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S1 Notation

x := y means that x is defined to be y. dθ is the length of the vector θ. The

Lebesgue measure on RK is denoted by λK or λ if the dimension is clear from

context. k-times continuously differentiable functions belong to Ck. Lp(A,w) :=

Lp(A,A, µ, w) for a measure space (A,A, µ) and a weight function w : A →
[0,∞) is the weighted Lp space consisting of (equivalence classes of) measurable

functions f : A → R such that
∫
|f |pw dµ < ∞. L0

p(Ω,F , P ) is the subspace of

Lp(Ω,F , P ) whose elements have zero-mean. The standard basis vectors in RK are

e1, . . . , eK . M
† is the Moore – Penrose pseudoinverse ofM . Pf :=

∫
f dP , Pnf :=

1
n

∑n
i=1 f(Yi) and Gnf :=

√
n(Pn − P )f . For sequences of probability measures

(Qn)n∈N and (Pn)n∈N where Qn and Pn are defined on a common measurable

space for each n ∈ N, Qn ◁ Pn indicates that (Qn)n∈N is contiguous with respect

to (Pn)n∈N. Qn ◁ ▷ Pn indicates that Qn ◁ Pn and Pn ◁ Qn. X ⊥⊥ Y indicates that

random vectors X and Y are independent; X ≃ Y indicates that they have the

same distribution. a ≲ b means that a ≤ Cb for some constant C ∈ (0,∞); C may

change from line to line. If X is a topological space, clX means the (topological)

closure of X. B(X) are the Borel subsets of X. If S is a subset of a vector space,

linS or SpanS means the linear span of S. If S is a subset of a topological vector

space, lin S or cl SpanS means the closure of the linear span of S. If S is a

subset of an inner product space (V, ⟨· , ·⟩), S⊥ is its orthogonal complement, i.e.

S⊥ = {x ∈ V : ⟨x , s⟩ = 0 for all s ∈ S}. If S ⊂ V is complete the orthogonal

projection of x ∈ V onto S is Π(x|S). The total variation distance between

measures P and Q defined on the measurable space (Ω,F) is dTV (P,Q). d2 is

the Mallows-2 metric (e.g. Bickel, Klaassen, Ritov, and Wellner, 1998, Appendix

6).
Pn⇝ denotes weak convergence under the sequence of measures (Pn)n∈N. If the

sequence of measures is clear from context, I write just ⇝.

S2 Additional results & discussion

S2.1 Inference under shape constraints

A non-standard inference problem which has attracted substantial attention in

statistics & econometrics is inference when (finite-dimensional) nuisance parame-

ters η may be at, or close to, the boundary. See, amongst others, Geyer (1994);

Andrews (1999, 2001); Ketz (2018). In this scenario, as explained in detail in

the aforementioned papers, the limiting distributions of extremum estimators are
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non-normal when the true parameter is at the boundary of the parameter space.

In otherwise regular models, the same is true when the true parameter is “close”

to this boundary, i.e. along local (contiguous) alternatives to such a boundary

point, by virtue of Le Cam’s third Lemma.

In consequence, the normal approximations which usually obtain for extremum

estimators (cf. Newey and McFadden, 1994) can lead to either misleading infer-

ence or poor power. The literature contains examples of boundary problems where

“standard” tests over-reject (e.g. Andrews and Guggenberger, 2010) as well as ex-

amples where they are conservative and exhibit poor power (e.g. Ketz, 2018).

Under regularity conditions, boundary - constrained estimators of the nuisance

parameters typically remain
√
n - consistent (albeit not asymptotically normal).

Due to the approximate orthogonalisation (10), plugging in any
√
n - consistent

estimator η̂n of η is typically sufficient to ensure that the resulting feasible moment

function (i.e. ĝn,θ = gθ,η̂n) achieves the same normal limit as in Proposition 1.

In the semiparametric setting a natural generalisation of this boundary - con-

strained phenomenon is that of inference when nuisance functions are estimated

under shape restrictions which may be close to binding.

Example 1 (Single-index model, continued): Suppose that the class F of permit-

ted link functions f in equation (1) imposes a shape restriction. For instance, F

may contain only monotonically increasing functions or convex functions.

Analogously to the parametric case, plugging in nuisance functions estimated

under shape constraints causes no problems for C(α) style tests, which retain the

same asymptotic distribution whether or not the constraints are (close to) binding.

This phenomenon is explored in simulation (based on Example 1) in Section S5.1.

Note that the power results of Section 3 typically do not apply to models with

shape-constraints as – like in the parametric boundary case – the set B of possible

perturbations to η will typically be a (linear) cone rather than a linear space.

S2.2 Uniform Local Asymptotic Normality

H is assumed to be a subset (containing 0) of a linear space equipped with a

pseudometric.1

Assumption S1 (Uniform local asymptotic normality): Equation (5) holds and

Rn(hn)
Pn−→ 0 for any hn → h in H. Additionally, for each hn → h in H,

1Proposition S1 below is an adaptation of Theorem 80.13 in Strasser (1985).

S2



(∆nhn)n∈N is uniformly square Pn-integrable and (∆nhn,∆nh)
′ Pn⇝ N (0, σ(h) [ 1 1

1 1 ])

where σ(h) := limn→∞ ∥∆nh∥2.

Remark S1: The joint convergence of (∆nhn,∆nh)
′ in Assumption S1 is needed

because H is not required to be linear. If H is a linear space this follows from d2

convergence of (the law of) ∆nhn to N (0, σ(h)) and the Cramér – Wold Theorem.

Remark S2: If (∆n)n∈N is asymptotically equicontinuous on compact subsets K ⊂
H, then hn → h in H implies ∥∆n(hn − h)∥ → 0. In consequence (∆nh)n∈N being

uniformly square Pn-integrable and ∆nh
Pn⇝ N (0, σ(h)) for each h ∈ H, suffices

for (∆nhn)n∈N being uniformly square Pn-integrable and for any hn → h ∈ H

(∆nhn, ∆nh)
′ =

(
1 1

0 1

)
(∆nhn −∆nh, ∆nh)

′ Pn⇝ N (0, σ(h) [ 1 1
1 1 ]) .

If H is a Banach space (metrised by its norm), the equicontinuity of (∆n)n∈N

is guaranteed as uniform boundedness of (∆n)n∈N (hence equicontinuity on H) is

implied by uniform square Pn-integrability of (∆nh)n∈N for h ∈ H.

Proposition S1:Assumption S1 is equivalent to Assumption 1 plus asymptotic

equicontinuity on compact subsets K ⊂ H of (∆n)n∈N and (h 7→ Pn,h)n∈N (in dTV ).

Proof. Suppose Assumption 1 and the asymptotic equicontinuity conditions hold.

Let hn → h in H. By asymptotic equicontinuity of (h 7→ Pn,h)n∈N,

lim
n→∞

dTV (Pn,hn , Pn,h) = 0 =⇒ lim
n→∞

∫ ∣∣∣∣pn,hn

pn,0
− pn,h
pn,0

∣∣∣∣ dPn,0 = 0.

In combination with (compact) asymptotic equicontinuity of (∆n)n∈N, this implies

Rn(hn) − Rn(h) = oPn(1). That (∆nhn)n∈N is uniformly square Pn-integrable

and the joint weak convergence under Pn follows from the argument in Remark

S2. Conversely, suppose Assumption S1 holds and let hn → h in H. Then

∆n(hn − h)
Pn−→ 0 and so ∥∆n(hn − h)∥2 → 0 by uniform square integrability

(Serfozo, 1982, Theorem 2.7). dTV (Pn,hn , Pn,h) → 0 holds by Lemma S6 since

Ln(hn)− Ln(h) = ∆nhn −
1

2
∥∆nhn∥2 +Rn(hn)−

[
∆nh− 1

2
∥∆nh∥2 +Rn(h)

]
,

and Rn(hn) = oPn(1), Rn(h) = oPn(1), ∥∆n(hn − h)∥2 → 0.

In the i.i.d. case, Lemma 4 recorded sufficient conditions for LAN (Assumption
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1). Similar sufficient conditions are available for ULAN (Assumption S1).

Lemma S1: Suppose that Assumption 5 holds and for each h ∈ H equation (24)

holds with A : lin H → L2(P ) a bounded linear map. Then Assumption S1 holds

with Pn,h = P n
h/

√
n
and [∆nh](W

(n)) = GnAh.

