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Abstract

This paper considers hypothesis testing in semiparametric models which may be non-

regular. I show that C(α) style tests are locally regular under mild conditions, including

in cases where locally regular estimators do not exist, such as models which are (semi-

parametrically) weakly identified. I characterise the appropriate limit experiment in

which to study local (asymptotic) optimality of tests in the non-regular case and gen-

eralise classical power bounds to this case. I give conditions under which these power

bounds are attained by the proposed C(α) style tests. The application of the theory to

a single index model and an instrumental variables model is worked out in detail.
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1 Introduction

It is often considered desirable that estimators are “locally regular” in that they

exhibit the same limiting behaviour under the true parameter as they do under

sequences of “local alternatives” which cannot be consistently distinguished from

the true parameter.1 Unfortunately, there are many models in which locally reg-

ular estimators do not exist.2 One necessary condition is given by Chamberlain

(1986): if the efficient information for a scalar parameter is 0, then no locally

regular estimator of that parameter exists. Similarly, singularity of the efficient

information matrix implies the non-existence of locally regular estimators of Eu-

clidean parameters. Models in which this may occur are called “non-regular”.

Many widely used models are non-regular (at least at certain parameter values):

examples include single index models, instrumental variables, errors-in-variables,

mixed proportional hazards, discrete choice models and sample selection models.

In this paper, I demonstrate that locally regular tests exist in a broad class

of non-regular models, despite the non-existence of locally regular estimators. In

particular, I show that a class of tests based on the C(α) idea of Neyman (1959,

1979) are locally regular.

These tests are based on a quadratic form of moment conditions evaluated

under the null hypothesis. The key [C(α)] idea which ensures the local regularity is

that the moment conditions must be (asymptotically) orthogonal to the collection

of score functions for all nuisance parameters. Such moment conditions can always

be constructed from any initial moment conditions by an orthogonal projection.

A key advantage of these C(α) tests is that they do not (asymptotically) over-

reject under (semiparametric) weak identification asymptotics, i.e. under local

alternatives to a point of identification failure.3 The local regularity of these tests

ensures that if the test is asymptotically of level α under any fixed parameter con-

sistent with the null, it is also asymptotically of level α under any sequence of local

alternatives consistent with the null, i.e. under (semiparametric) weak identifica-

tion asymptotics. In addition to the well-studied case where weak identification

stems from potential identification failure due to a finite dimensional nuisance pa-

rameter, the results in this paper also cover the case where identification failure

is due to an infinite dimensional nuisance parameter and thus provide a gener-

1Precise definitions will be given below. See Bickel, Klaassen, Ritov, and Wellner (1998); van
der Vaart (1998), for example, for textbook treatments.

2See e.g. Chamberlain (1986, 1992); Newey (1990); Ritov and Bickel (1990) for some examples.
3The semiparametric weak identification asymptotics used are those of Kaji (2021) (see also
Andrews and Mikusheva, 2022), suitably generalised to permit non-i.i.d models.
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ally applicable approach to weak identification robust inference in semiparametric

models.4 Even in the case where the identification failure due to a finite dimen-

sional nuisance parameter, the resulting weak identification robust tests appear to

be new in the literature.5 The tests proposed here are derived directly from an

asymptotic orthogonality condition. As such they are close in spirit to the identi-

fication robust test of Kleibergen (2005) which also requires an orthogonalisation,

albeit with respect to different objects and in a different Hilbert space.

Achieving local regularity does not come at the expense of (local asymptotic)

power. I characterise power bounds for tests in non-regular models and show that

the C(α) tests proposed in this paper acheive these power bounds provided the

moment conditions are chosen optimally. These power bounds contain those for

regular models as a special case. Moreover, the conditions required for attainment

of the power bounds are weaker than those in the literature.6

Following the theoretical development, I give details of its application to two

examples: (i) a single index model which may be weakly identified when the link

function is too flat and (ii) an instrumental variables (IV) model which may be

weakly identified when the (nonparametric) first stage is too close to a constant

function. Simulation experiments based on these examples demonstrate that the

proposed tests enjoy good finite sample performance.

