200 1 4.80 4.80 4.80 4.80 4.80 4.80 4.80 4.80 4.80 4.80 4.48 4.48 4.48 4.48 4.48
200 2 5.98 5.98 5.98 5.98 5.98 5.96 5.96 5.96 5.96 5.96 5.56 5.56 5.56 5.56 5.56
200 3 6.38 6.38 6.38 6.38 6.38 6.32 6.32 6.32 6.32 6.32 6.00 6.00 6.00 6.00 6.00

400 1 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.12 5.12 5.12 5.12 5.12
400 2 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.04 6.04 6.04 6.04 6.04
400 3 7.22 7.92 7.92 7.92 7.92 7.22 7.92 7.92 7.92 7.92 6.94 7.50 7.50 7.50 7.50

600 1 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.70 4.70 4.70 4.70 4.70
600 2 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.46 5.46 5.46 5.46 5.46
600 3 5.70 7.72 7.72 7.72 7.72 5.70 7.72 7.72 7.72 7.72 5.44 7.08 7.08 7.08 7.08

Logistic

200 1 4.60 4.60 4.60 4.60 4.60 1.32 1.32 1.32 1.32 1.32 2.78 2.78 2.78 2.78 2.78
200 2 5.32 5.32 5.32 5.32 5.32 5.26 5.26 5.26 5.26 5.26 5.00 5.00 5.00 5.00 5.00
200 3 6.32 6.34 6.34 6.34 6.34 6.26 6.28 6.28 6.28 6.28 5.62 5.64 5.64 5.64 5.64

400 1 5.22 5.22 5.22 5.22 5.22 4.28 4.28 4.28 4.28 4.28 2.70 2.70 2.70 2.70 2.70
400 2 5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.14 5.14 5.14 5.14 5.14
400 3 7.38 7.54 7.54 7.54 7.54 7.38 7.54 7.54 7.54 7.54 6.86 7.02 7.02 7.02 7.02

600 1 4.58 4.58 4.58 4.58 4.58 4.36 4.36 4.36 4.36 4.36 2.28 2.28 2.28 2.28 2.28
600 2 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.94 4.94 4.94 4.94 4.94
600 3 6.22 7.24 7.24 7.24 7.24 6.22 7.24 7.24 7.24 7.24 5.80 6.72 6.72 6.72 6.72

Linear

200 1 5.68 5.68 5.68 5.68 5.68 5.62 5.62 5.62 5.62 5.62 5.10 5.10 5.10 5.10 5.10
200 2 6.26 6.28 6.28 6.28 6.28 6.20 6.22 6.22 6.22 6.22 5.62 5.64 5.64 5.64 5.64
200 3 6.22 6.22 6.22 6.22 6.22 6.10 6.10 6.10 6.10 6.10 5.66 5.66 5.66 5.66 5.66

400 1 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.32 5.32 5.32 5.32 5.32
400 2 7.18 7.30 7.30 7.30 7.30 7.18 7.30 7.30 7.30 7.30 6.72 6.84 6.84 6.84 6.84
400 3 7.40 8.30 8.30 8.30 8.30 7.40 8.30 8.30 8.30 8.30 6.78 7.60 7.60 7.60 7.60

600 1 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.26 5.26 5.26 5.26 5.26
600 2 6.44 7.20 7.20 7.20 7.20 6.44 7.20 7.20 7.20 7.20 5.98 6.64 6.64 6.64 6.64
600 3 4.52 7.56 7.56 7.56 7.56 4.52 7.56 7.56 7.56 7.56 4.32 6.84 6.84 6.84 6.84

Notes: Based on 5000 Monte carlo replications.

Figure S30: Design 4, πj(z) = 25(1 + exp(−z/cj))−1
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Figure S31: Design 4, πj(z) = cjz
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