Proof. That Rn(hn)
Pn−→ 0 in (5) and that Ah ∈ L0

2(P ) follows from (24) by

e.g. Lemma 3.10.11 in van der Vaart and Wellner (1996). This immediately

implies that ∆nh is uniformly square integrable by the i.i.d assumption and that

[∆nh](W
(n)) = GnAh ⇝ N (0, σ(h)) for σ(h) :=

∫
(Ah)2 dP by the central limit

theorem. In view of Remark S2 it remains to show that ∆n is asymptotically

equicontinuous on compact subsets K ⊂ H. This follows since A is bounded: for

hn → h, ∥∆n(hn −h)∥ = ∥GnA(hn − h)∥ = ∥A(hn −h)∥ ≤ ∥A∥∥hn −h∥ → 0.

S2.3 Additional results on uniform local regularity

S2.3.1 Asymptotic equicontinuity of power functions

Lemma S2: Suppose the conditions of Theorem 1 hold and that (H, d) is a pseudo-

metric space. Let δ metrise weak convergence on the space of probability measures

on (R,B(R)) and let Qn,h = Pn,h ◦ Ŝ−1
n,θ0

. Suppose that on a subset K ⊂ H,

(i) (h 7→ Qn,h)n∈N is asymptotically equicontinuous in δ;

(ii) (h 7→ Pn,h(r̂n,θ0 = r))n∈N is asymptotically equicontinuous;

(iii) (h 7→ Pn,h(Λ̂n,θ0 = 0))n∈N is asymptotically equicontinuous;

then (h 7→ Pn,hψn,θ0)n∈N is asymptotically equicontinuous on K.

Proof. First suppose r ≥ 1. By asymptotic equicontinuity of h 7→ Qn,h and

h 7→ Pn,h(r̂n,θ0 = r) on K, for any hn → h (through K), δ(Qn,hn , Qn,h) → 0 and

|Pn,h(r̂n,θ0 = r)− Pn,hn(r̂n,θ0 = r)| → 0. Since r̂n,θ0
Pn,h−−→ r (Assumption 3 (iii) and

Remark 1), r̂n,θ0
Pn,hn−−−→ r. Hence, under Pn,hn ,

Ŝn,θ0 − cn ⇝ S − cr, S ∼ χ2
r(a) =⇒ Pn,hnψn,θ0 → 1− P(χ2

r(a) ≤ cr) =: π(τ),

by Proposition 1 where cr and a are as in Theorem 1. Thus, by Theorem 1,

|Pn,hnψn,θ0 − Pn,hψn,θ0 | ≤ |Pn,hnψn,θ0 − π(τ)|+ |Pn,hψn,θ0 − π(τ)| → 0.

In the case where r = 0, the asymptotic equicontinuity onK of h 7→ Pn,h(Λ̂n,θ0 =

0) implies that if hn → h (through K), |Pn,hn(Λ̂n,θ0 = 0) − Pn,h(Λ̂n,θ0 = 0)| → 0.
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In combination with rank(Λ̂n,θ0)
Pn,h−−→ 0 (Assumption 3 (iii) and Remark 1), this

implies that Pn,hn(Λ̂n,θ0 = 0) → 1 and thus Pn,hnψn,θ0 → 0. Thus, by Theorem 1

|Pn,hnψn,θ0 − Pn,hψn,θ0| ≤ |Pn,hnψn,θ0|+ |Pn,hψn,θ0| → 0.

Remark S3: In Lemma S2, Conditions (i) and (ii) are required only in the case

where r ≥ 1 whilst Condition (iii) is required only in the case where r = 0.

S2.3.2 Uniform results under a measure structure

Let π and πn be as defined in Theorem 1 and Corollary 1 respectively.

Corollary S1: Suppose the conditions of Theorem 1 hold, (H,S, Q) is a finite

measure space and the functions h = (τ, b) 7→ πn(τ, b) are measurable. Then, for

any ε > 0 there is a K ∈ S such that Q(H \K) < ε and

lim
n→∞

sup
(τ,b)∈K

|πn(τ, b)− π(τ)| = 0.

Proof. The pointwise converge is the result of Theorem 1. π is measurable as

the pointwise limit of measurable functions. By Egorov’s theorem, πn(h) → π(h)

uniformly on a K satisfying the given requirements.

S2.4 Alternative representations of Ĩ

Lemma S3: Suppose Assumption 1 holds, B is a linear space and let (Ω,F ,P) be
the probability space on which the Gaussian process ∆ of Lemma 2 is defined. If

T := {∆(h) : h = (0, b) ∈ H} ⊂ L2(P) and ∆̃(ei, 0) := Π
[
∆(ei, 0)

∣∣T ⊥], then,
E
[
∆(ei, 0)∆̃(ej, 0)

]
= E

[
∆̃(ei, 0)∆̃(ej, 0)

]
= Ĩij.

Proof. Define Z : H → L2(P) as Z[h] = ∆(h). Z is a mean-zero linear Gaus-

sian process with covariance kernel K([h], [g]) = K(h, g) = ⟨[h] , [g]⟩K . Y :=

ranZ ⊂ L2(P) is a Hilbert space since for [h], [g] ∈ H, E [Z[h]Z[g]] = K([h], [g]) =

⟨[h] , [g]⟩K , which along with the completeness of H yields the closedness of ranZ.

Hence Z is a Hilbert space isomorphism from H to Y . If π′
1 := π|H,

T = {∆(h) : h = (0, b) ∈ H} = {Z[h] : h = (0, b) ∈ H} = {Z[h] : [h] ∈ kerπ′
1}.

We next show that T ⊥ = {Z[h] : [h] ∈ (kerπ1)
⊥}. For the first inclusion suppose
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that Z[g] ∈ T ⊥. Then, for any [h] ∈ kerπ′
1,

⟨[g] , [h]⟩K = ⟨Z[g] , Z[h]⟩L2(P)
= 0, (S1)

and the inclusion follows by taking limits as ker π1 = cl kerπ′
1 by Lemma S5. For

the other inclusion note that a corollary of Lemma S5 is that (kerπ1)
⊥ = (ker π′

1)
⊥.

Hence, if [g] ∈ (kerπ1)
⊥, for any [h] ∈ kerπ′

1 (S1) holds. Finally, let Q denote the

orthogonal projection on (ker π1)
⊥ ⊂ H and R that on T ⊥ ⊂ Y . Then for [h] ∈ H,

R∆(h) = RZ[h] = ZQZ∗Z[h] = ZQZ−1Z[h] = ZQ[h], since Z is a Hilbert

space isomorphism. Hence RZ[ei, 0] = ZQ[ei, 0] implying E
[
∆̃(ei, 0)∆̃(ej, 0)

]
=〈

Π⊥[ei, 0] , Π
⊥[ej, 0]

〉
K
= Ĩij.

In the i.i.d. setting the efficient information matrix Ĩ coincides with the vari-

ance matrix of the efficient score function ℓ̃ = Π[ℓ̇|{Db : b ∈ B}⊥].

Lemma S4: If Assumptions 1 and 5 hold and B is a linear space then Ĩ =
∫
ℓ̃ℓ̃′ dP .

Proof. For h1, h2 ∈ H, by the i.i.d. assumption and Lemma 2, Pn[∆nh1∆nh2] =

P [Ah1Ah2] = P[∆h1∆h2]. X := cl ranA ⊂ L2(P ) and Y := cl ran∆ ⊂ L2(P)

are Hilbert spaces when equipped with the inner products given by (h1, h2) 7→
P [Ah1Ah2] and (h1, h2) 7→ P[∆h1∆h2] respectively. Define U : ranA → ran∆ by

UAh := ∆h for h ∈ H. U is a bounded, linear, surjective isometry and can be

uniquely extended to a Hilbert space isomorphism U : X → Y . Let R := Π
[
·|T ⊥]

(T ⊥ as in Lemma S3) and Q := Π
[
·|{Db : b ∈ B}⊥

]
. Then R∆h = RUAh =

UQU∗UAh = UQAh, which implies the conclusion as e′iℓ̇γ = A(ei, 0).