The application to IV may also be of interest for empirical researchers con-

cerned about weak instruments. If the instruments are mean independent of the

errors, then the test proposed here is robust to weak identification and can be sub-

stantially more powerful than tests assuming a linear first stage. This imposes no

cost if the true first stage is (approximately) linear: the power of the proposed test

is comparable to optimal tests based on a linear first stage. The practical use of

these tests is demonstrated in two IV applications with possibly weak instruments.

This paper is connected to three main strands of the literature: the first is

that concerned with general results on estimation and testing in semiparametric

models. Much of this is now textbook material: see e.g. Newey (1990); Choi

et al. (1996); Bickel et al. (1998); van der Vaart (1998). The second is the liter-

4These C(α) tests also behave well in other non-standard settings, such as when nuisance func-
tions are estimated under shape constraints; see Section S2.1 for a discussion.

5For instance, in the case of homoskedastic linear IV, the test that results from the construction
in this paper does not coincide with any of the “usual” weak instrument robust tests (e.g. AR,
LM, K, CLR). Demonstration of this is available from the author.

6In particular, in regular models the attainment result is well known if either (a) the observations
are i.i.d. (cf. van der Vaart, 1998, Chapter 25) or (b) the information operator (as defined in
Choi, Hall, and Schick, 1996, p. 846) is boundedly invertible (Choi et al., 1996). The result in
this paper does not require either of these conditions.
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ature on C(α) tests. These were introduced by Neyman (1959, 1979) and have

seen many useful applications, most recently as a way to handle machine learn-

ing or otherwise high dimensional first steps (see e.g. Chernozhukov, Hansen, and

Spindler, 2015; Bravo, Escanciano, and Van Keilegom, 2020; Chernozhukov, Es-

canciano, Ichimura, Newey, and Robins, 2022). In this paper, the same structure

which ensures good performance in such settings is used for a different purpose –

to construct tests which remain robust in non-regular settings. Lastly, the liter-

ature on robust testing in non – regular or otherwise non – standard settings is

closely related to this paper (e.g. Andrews and Guggenberger, 2009; Romano and

Shaikh, 2012; Elliott, Müller, and Watson, 2015; McCloskey, 2017). In particu-

lar, the locally regular tests derived in this paper are especially useful in cases of

weak identification and therefore this paper is closely related to the literature on

weak identification robust inference (e.g. Staiger and Stock, 1997; Dufour, 1997;

Stock and Wright, 2000; Kleibergen, 2005; Andrews and Cheng, 2012; Andrews

and Mikusheva, 2015, 2016). More specifically, this paper is most closely related to

the recent work on semiparametric weak identification (Kaji, 2021; Andrews and

Mikusheva, 2022) and extends the notion of semiparametric weak identification

considered therein to non – i.i.d. models.7

2 Locally regular testing

2.1 The local setup

The goal considered throughout this paper is to construct hypothesis tests of

H0 : θ = θ0 against H1 : θ ̸= θ0 in the sequence of models Pn = {Pn,γ : γ ∈ Γ}
where γ = (θ, η) ∈ Γ = Θ × H for some open Θ ⊂ Rdθ and H an arbitrary set.

Each Pn consists of probability measures on a measurable space (Wn,B(Wn)) and

is dominated by a σ-finite measure νn.
8

Let Hγ = Rdθ × Bγ be a subset of a linear space containing 0, and suppose

that {Pn,γ,h : h ∈ Hγ} ⊂ Pn are such that Pn,γ = Pn,γ,0. Elements of Hγ will

be written as h = (τ, b) ∈ Rdθ × Bγ.
9 The measures Pn,γ,h should be viewed

7Failure of local identification and singularity of the information matrix are closely linked in
parametric models, see Rothenberg (1971). In the semiparametric case, parameters may be
identified but nevertheless have a singular efficient information matrix. The relationship be-
tween the efficient information matrix and identification is considered by Escanciano (2022).

8Typically the index n is sample size and Wn is the space in which a sample of size n takes its
values. This is the situation considered in Section 4 as well as in the examples in Section 5.