S2.5 Most stringent tests

Here I consider most stringent tests; this delivers a similar message to the maximin

analysis in the main text.2 Let C be the class of all tests of level α for the hypothesis

K0 : h ∈ H0 against K1 : h ∈ H1 in the experiment E . Define π⋆(h) := supϕ∈C Phϕ

for all h ∈ H1. The regret of a test ϕ ∈ C is

R(ϕ) := sup {π⋆(h)− Phϕ : h ∈ H1} . (S2)

A test ϕ ∈ C is called most stringent at level α if it minimises R(ϕ) over C.
2The development here is based on Section 9, Chapter 11 in Le Cam (1986); in particular
compare Theorem S1 with Corollary 2 of Le Cam, 1986, Section 9, Chapter 11 which treats the
case of a Gausian shift experiment indexed by a Euclidean space.
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Theorem S1: Suppose Assumptions 1 and 4 hold and r = rank(Ĩ) ≥ 1. The most

stringent level α test of K0 : h ∈ H0 against K1 : h ∈ H1 in E has power function

π(h) = 1− P(χ2
r(a) ≤ cr), a = τ ′Ĩτ, h = (τ, b) ∈ H. (S3)

Proof. Denote by G the Gaussian shift on H and R̃ the regret

R̃(ϕ) := sup
{
π̃⋆([h])−G[h]ϕ : [h] ∈ H \ kerπ1

}
, π̃⋆([h]) := sup

{
G[h]φ : φ ∈ C̃

}
,

where C̃ is the class of level–α tests of kerπ1 against H \kerπ1 in G . The Neyman

– Pearson test, ψ⋆, of [g] ∈ kerπ1 against [g]+[h], with [h] ∈ [kerπ1]
⊥ rejects when

exp

(
Z[g + h]− Z[g]− 1

2
∥[g + h]∥2K +

1

2
∥[g]∥2K

)
= exp

(
ZΠ⊥[h]− 1

2
∥Π⊥[h]∥2K

)
exceeds a k chosen such that the test is of level α, for Z the central process of

G . k does not depend on the [g] ∈ kerπ1 and the power of this test depends only

on ∥Π⊥[h]∥2K = τ ′Ĩτ where π1[h] = [τ ]. Now let [h] ∈ H \ kerπ1 and consider

testing K1 : [h] against K0 : [h] ∈ kerπ1. One has [h] = [g] + Π⊥[h] where

[g] = Π[h] ∈ kerπ1. By the preceding observations, ψ⋆ is a most powerful level-α

test for this hypothesis.3 Thus ψ⋆ ∈ C̃ and

π̃⋆([h]) := sup
ϕ∈C̃

G[h]ϕ = G[h]ψ
⋆. (S4)

For i = 1, . . . , dθ, let ui := Π⊥[(ei, 0)] and let X := (Zu1, . . . , Zudθ)
′. Let ψ

be the test which rejects when (X ′Ĩ†X)2 > cr, for cr the 1 − α quantile of the

χ2
r. By Theorem 69.10 in Strasser (1985) and Theorem 9.2.3 in Rao and Mitra

(1971), G[h]ψ = 1 − P(χ2
r(a) ≤ cr), a = τ ′Ĩτ = ∥Π⊥[h]∥2K where [τ ] = π1[h].

G[h]ψ
⋆ −G[h]ψ depends only on ∥Π⊥[h]∥2K . Fix a ε > 0 and suppose that for some

ϕ ∈ C̃, R̃(ϕ) < R̃(ψ)− 2ε. There is an a > 0 such that

sup
{
G[g+h]ψ

⋆ −G[g+h]ψ : [h] ∈ [kerπ1]
⊥, ∥[h]∥2K = a

}
≥ R̃(ψ)−ε, for all [g] ∈ kerπ1.

In consequence, for all [g] ∈ kerπ1, all [h] ∈ Sa := {[h] ∈ [kerπ1]
⊥ : ∥[h]∥2K = a},

G[g+h]ψ
⋆ −G[g+h]ϕ ≤ R̃(ψ)− 2ε ≤ G[g+h]ψ

⋆ −G[g+h]ψ − ε,

3Suppose there were another level α test ϕ of K0 against K1, with strictly higher power than
ψ⋆. Then, this would also be a test of level α for [g] against Π⊥[h]. But this would contradict
the Neyman – Pearson Lemma (e.g. Lehmann and Romano, 2005, Theorem 3.2.1).
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which produces a contradiction to Theorem 30.2 in Strasser (1985):

inf
[h]∈Sa

G[h]ϕ ≥ inf
[h]∈Sa

G[h]ψ + ε = 1− P(χ2
r(a) ≤ cr) + ε.

To complete the proof, it suffices to show that φ : Ω → [0, 1] is in C if and

only if φ ∈ C̃ and R(φ) = R̃(φ). The first part follows from h ∈ H0 if and only if

[h] ∈ kerπ1 and Proposition 3. For the second part, (S4), Proposition 3 and the

first part together imply that π̃⋆([h]) = π⋆(h) for all h ∈ H. Therefore,

π̃⋆([h])−G[h]φ = π̃⋆(πV (h))−GπV (h)φ = π⋆(h)− Phφ, h ∈ H.

As h ∈ H1 ⇐⇒ [h] ∈ H \ kerπ1, R̃(φ) = sup{π⋆(h)− Phφ : h ∈ H1} = R(φ).

The first part of Corollary 3 provides conditions under which (S3) is the asymp-

totic power function of ψn,θ0 under Pn,h. The following Proposition demonstrates

that if πn : H → [0, 1] is a sequence of power functions corresponding to tests in

the experiments En of asymptotic size α, then each cluster point of πn corresponds

to a test ϕ in the limit experiment E whose regret is bounded below by that of

the most stringent test, ψ.

Proposition S2: Suppose Assumptions 1 and 4 hold and that r = rank(Ĩ) ≥ 1.

Let ϕn : Wn → [0, 1] be a sequence of tests such that for each h = (0, b) ∈ H,

lim sup
n→∞

Pn,hϕn ≤ α. (S5)

For each h ∈ H, let πn(h) := Pn,hϕn. If π is a cluster point of πn (with respect to

the topology of pointwise convergence on [0, 1]H), then π is the power function of

a test ϕ in E and R(ϕ) ≥ R(ψ).

Proof. By (S5), Proposition 2 and Theorem 7.1 in van der Vaart (1991) there is a

level α test ϕ in E with Phϕ = π(h). Apply Theorem S1.

S3 Technicalities

Lemma S5: Suppose Assumption 1 holds and B is a linear space. Let π′
1 denote

the restriction of π1 to H. Then, the closure of kerπ′
1 in H is kerπ1.

Proof. Since π1 is continuous, kerπ1 = π−1
1 ({0}) is closed. Hence it suffices to

show that kerπ1 = {[h] ∈ H : [h] = [0, b]} ⊂ cl ker π′
1 = cl{[h] ∈ H : [h] = [0, b]}.
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Let [h] = [0, b] ∈ kerπ1. There is a sequence H ∋ [hn] = [tn, bn] → [h]. Using (45)

∥[hn]− [h]∥K = t′nĨtn + ∥t′ne+ [0, bn]− [0, b]∥K , e := (Π[e1, 0], . . . ,Π[edθ , 0])
′

For each n ∈ N, there are ěn = ([0, b̌1,n], . . . , [0, b̌dθ,n])
′ with each [0, b̌j,n] ∈ H such

that
∥∥[0, b̌j,n]− Π[ej, 0]

∥∥
K
≤ 1/(n|tn,j|). Putting [0, b̃n] := t′něn + [0, bn],

∥[0, b̃n]− [0, b]∥K ≤ ∥t′něn − t′ne∥K + ∥t′ne+ [0, bn]− [0, b]∥K ≤ dθ
n

+ o(1) = o(1).

Since each [0, b̃n] ∈ kerπ′
1, the limit [0, b] ∈ cl ker π′

1.

Lemma S6: Suppose that for hn, g ∈ H, Pn,g ◁ Pn and Ln(hn) − Ln(g) = oPn(1).

Then dTV (Pn,hn , Pn,g) → 0.

Proof. By the contiguity Ln(hn)−Ln(g) = oPn,g(1). Apply Lemma S3.3 in Hoesch,

Lee, and Mesters (2024).

Corollary S2: Suppose that Assumption 1 holds and H is a linear space equipped

with the semi-norm ∥ · ∥K. If h, g ∈ H satisfy ∥h− g∥K = 0, dTV (Pn,h, Pn,g) → 0.

Proof. By Assumption 1, the reverse triangle inequality and σ(h− g) = ∥h− g∥K
we have that Ln(h)− Ln(g) = oPn(1). Apply Lemma S6 with hn = h.

Lemma S7: Let (U,X) be a random vector on a probability space (Ω,F ,P) with

U ∈ L2(P) and E[UU ′|X] non – singular almost surely. Let B ⊂ L2(Ω, σ(U,X),P)

be the set of bounded functions b of (u, x) such that E[b(U,X)U |X] = 0. Then

clB = {UZ : Z is a bounded, σ(X)–measurable random variable}⊥.