9In most examples, Hγ will be a linear space. The more general situation as considered here
is nevertheless important to allow for, for example, Euclidean nuisance parameters subject to
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as local perturbations of the measure Pn,γ in a “direction” h ∈ Hγ. These local

perturbations can be split in two groups: the perturbations Pn,γ,h with h ∈ Hγ,0 :=

{(0, b) : b ∈ Bγ} correspond to the null hypothesis H0 : θ = θ0 and those with

h ∈ Hγ,1 := {h = (τ, b) : 0 ̸= τ ∈ Rdθ , b ∈ Bγ} to the alternative H1 : θ ̸= θ0. As

such, Pn,γ,h for h ∈ Hγ,0 will be referred to as local perturbations consistent with the

null hypothesis, whilst Pn,γ,h for h ∈ Hγ,1 are local alternatives. The subsequent

analysis is local with the parameter γ being considered fixed at a γ consistent

with H0. As such, to lighten the notation, dependence on γ will be mostly left

implicit: I write Pn,h for Pn,γ,h, H for Hγ, Hi for Hγ,i (i = 0, 1) and similarly for

other objects. I also use the abbreviation Pn := Pn,0.

I use the single-index model as a running example throughout the paper.10

Example 1 (Single-index model): Suppose that the researcher observes n i.i.d.

copies of W = (Y,X1, X2) ∈ R2+K where

Y = f(X1 +X ′
2θ) + ϵ, E[ϵ|X] = 0, (1)

and where f belongs to some set of continuously differentiable functions F . The

description of the model is completed by ζ ∈ Z , the density function of (ϵ,X) with

respect to some σ-finite measure. The model Pn consists of the product measures

Pn = P n where P is the probability measure corresponding to the density

p(W ) = pγ(W ) := ζ(ϵf,θ, X), ϵf,θ := Y − f(Vθ), Vθ := X1 +X ′
2θ, (2)

for a γ = (θ, f, ζ) ∈ Θ× F × Z = Γ. A class of local perturbations to this model

are the probability measures Pn,h = P n
h where Ph has density pγ+φn(h) with

φn(h) = (τ, b1, b2ζ) /
√
n, h = (τ, (b1, b2)) ∈ H := Rdθ × (B1 ×B2), (3)

where B1 is a subset of the bounded, continuously differentiable functions with

bounded derivative and B2 is a subset of the bounded functions b2 : R1+K → R,
continuously differentiable in the first argument with bounded derivative.

boundary constraints. In such a setting, if the constraint is binding at γ, then γ can only be
perturbed in certain directions if Pn,γ,h is to remain within the model.

10Technical details for this example are deferred to Sections 5.1 and S4.1.
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2.2 Local asymptotic normality

The key technical condition under which the theory is developed is local asymp-

totic normality (LAN; see e.g. van der Vaart, 1998, Chapter 7 or Le Cam and

Yang, 2000, Chapter 6). Define the log-likelihood ratios

Ln(h) := log
pn,h
pn,0

, where pn,h :=
dPn,h

dνn
, for h ∈ H. (4)

Assumption 1 (LAN): For bounded linear maps ∆n : lin H → L0
2(Pn),

Ln(h) = ∆nh− 1

2
∥∆nh∥2 +Rn(h), h ∈ H (5)

with Rn(h)
Pn−→ 0 for all h ∈ H. Additionally, for each h ∈ H, the law of ∆nh

converges to N (0, σ(h)) in the Mallows-2 metric, d2.

The requirement that ∆nh converges in d2 is equivalent to requiring that it

converges weakly and (∆nh)n∈N is uniformly square Pn-integrable (e.g. Bickel et al.,

1998, Appendix A.6). This implies that σ(h) = limn→∞ ∥∆nh∥2.

Remark 1:Assumption 1 ensures that the sequences (Pn)n∈N and (Pn,h)n∈N are

mutually contiguous for any h ∈ H (see e.g. van der Vaart, 1998, Example 6.5).

Remark 2: If H is (pseudo-)metrised one may consider a uniform version of

Assumption 1, i.e. uniform local asymptotic normality (ULAN). Such a version

is given in Assumption S1 and is equivalent to Assumption 1 plus asymptotic

equicontinuity on compact sets of h 7→ ∆nh (in L2(Pn,0)) and h 7→ Pn,h (in to-

tal variation) (Proposition S1). The latter equicontinuity condition is of interest

regarding local uniformity of size control; cf. Corollary 1 and Lemma 1 below.