Proof. Suppose b ∈ B. Then E[b(U,X)UZ] = E [E[b(U,X)U |X]Z] = 0. Con-

versely suppose b ∈ L2(Ω, σ(U,X),P) and E[b(U,X)UZ] = 0 for Z any bounded

σ(X) – measurable random variable. By Proposition A.3.1 in Bickel et al. (1998),

E[b(U,X)U |X] = 0 a.s. whence b ∈ clB by Lemma C.7 in Newey (1991)

Theorem S2: Let H be a Hilbert space. Let hn, h ∈ H, and Ln, L closed (proper)

linear subspaces of H. Let gn := Π(hn|Ln) and g := Π(h|L). If (i) hn → h and

(ii) for each f ∈ L, there is a sequence (fn)n∈N and a N ∈ N such that fn → f

and fn ∈ Ln for n ≥ N , then gn → g.

Proof. Let Πn be the orthogonal projection onto Ln and Π that onto L. First sup-
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pose hn = h (n ∈ N). As (gn)n∈N is bounded, any subsequence contains a weakly

convergent subsequence, say gnk
⇀ g⋆. By self-adjointness and idempotency (SAI)

⟨gnk
, gnk

⟩ = ⟨Πnk
h , Πnk

h⟩ = ⟨h , Πnk
h⟩ → ⟨h , g⋆⟩ . (S6)

Let f ∈ L. By hypothesis there are (fn)n∈N with fn → f and fn ∈ Ln for

n ≥ N1. So fnk
→ f and fnk

∈ Lnk
for k ≥ K1. Since h − Πnk

h ⇀ h − g⋆, by

Proposition 16.7 in Royden and Fitzpatrick (2010) and the fact that h−gnk
∈ L⊥

nk

for each k, ⟨h− g⋆ , f⟩ = limk→∞ ⟨h− gnk
, fnk

⟩ = 0. Hence g⋆ = Πh = g. By

SAI of Π and (S6), limk→∞ ⟨gnk
, gnk

⟩ = ⟨h , Πh⟩ = ⟨Πh , Πh⟩ = ⟨g , g⟩ and hence

gnk
→ g by the Radon – Riesz Theorem. As the initial subsequence was arbitrary,

gn → g. To complete the proof, for hn → h an arbitrary convergent sequence,

∥gn − g∥ ≤ ∥hn − h∥ + ∥Πnh − Πh∥. The first RHS term is o(1) by assumption;

the second by the case with hn = h.

Theorem S3: Let H be a linear space and B ⊂ H a linear subspace of H. Suppose

that Gn is a Gaussian process on a probability space (Ω,F ,P) with index set H and

covariance kernel Kn and that G is a Gaussian process on (Ω,F ,P) with index set

H and covariance kernel K. Suppose that Kn(h, g) → K(h, g), h, g ∈ H. Let H

be equipped with the positive semi - definite, symmetric bilinear form defined as

⟨h , g⟩ := K(h, g) and suppose that H is separable under the induced pseudometric.

Fix h, g ∈ H and let Gn := σ({Gnf : f ∈ B}) and Gn := σ({Gf : f ∈ B}). Then,

Xn := (Gnh,E[Gng|Gn])⇝ X := (Gh,E[Gg|G ]) .

Proof. cl{Gb : b ∈ B} is a separable Hilbert space and so has an orthonor-

mal basis, which may be taken to be formed of Gbj, (bj)j∈N ⊂ B. Let Gn :=

σ({Gnbi : i ∈ N}), G := σ({Gbi : i ∈ N}), Bm := (b1, . . . , bm), Gm
n := σ({Gnb :

b ∈ Bm}), Gm := σ({Gb : b ∈ Bm}), Xm
n := (Gnh,E[Gng|Gm

n ]) and Xm :=

(Gh,E[Gg|Gm]). Now let Zm
n := (Gnh,Gng,Gnb1, . . . ,Gnbm)

′ ∼ N (0,Σm
n ) and

Zm := (Gnh,Gg,Gnb1, . . . ,Gnbm)
′ ∼ N (0,Σm). Partition Σm conformally with

Zm
1 = Gh, Zm

2 = Gg and Zm
3 = (Gnb1, . . . ,Gnbm)

′ and similarly for Σm
n , Z

m
n . Then

Xm
n = (Gnh, E[Gng|Gm

n ]) =
(
Zm

n,1, Z
m
n,2 − [Σm

n ]2,3[Σ
m
n ]

−1
3,3Z

m
n,3

)
Xm = (Gh, E[Gg|Gm]) =

(
Zm

1 , Z
m
2 − [Σm]2,3[Σ

m]−1
3,3Z

m
3

)
.

Since Kn(h1, h2) → K(h1, h2) for all h1, h2 ∈ H, Σm
n → Σm as n → ∞ and the

inverses in the preceding displays exist for all sufficiently large n since {Gbi : i ∈ N}
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is orthonormal. By Σm
n → Σn, Levy’s continuity Theorem and the Cramér – Wold

Theorem, Zm
n ⇝ Zm. Hence,

Xm
n ⇝ Xm. (S7)

Let Πm be the orthogonal projection onto Sm := Span{Gb : b ∈ Bm}. Then, Xm =

E[Gg|Gm] = E[Gg|G m] = ΠmGg, by Theorem 9.1 in Janson (1997). Sm ⊂ Sm+1

and S := cl{Gb : b ∈ B} = cl∪m∈NSm, so by Theorem S2 and Theorem 9.1 in

Janson (1997), ∥E[Gg|G m]− E[Gg|G ]∥L2 = ∥ΠmGg − ΠGg∥L2 → 0 and so

Xm ⇝ X. (S8)

Define Yn := E[Gnh|Gn], Y
m
n := E[Gnh|Gm

n ], Y m := E[Gh|Gm] and Y := E[Gh|G].
As Yn ∈ cl{Gnb : b ∈ B} and Y m

n ∈ {Gnb : b ∈ Bm} (Janson, 1997, Theorem

9.1), Yn − Y m
n ∼ N (0, σ2

n,m) where σ
2
n,m := Var(Yn − Y m

n ). As Yn = E[Gnh|Gn] and

Y m
n = E[Gnh|G m

n ] (Janson, 1997, Theorem 9.1),

P (∥Xn −Xm
n ∥ > ε) = P (|Yn − Y m

n | > ε) ≤ C exp

(
− ε2

σ2
n,m

)
. (S9)

We show next that σ2
n,m → σ2

m := Var(Y − Y m). For this let f0 := h, fi := bi,

i ∈ N. Consider the restricted processes Fn := (Fn,i)i∈N and F := (Fi)i∈N where

Fn,i := Gnfi−1 and Fi := Gfi−1. Fn and F are random elements in the separable

metric space (R∞, d) where d is the metric given in Example 1.2 of Billingsley

(1999). Hence Fn ⇝ F in (R∞, d) by Example 2.4 of Billingsley (1999). By

Skorohod’s representation Theorem (e.g. Billingsley, 1999, Theorem 6.7) there are

random elements F̃n and F̃ defined on a common probability space such that

F̃n → F̃ surely, L(F̃ ) = L(F ) and L(F̃n) = L(Fn). Thus F̃n and F̃ are Gaussian

processes. As Cov(F̃n,i, F̃n,j) = Kn(fi−1, fj−1) → K(fi−1, fj−1) = Cov(F̃i, F̃j) each

(F̃n,i)n∈N is uniformly square integrable. As (R∞, d) has the topology of pointwise

convergence each F̃n,i → F̃i surely. Hence F̃n,i
L2−→ F̃i. By the equality in law

Ỹ m
n := E[F̃n,1|{F̃n,i : 2 ≤ i ≤ m}] ∼ Y m

n , Ỹn := E[F̃n,1|{F̃n,i : i ∈ N, i ̸= 1}] ∼ Yn,

Ỹ m := E[F̃1|{F̃i : 2 ≤ i ≤ m}] ∼ Y m, Ỹ := E[F̃1|{F̃i : i ∈ N, i ̸= 1}] ∼ Y.

Define S̃m
n := Span{F̃n,i : 2 ≤ i ≤ m}, S̃n := cl Span{F̃n,i : i ∈ N, i ̸= 1},

S̃m := Span{F̃i : 2 ≤ i ≤ m} and S̃ := cl Span{F̃i : i ∈ N, i ̸= 1}. Then

Ỹ m
n = Π[F̃n,1|Sm

n ], Ỹn = Π[F̃n,1|Sn], Ỹ
m = Π[F̃1|Sm], Ỹ = Π[F̃1|S] by Theorem 9.1

in Janson (1997). We will apply Theorem S2 twice (in L2). It is straightforward

to check the hypotheses are satisfied with (i) Ln := S̃m
n , L := S̃m; (ii) Ln := S̃n,
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L := S̃ and hn := F̃n,1, h := F̃1 in both cases. By Theorem S2,

∥Ỹn − Ỹ m
n − (Ỹ − Ỹ m)∥L2 ≤ ∥Ỹn − Ỹ ∥L2 + ∥Ỹ m

n − Ỹ m∥L2 → 0,

hence σ2
n,m = Var(Yn−Y m

n ) = Var(Ỹn−Ỹ m
n ) → Var(Ỹ −Ỹ m) = Var(Y −Y m) = σ2

m.

To see that limm→∞ σ2
m = 0 set Lm := Span{Gb : b ∈ Bm} and L := cl{Gb : b ∈

B}. It is easy to check the hypotheses of Theorem S2 (with m in place of n) hold.

Hence Y m L2−→ Y and so σ2
m = Var(Y − Y m) → 0. In conjunction with (S9),

lim
m→∞

lim sup
n→∞

P (∥Xn −Xm
n ∥ > ε) ≤ lim

m→∞
lim sup
n→∞

C exp

(
− ε2

σ2
n,m

)
= 0. (S10)

The result now follows from Theorem 3.2 in Billingsley (1999).

Lemma S8: Let (mn)n∈N be an increasing sequence of natural numbers such that

mn ≤ n, (Yn,i)n∈N,1≤i≤mn a triangular array of random vectors and Cn a collection

of random variables. Suppose that with probability approaching one either

(i) E [∥Yn,i∥|Cn] ≤ δnn
−1/2 for some δn → 0 and all i ≤ mn; or

(ii) For each component Yn,i,s of Yn,i and any i ̸= j ≤ mn, E[Yn,i,sYn,j,s|Cn] = 0

almost surely and E[Y 2
n,i,s|Cn] ≤ δn for some δn → 0 and all i ≤ mn.

Then 1√
mn

∑mn

i=1 Yn,i converges to zero in probability.

Proof. If condition (i) holds, E
∥∥∥m−1/2

n

∑mn

i=1 Yn,i

∥∥∥ ≤ δnm
1/2
n n−1/2 → 0. If condition

(ii) holds, E
(
m

−1/2
n

∑mn

i=1 Yn,i,s

)2
= m−1

n

∑mn

i=1 EY 2
n,i,s ≤ δn → 0 for each compo-

nent Yn,i,s of Yn,i. In either case the claim then follows by Markov’s inequality.

S4 Additional details for the examples

S4.1 Single index model

S4.1.1 Proofs of results in the main text

Proof of Proposition 5. As is easy to verify, each component of gn belongs to

L0
2(Pn). For any b ∈ B, E[ϵb2(ϵ,X)|X] = 0 by (28). Plugging in for Db and

using this allows the conclusion that E [g(W )[Db](W )] = 0. Apply Lemma 5.

Proof of Proposition 6. For part (i) of Assumption 3 note that for some aj ∈
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{−1, 1}, 1√
n

∑n
i=1 ĝn,θ,i − g(Wi) =

∑5
l=1 al

1√
n

[∑mn

i=1Rl,n,i +
∑n

i=mn+1Rl,n,i

]
where

R1,n,i := ω(Xi)(f̂n,i(Vθ,i)− f(Vθ,i))f
′(Vθ,i)(X2,i − Z0(Vθ,i))

R2,n,i := ω(Xi)(Yi − f(Vθ,i))
(
f ′(Vθ,i)− f̂ ′

n,i(Vθ,i)
)
(X2,i − Z0(Vθ,i))

R3,n,i := ω(Xi)(Yi − f(Vθ,i))f̂ ′
n,i(Vθ,i)

(
Ẑ0,n,i(Vθ,i)− Z0(Vθ,i)

)
R4,n,i := ω(Xi)(f̂n,i(Vθ,i)− f(Vθ,i))

(
f ′(Vθ,i)− f̂ ′

n,i(Vθ,i)
)
(X2,i − Z0(Vθ,i))

R5,n,i := ω(Xi)(f̂n,i(Vθ,i)− f(Vθ,i))f̂ ′
n,i(Vθ,i)

(
Ẑ0,n,i(Vθ,i)− Z0(Vθ,i)

)
.

We verify that one of (i) or (ii) of Lemma S8 is satisfied with Yn,i = Rl,n,i for

i = 1, . . . ,mn := ⌊n/2⌋ or i = mn + 1, . . . , n. Suppose that 1 ≤ i ≤ mn and

let Cn = Cn,2 (the case with mn + 1 ≤ i ≤ n and Cn = Cn,1 is analogous). Each

Ẑk,n,i(Vθ,i) is σ(Vθ,i, Cn) – measurable for k = 0, 1, 2, 3, 4. f(Vθ,i), f
′(Vθ,i), ω(Xi)

and X2,i − Z0(Vθ,i) are bounded uniformly in i and there are events En with

Pn,0En → 1 on which Rl,n,i ≤ rn , f̂n,i(Vθ,i), f̂ ′
n,i(Vθ,i), Ẑ1,n,i(Vθ,i) are bounded

above uniformly in i and Ẑ2,n,i(Vθ,i) is bounded above and below uniformly in i,

for all large enough n ∈ N. On these sets,

E
[∥∥∥Ẑ0,n,i(Vθ,i)− Z0(Vθ,i)

∥∥∥2∣∣∣∣Cn] ≲ r2n. (S11)

For l = 1, 2, 3, the first part of condition (ii) follows by the law of iterated

expectations and independence since E[ω(Xi)(X2,i − Z0(Vθ,i))|Vθ,i] = 0 (l = 1)

and E[ϵi|Xi] = 0 (l = 2, 3). The second part follows by the uniform boundedness

noted above, Rl,n,i ≤ rn on En along with equations (30) and (S11).

l = 4: By the uniform boundedness and the Cauchy – Schwarz inequality,

E[∥R4,n,i∥|Cn] ≲ E
[∣∣∣f̂n,i(Vθ,i)− f(Vθ,i)

∣∣∣ ∣∣∣f ′(Vθ,i)− f̂ ′
n,i(Vθ,i)

∣∣∣∣∣∣Cn] and the RHS is

upper bounded by R3,n,iR4,n,i = o(n−1/2) on En.

l = 5: By the uniform boundedness and the Cauchy – Schwarz inequality,

E[∥R4,n,i∥|Cn] ≲ E
[∣∣∣f̂n,i(Vθ,i)− f(Vθ,i)

∣∣∣ ∥∥∥Ẑ0,n,i(Vθ,i)− Z0(Vθ,i)
∥∥∥∣∣∣Cn]. For a C > 0,

the RHS is upper bounded by CrnR3,n,i = o(n−1/2) on En by (S11).

For parts (ii) and (iii) of Asssumption 3, we show that ∥V̌n,θ − V ∥ = oPn,0(νn),

which suffices by Proposition S1 of Lee and Mesters (2024). For V̆ := Pngg
′,

V̌n,θ − V = V̌n,θ − V̆ + V̆ − V =
1

n

n∑
i=1

[
ĝn,θ,iĝ

′
n,θ,i − g(Wi)g(Wi)

′]+ 1√
n
Gn[gg

′].

E(glgk)2 < ∞ by E[ϵ4] < ∞ and Assumption 8. Hence 1√
n
Gn[gg

′] = OPn,0(n
−1/2)

S13



by the CLT. For the other term,

1

n

n∑
i=1

(ĝn,θ,i,k − gk(Wi))
2 ≲

5∑
l=1

1

n

[
mn∑
i=1

R2
l,n,i,k +

n∑
i=mn+1

R2
l,n,i,k

]
.

For l = 1, 2, 3 we established that if 1 ≤ i ≤ mn and Cn = Cn,2 then E[R2
l,n,i,k|Cn] ≲

r2n on En. We show this also holds for l = 4, 5. (The case with mn + 1 ≤
i ≤ n with Cn = Cn,1 is once again analogous). For l ∈ {4, 5}, E

[
R2

l,n,i,k|Cn
]
≲

E
[(
f̂n,i(Vθ,i)− f(Vθ,i)

)2∣∣∣∣Cn], by the uniform boundedness (for all large enough n)

and the RHS is bounded above by r2n on En. By Markov’s inequality,
1
n

[∑mn

i=1R
2
l,n,i,k +

∑n
i=mn+1R

2
l,n,i,k

]
= OPn(r2n) for l = 1, . . . , 5 hence the same is

true of 1
n

∑n
i=1 ∥ĝn,θ,i, − g(Wi)∥2. Therefore, ∥V̌n,θ−V̆ ∥2 = OPn(rn) as

∥∥∥V̌n,θ − V̆
∥∥∥2
2

is bounded above by a multiple of

1

n

n∑
i=1

∥ĝn,θ,i∥2
1

n

n∑
i=1

∥ĝn,θ,i − g(Wi)∥2 +
1

n

n∑
i=1

∥ĝn,θ,i − g(Wi)∥2
1

n

n∑
i=1

∥g(Wi)∥2 .

S4.1.2 The LAN condition

Here I provide examples of local perturbations Pn,h and lower level conditions

under which the LAN condition in Assumption 7 holds. Let φn be as in equation

(3) with B1 := C1
b (D) and B2 taken to be the set of functions b2 : R1+K → R

such that b2 is bounded, e 7→ b2(e, x) is continuously differentiable with bounded

derivative and equation (28) holds.

Proposition S3: Suppose Assumption 6 holds, Wn =
∏n

i=1R1+K, e 7→
√
ζ(e, x) ∈

C1, and pn,h = pnγ+φn(h)
with pγ as in (2). Then Assumption 7 holds.

Proof. Define γt(h) := γ + t(τ, b1, b2ζ) for h = (τ, b1, b2) and t ∈ [0,∞). It is

easy to verify that Pγt(h) ∈ {Pγ : γ ∈ Γ} for all small enough t. This ensures

the required domination in Assumption 5 given Assumption 6. Next note that

t 7→ √
pγt(h) is continuously differentiable everywhere since it is a composition of

continuously differentiable functions for t small enough that (1 + tb2) is bounded

away from zero. This ensures that qt(W ) :=
d log pγs(h)(W )

ds
|s=t is defined for small
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enough t. Writing vt := Vθ+tτ and et := Y − f(vt)− tb1(vt) this has the form

qt(W ) :=− ϕ(et, X)[f ′(vt)X
′
2τ + tb′1(vt)X

′
2τ + b1(vt)]

+
b2(et, X)− tb′2(et, X)[f ′(vt)X

′
2τ + tb′1(vt)X

′
2τ + b1(vt)]

1 + tb2(et, X)
,

(S12)

which is a composition of continuous functions. By boundedness of f ′, b1, b
′
1, b2, b

′
2,

(1+tb2)
−1 and equation (26),

∫
|qt(W )|2+ρ dPγt(h) ≤ CE [(|ϕ(ϵ,X)|2+ρ + 1) ∥X∥2+ρ] <

∞ for a positive constant C < ∞ and a ρ > 0. This implies that for any tn → t,

(qtn(W )2)n∈N is uniformly Pγtn (h) – integrable. Combination with qtn(W )2 →
qt(W )2 (everywhere) yields

∫
qtn(W )2pγtn (h)(W ) dλ →

∫
qt(W )2pγt(h)(W ) dλ. Ap-

plying Lemma 1.8 in van der Vaart (2002) demonstrates that equation (24) holds,

with Ah as in (25). Lemma 1.7 of van der Vaart (2002) ensures that Ah ∈ L0
2(P ).

The form of Ah reveals that it is a linear map on H. It is bounded:

∥Ah∥2 ≤ C1E
[
ϕ(ϵ,X)2∥X∥2

]
∥τ∥2 + E

[
ϕ(ϵ,X)2

]
∥b1∥2 + ∥b2∥2 ≤ C2∥h∥2,

where C1, C2 ∈ (0,∞) are positive constants. Apply Lemma 4.

S4.2 IV model with non-parametric first stage

S4.2.1 Proofs of results in the main text

Proof of Lemma 6. J(Z) is nonsingular by (37). By Proposition 2.8.4 in Bernstein

(2009), J(Z)−1
1,1 = E[ϵ2|Z]−1 exists and is positive. Define l̇(W ) :=

(
l̇1(W )′, l̇2(W )′

)′
=

−ϕ1(ξ)(X
′, Z ′

1)
′, [D1b1](W ) := −ϕ2(ξ)

′b1(Z) and [D2b2](W ) := b2(ξ), where ξ =

(Y − X ′θ − Z ′
1β,X − π(Z), Z). By Lemma S7 and Proposition A.3.5 in Bickel

et al. (1998), with T2 := {[D2b2](W ) : b2 ∈ B2},

l̆γ(W ) := Π
[
l̇(W )|T ⊥

2

]
= E [−ϕ1(ξ)[X

′, Z ′
1]

′U ′|Z]E [UU ′|Z]−1
U,

[D̆1b1](W ) := Π
[
[Ḋ1b1](W )|T ⊥

2

]
= E [−b1(Z)′ϕ2(ξ)U

′|Z]E [UU ′|Z]−1
U.

Let K := dβ, and evaluating the conditional expectations using (37) we obtain:

l̆γ(W ) =

[
π(Z)

Z1

] [
1 0′K

]
J(Z)−1U =

[
π(Z)

Z1

]
E1 ,

[D̆γ,1b1](W ) = b1(Z)
′
[
0K IK

]
J(Z)−1U = b1(Z)

′E2 .

, E := J(Z)−1U.
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The projection of l̆(W ) onto the orthocomplement of {D̆1b1 : b1 ∈ B1} is equal

to l̃(W ) := Π
[
l̇(W )|{[D1b1](W ) +D2b2(W ) : b ∈ B}⊥

]
by Proposition A.2.4 in

Bickel et al. (1998). The components of [π(Z)′, Z ′
1]

′ E[E1E
′
2|Z]E[E2E

′
2|Z]−1E2 be-

long to cl{b1(Z)′E2 : b1 ∈ B1} as B1 is dense in L2 and by iterated expectations

E
[
l̃γ(W )b1(Z)

′E2

]
= E

[
[π(Z)′, Z ′

1]
′ [
E1 − E[E1E

′
2|Z]E[E2E

′
2|Z]−1E2

]
E ′

2b1(Z)
]
= 0.

Hence l̃(W ), the efficient score for (θ, β), has the form

l̃(W ) =

[
l̃1(W )

l̃2(W )

]
=

[
π(Z)

Z1

] [
E1 − E[E1E

′
2|Z]E[E2E

′
2|Z]−1E2

]
. (S13)

ℓ̃(W ) = l̃1(W )−E[l̃1(W )l̃2(W )′]E[l̃2(W )l̃2(W )′]−1l̃2(W ) by Example A.2.1 in Bickel

et al. (1998). To calculate this note that with Q(Z) := J(Z)−1 = E[EE ′|Z]

E1 −Q(Z)1,2Q(Z)
−1
2,2E2 =

[
Q(Z)1,1 −Q(Z)1,2Q(Z)

−1
2,2Q(Z)2,1

]
U1 = E[ϵ2|Z]−1ϵ

from which the result follows by direct calculation.

Proof of Lemma 7. The second claim follows from the expressions in (38) & (39).

For the first, by Assumption 9 and (37), E[∥g(W )∥2] <∞. By (35)

E [g(W )b2(ξ)] = E[ϵ2]−1E [(π(Z)−MZ1)E [ϵb2(U,Z)|Z]] = 0,

where M := E[XZ ′
1]E[Z1Z

′
1]

−1 and ξ = (Y −X ′θ − Z ′
1β,X − π(Z), Z). By (37)

E [g(W )ϕ2(ξ)
′b1(Z)] = E[ϵ2]−1E [(π(Z)−MZ1)E [ϵϕ2(ϵ, υ, Z)

′|Z] b1(Z)] = 0.

Lastly also E [g(W )ϕ1(ξ)b
′
0Z1] = 0 as by (37) and E[υ|Z] = 0,

E [g(W )ϕ1(ξ)b
′
0Z1] = −E[ϵ2]−1

[
E[π(Z)Z ′

1]− E[π(Z)Z ′
1]E[Z1Z

′
1]

−1E[Z1Z
′
1]
]
b0.

Proof of Proposition 7. Assumptions 9, 10, equation (37) and Lemma 7 verify the

conditions required to apply Lemma 5.

Proof of Proposition 8. Let βn = β+bn,0/
√
n with bn,0 → b0 ∈ Rdβ . Let ϵ̆n,i, ğn,θ,i,

V̆n,θ, Λ̆n,θ and r̆n,θ be formed analogously to ϵ̂n,i, ĝn,θ,i, V̂n,θ, Λ̂n,θ and r̂n,θ with βn in

place of β̂n. As β̂n ∈ Sn, by Lemma S3.1 in Hoesch et al. (2024) it suffices to show

that Assumption 3 holds for ğn,θ :=
1√
n

∑n
i=1 ğn,θ,i, Λ̆n,θ and r̆n,θ. For Assumption

3 part (i), by Lemma S9, 1√
n

∑n
i=1 [gn,θ,i − g(Wi)] =

∑4
l=1 Rn,l = oPn,0(1). For

S16



Assumption 3 parts (ii) and (iii), note that

V̌n,θ − V =
1

n

n∑
i=1

[
gn,θ,ig

′
n,θ,i − g(Wi)g(Wi)

′]+ 1√
n
Gngg

′. (S14)

For the first right hand side term, by Cauchy — Schwarz,∥∥∥∥∥ 1n
n∑

i=1

[
gn,θ,ig

′
n,θ,i − g(Wi)g(Wi)

′]∥∥∥∥∥ ≲
[

4∑
l=1

Sn,l

][
1

n

n∑
i=1

∥gn,θ,i∥2 +
1

n

n∑
i=1

∥g(Wi)∥2
]
.

As E∥g(Wi)∥2 <∞ under Assumption 9 , 1
n

∑n
i=1 ∥g(Wi)∥2 = OPn,0(1). By Lemma

S9 1
n

∑n
i=1 ∥gn,θ,i − g(Wi)∥2 ≲

∑4
l=1 Sn,l = OPn,0(δ

2
n + n−1), hence by the preced-

ing display, the first RHS term in (S14) is OPn,0(δ
2
n + n−1). By Assumption 11

E∥g(W )∥4 < ∞. Hence Gngγg
′
γ = OPn,0(1) by the CLT and so the second RHS

term in (S14) is OPn,0(n
−1/2). The result now follows by the condition on νn and

Proposition S1 of Lee and Mesters (2024).

Lemma S9: In the setting of Proposition 8, with s̆n := 1
n

∑n
i=1 ϵ̆

2
n,i,

(i) ∥M̂n −M∥ = OPn,0(n
−1/2) where M̂n :=

[
1
n

∑n
i=1XiZ

′
1,i

] [
1
n

∑n
i=1 Z1,iZ

′
1,i

]−1
;

(ii) 1
n

∑n
i=1 |ϵ̆n,i − ϵn,i|2 = OPn,0(n

−1) and |s̆−1
n − E[ϵ2]−1| = OPn,0(n

−1/2);

(iii) 1
n

∑n
i=1 ∥π̃n,i(Zi)∥2x2i = OPn,0(δ

2
n) for xi ∈ {1, ϵi};

(iv) Rn,1 =
1√
n

∑n
i=1 s̆

−1
n ϵ̆n,i[M − M̂n]Z1,i = oPn,0(1);

(v) Rn,2 =
1√
n

∑n
i=1 s̆

−1
n ϵ̆n,i [π̂n,i(Zi)− π(Zi)] = oPn,0(1);

(vi) Rn,3 =
1√
n

∑n
i=1 s̆

−1
n (ϵ̆n,i − ϵi)f(Zi) = oPn,0(1), where f(Zi) := π(Zi)−MZ1,i;

(vii) Rn,4 =
1√
n

∑n
i=1(s̆

−1
n − E[ϵ2]−1)ϵif(Zi) = oPn,0(1);

(viii) Sn,1 =
1
n

∑n
i=1 ∥s̆−1

n ϵ̆n,i

[
M − M̂n

]
Z1,i∥2 = OPn,0(n

−1);

(ix) Sn,2 =
1
n

∑n
i=1 ∥s̆−1

n ϵ̆n,i [π̂n,i(Zi)− π(Zi)] ∥2 = OPn,0(δ
2
n);

(x) Sn,3 =
1
n

∑n
i=1 ∥s̆−1

n (ϵ̆n,i − ϵi)f(Zi)∥2 = OPn,0(n
−1);

(xi) Sn,4 =
1
n

∑n
i=1 ∥(s̆−1

n − E[ϵ2]−1)ϵif(Zi)∥2 = OPn,0(n
−1).

Proof. Let π̃n,i(Zi) := π̂n,i(Zi) − π(Zi). By a simplification of the argument in

Proposition S4, (S17) holds for t 7→ γ+ t(0, (b0, 0, 0)). Then Pn,0 ◁ ▷ Pn,(0,b0,n,0,0) :=

Qn by Example 6.5, Theorem 7.2 & Lemma 7.6 in van der Vaart (1998).

(i) Follows from the CLT, given the moment conditions in Assumption 9.

(ii) The first holds by standard arguments as βn − β = O(n−1/2) and E∥Zi∥2 <
∞; the second by the CLT and delta method.

(iii) As Pn,0(
1
n

∑n
i=1 ∥π̃n,i(Zi)∥2x2i > Kδ2n) is bounded by Pn,0(1Fn

1
n

∑n
i=1 ∥π̃n,i(Zi)∥2x2i >

Kδ2n) + Pn,γF
∁
n. By Markov’s inequality 1

n

∑n
i=1 ∥π̃n,i(Zi)∥2x2i = OPn,0(δ

2
n) as

S17



by (37), (42) E[1Fn∥π̃n,i(Zi)∥2x2i ] ≤ E[E[1Fn,i
∥π̃n,i(Zi)∥2x2i |Zi, Cn,−i]] ≲ δ2n ,

where Fn,i is the σ(Cn,−i) – measurable set on which (42) holds for index i.

(iv) R′
n,1 = s̆−1

n

[
1
n

∑n
i=1 Z

′
1,iϵi +

1
n

∑n
i=1 Z

′
1,i(ϵ̆n,i − ϵi)

]√
n[M − M̂n]

′. By (i) and

(ii) it suffices to note 1
n

∑n
i=1 Z

′
1,iϵi = oPn,0(1) by the WLLN and

1
n

∑n
i=1 Z

′
1,i(ϵ̆n,i − ϵi) = oPn,0(1) by E∥Zi∥2 <∞, (ii) and Cauchy – Schwarz.

(v) Rn,2 = s̆−1
n

√
n(β − βn)

′ 1
n

∑n
i=1 Z1,iπ̃n,i(Zi) + s̆−1

n
1√
n

∑n
i=1 ϵiπ̃n,i(Zi). The first

RHS term is oPn,0(1) by (iii) and EZ2
1,i < ∞. For the second, by s̆−1

n =

OPn,0(1), Assumption 11 and Markov’s inequality it suffices to observe that

E
[
1
n

∑n
i=1 1Fn π̃n,i,k(Zi)

2ϵ2i
]
≲ δ2n by the argument in (iii) and by (43),

E
[
1
n

∑n
i=1

∑n
j=1,j ̸=i 1Fn1Gn π̃n,i,k(Zi)π̃n,j,k(Zj)

′ϵiϵj

]
≲ δ2n → 0.

(vi) Rn,3 = s̆−1
n [ 1

n

∑n
i=1 f(Zi)Z

′
1,i]

√
n(β−βn), where the bracketed term is oPn,0(1)

by the WLLN as E [f(Z)Z ′
1] = E [π(Z)Z ′

1 − E[π(Z)Z ′
1]E[Z1Z

′
1]

−1Z1Z
′
1] = 0

and the remaning factors are OPn,0(1) by (ii) and β − βn = O(n−1/2).

(vii) As E[ϵf(Z)] = E[E[ϵ|Z]f(Z)] = 0 this follows from (ii) and the WLLN.

(viii) Sn,1 ≲ s−2
n ∥M−Mn∥2[ 1n

∑n
i=1 ϵ

2
i ∥Z1,i∥2+2∥β−βn∥|ϵi|∥Z1,i∥3+∥β−βn∥2∥Z1,i∥4]

hence this follows by (i), (ii) and the moment conditions in Assumption 9.

(ix) By contiguity QnFn → 1. As the (conditional) distribution of (ϵ̆n,i, Zi)|Cn,−i

under Qn as that of (ϵi, Zi)|Cn,−i, under Qn, E[ϵ̆2n,i|Zi, Cn,−i] ≤ C a.s. by (37).

Therefore, under Qn, E
[
1Fn

1
n

∑n
i=1 ϵ̆

2
n,i∥π̃n,i(Zi)∥2

]
≲ δ2n, similar to in (iii),

and hence Markov’s inequality implies 1
n

∑n
i=1 ϵ̆

2
n,i∥π̃n,i(Zi)∥2 = OQn(δ

2
n). By

contiguity this holds also under Pn,0.

(x) As Sn,2 ≤ s̆−2
n ∥β − βn∥2 1

n

∑n
i=1 ∥Z1,i∥2[∥π(Zi)∥2 + ∥M∥2∥Z1,i∥2], the result

holds by (ii), β− βn = O(n−1/2) & the moment conditions in Assumption 9.

(xi) Since Sn,4 ≤ (s̆−1
n − E[ϵ2i ])2 1

n

∑n
i=1 ϵ

2
i (∥π(Zi)∥2 + ∥M∥2∥Z1,i∥2), this follows

from (ii) and the moment conditions in Assumption 9.

Condition (43) The condition in equation (43) is natural when π̂n,i is a leave-

one-out series estimator: π̂n,i(Zi) := α̂′
n,ipKn(Zi) for pKn(Zi) a Kn-vector of func-

tions of Zi and α̂n,i = Q−1
n,i

1
n−1

∑n
j=1,j ̸=i pKn(Zi)X

′
i withQn,i :=

[
1

n−1

∑n
j=1,j ̸=i pKn(Zi)pKn(Zi)

′
]
.

Then, with π̃n,i(Zi) := π̂n,i(Zi)− π(Zi) and Gn ∈ σ(Z1, . . . , Zn),

E [1Gn π̃n,i,k(Zi)π̃n,j,k(Zj)ϵiϵj] = −E [1Gn π̃n,i,k(Zi)ϵjE [pKn(Zj)
′α̂n,jekϵi|Zi, Cn,−i]] .

(S15)

as by E[ϵi|Zi] = 0 and independence E[ϵiπ(Zi)|Zi, Cn,−i] = 0. The RHS of (S15) is

−E

[
1Gn π̃n,i,k(Zi)ϵjpKn(Zj)

′Q−1
n,j

1

n− 1

n∑
l=1,l ̸=j

pKn(Zl)E [X ′
lϵi|Zi, Cn,−i] ek

]
,
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and as E [X ′
lϵi|Zi, Cn,−i] = 0 if l ̸= i, therefore with µ(Zi) := E[υ′iϵi|Zi]ek,

E [1Gn π̃n,i,k(Zi)π̃n,j,k(Zj)ϵiϵj] = −E
[
1Gn π̃n,i,k(Zi)ϵjpKn(Zj)

′Q−1
n,j

1

n− 1
pKn(Zi)µ(Zi)

]
= − 1

n− 1
E
[
1Gne

′
kpKn(Zj)

′Q−1
n,jpKn(Zi)µ(Zi)E [π̃n,i,k(Zi)ϵj|Zj, Cn,−j]

]
.

Arguing as before with the roles of i and j interchanged and using (37) yields

|E [1Gn π̃n,i(Zi)π̃n,j(Zj)ϵiϵj] | ≤ C2
|E
[
1GnpKn(Zj)

′Q−1
n,jpKn(Zi)pKn(Zi)

′Q−1
n,ipKn(Zj)

]
|

(n− 1)2
.

Therefore (43) holds if the RHS is bounded above by a constant multiple of δ2n/n.

S4.2.2 The LAN condition

Here I provide examples of Pn,h and lower level conditions under which the LAN

condition in Assumption 10 holds. Let φn be as in (34) with

φn,1(b1) := b1/
√
n, φn,2(b2) := ζb2/

√
n, (b1, b2) ∈ B1 ×B2, (S16)

where B1 is the space of bounded functions b1 : RdZ → Rdθ and B2 the space of

bounded functions b2 : Rdw → R which are continuously differentiable in their first

1 + dθ components with bounded derivative and such that (35) hold.

Proposition S4: If Assumption 9 holds, Wn =
∏n

i=1 Rdw , u 7→
√
ζ(u, z) ∈ C1

and pn,h = pnγ+φn(h)
with pγ as in (33). Then Assumption 10 holds.

Proof. For all large enough n each γ + φn(h) ∈ Γ. Assumption 5 is satisfied by

construction; to apply Lemma 4 it remains to verify (24) (with hn = h). Let

qτ,b,t := p(θ,η)+t(τ,(b0,b1,b2ζ)), t ∈ [0,∞) and let q := q0,0,0. For all small enough τ, b

and t, γ + t(τ, (b0, b1, b2ζ)) ∈ Γ. It suffices to show∫ [
q
1/2
τ,b,t − q1/2 − t

2

(
(τ ′, b′0)l̇ − ϕ′b1 + b2

)
q1/2
]2

dν = o(t2) as t ↓ 0, (S17)

where l̇(W ) := −ϕ(ϵ(θ, β), υ(π), Z)[X ′, Z ′
1]

′. Note that t 7→ √
qτ,b,t ∈ C1 follows

from (e, v) 7→
√
ζ(e, v, z) ∈ C1. Under qτ,b,s,

∂ log qτ,b,t
∂t

|t=s has the same law as

Es := −ϕ1(ϵ, υ, Z)[X
′, Z ′

1](τ
′, b′0)

′ − ϕ2(ϵ, υ, Z)
′b1(Z)

+
b2(ϵ, υ, Z)− sb2,1(ϵ, υ, Z)[X

′, Z ′
1](τ

′, b′0)− sb2,2(ϵ, υ, Z)
′b1(Z)

1 + sb2(ϵ, υ, Z)
,
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where b2,i indicates the derivative of (e, v) 7→ b2(e, v, z) in the i-th argument. Take

a neighbourhood of 0, U := [0, δ) such that 1 + sb2(ϵ, υ, Z) is bounded below. Let

E2 := C [ϕ1(ϵ, υ, Z)
2[∥X∥2 + ∥Z∥2] + ∥ϕ2(ϵ, υ, Z)∥2 + ∥X∥2 + ∥Z∥2 + 1] for some

positive constant C. Provided C is large enough, by Assumption 9 E2
s ≤ E2 a.s.

and EE2 < ∞. Therefore, as E2
sn → E2

s pointwise, EE2
sn → EE2

s , which verifies

that Lemma 7.6 in van der Vaart (1998) applies, whence (S17) holds.

S5 Additional simulation details & results

S5.1 Single index model

As discussed in Section S2.1, locally regular C(α) tests do not exhibit size dis-

tortions when nuisance parameters are estimated under shape constraints. Here

I explore this in simulation, using Example 1 with F restricted to contain only

monotonically increasing functions. I set H0 : θ = θ0 = 0 and consider three pos-

sible link functions: f1 is a logistic function, whilst f2 and f3 are double logistic

functions which include a flat section in between two increasing sections. These

functions are formally defined in (S18) below and plotted in Figure S3. Each con-

sidered link function has flat sections which may cause monotonicity constraints to

bind in the estimation of f . I explore the effect this has on the rejection frequen-

cies of the ψn,θ0 test as described on p. 20 and an Ichimura (1993) – style Wald

test. Both tests are computed with f, f ′ estimated by 9 monotonic I – splines (e.g.

Ramsay, 1988), whilst Z1 is estimated using 6 cubic B – splines. As Ĩ > 0 in this

design, ν = 0. ϵ is drawn from a standard normal and the covariates are drawn

as X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), where each Zk ∼ U(−1.5, 1.5) is independent.

The fj functions used are as follows. Let b(x) := 1{x > 0} exp(−1/x) (a bump

function) and form the smooth transition function a(x) := b(x)/(b(x) + b(1− x)).

Then with g(v; a, b) := 1/(1 + exp(−(x− b)/a)), a logistic function, let

f1(v) := 8g(v, 0.25, 0) ;

f2(v) := 4
[
1{4v ≤ −1}g(4v, 0.4,−3) + 1{4v > 1}(1 + g(4v, 0.4, 3))

+ 1{1− < 4v ≤ 1}a((4v + 1)/2)(1 + g(1, 0.4, 3)− g(−1, 0.4,−3))
]

f3(v) := 4
[
1{3v ≤ −1}g(3v, 0.2,−3) + 1{3v > 1}(1 + g(2v, 0.2, 3)) ;

+ 1{1− < 3v ≤ 1}a((3v + 1)/2)(1 + g(1, 0.2, 3)− g(−1, 0.2,−3))
]
.

(S18)

Table S1 displays the empirical rejection frequencies attained by ψn,θ0 and

the Wald test. The former provides rejection rates close to the nominal level

S20



of 5% in each simulation design considered. The Wald test displays substantial

overrejection in each simulation design. The 3 panels of Figure S4 depict the

finite-sample power curves for f = f1, f2, f3 respectively. In each panel, the Wald

test shows a relatively slow increase in power as θ moves away from θ0 with ψn,θ0

providing a much higher rate of increase in power as θ deviates from the null.4

S6 Tables and Figures

Figure S1: Index functions fj(v) = 5 exp(−v2/2c2j)

0

1

2

3

4

5

−6 −3 0 3 6
v

j 1 2 3

(a) f

−2

0

2

−6 −3 0 3 6
v

j 1 2 3

(b) f ′

Figure S2: Index functionsfj(v) = 25 (1 + exp(−v/cj))−1
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4The power of the Wald test exceeds that of ψn,θ0 around the null. However, this is not a
like-for-like comparison, as the Wald test over-rejects; see Table S1.
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Figure S3: Double logistic index functions as in (S18)
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Table S1: ERF (%), index function as in (S18)

ψn,θ0 Wald

n f1 f2 f3 f1 f2 f3

400 5.72 5.38 5.78 28.58 26.06 34.22
600 5.82 5.06 5.70 26.56 23.04 35.22
800 5.28 5.08 5.62 23.72 19.94 32.88

Figure S4: ERF (%), index function as in (S18)
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