Example 1 (continued):Under regularity conditions, the single-index model sat-

isfies Assumption 1 with

∆nh :=
1√
n

n∑
i=1

τ ′ℓ̇(Wi) + [Db](Wi), (6)

where for ϕ(e, x) := ∂ log ζ(e,x)
∂e

,

ℓ̇(W ) := −ϕ(ϵf,θ, X)f ′(Vθ)X2, [Db](W ) := −ϕ(ϵf,θ, X)b1(Vθ) + b2(ϵf,θ, X). (7)
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2.3 Local regularity for tests

Definition 1:A sequence of tests ϕn : Wn → [0, 1] of the hypothesis H0 : θ = θ0

against H1 : θ ̸= θ0 is asymptotically of level α and locally regular if

πn(τ, b) := Pn,hϕn → π(τ), h = (τ, b) ∈ H and π(0) ≤ α. (8)

That is, the finite sample (local) power function of the test, πn converges under

each Pn,h to a function π which may depend on τ (and, implicitly, γ) but not on b,

the parameter which describes local deviations from the nuisance parameter η.11

If a sequence of tests does not satisfy (8) it is (locally) non-regular.

Local regularity of test sequences as in (8) is a pointwise concept. It is also of

interest to consider a uniform version.

Definition 2:A sequence of tests ϕn : Wn → [0, 1] of the hypothesis H0 : θ = θ0

against H1 : θ ̸= θ0 is asymptotically of level α and locally uniformly regular on

K ⊂ H if (8) holds uniformly on K.

If H is a (pseudo-)metric space and K is a compact set, for the convergence in

(8) to hold uniformly on K it is necessary and sufficient to show that the sequence

of functions πn is asymptotically equicontinuous on K.12

Directly working with the power functions πn to show their asymptotic equicon-

tinuity is complicated in many cases. It is, however, often possible to show results

which imply this property. For instance, the functions h 7→ Pn,h being asymptoti-

cally equicontinuous in dTV implies the required asymptotic equicontinuity of the

power functions. Despite being (much) stronger, this often holds.13

Weak identification asymptotics and local regularity In many models

there are parameter values, γ, at which locally regular estimators do not exist.

Points where the parameter of interest, θ, is un- or under-identified provide an

important class of examples. Moreover, as is well known from the literature on

weak identification, even if θ is identified at γ, finite sample inference may be

poor if γ is too close to a point of identification failure relative to the amount of

information contained in the sample. Such behaviour has been widely studied in

models where the part of γ causing the identification failure is finite dimensional

11Cf. the definition of a (locally) regular estimator in e.g. van der Vaart, 1998, p. 365.
12The same is true if K is totally bounded. See e.g. Davidson (2021), p. 123, for the definition
of asymptotic equicontinuity.

13See the discussion following Remark 4 below.
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(e.g. Andrews and Cheng, 2012; Andrews and Mikusheva, 2015).

There are also many examples where weak identification may occur due to

the value of infinite-dimensional nuisance parameters. Kaji (2021) and Andrews

and Mikusheva (2022) use a differentiability in quadratic mean (DQM) condition

to define semiparametric weak identification asymptotics in i.i.d. models. In

particular, they consider sequences P n
n,h which satisfy

lim
n→∞

∫ [√
n
(√

pn,h −
√
p0
)
− 1

2
f
√
p0

]2
dνn = 0 (9)

for a point P0 where the parameter of interest is unidentified. In the i.i.d. case,

(9) implies the LAN expansion in Assumption 1 with ∆nh = 1√
n

∑n
i=1 f(Wi) (e.g.

van der Vaart, 1998, Lemma 25.14).14 Working with Assumption 1 in place of

(9) broadens the applicability of this class of semiparametric weak identification

asymptotics to non-i.i.d. models. It is clear from Definition 1 that a locally regular

test sequence will have asymptotic null rejection probability (NRP) which does

not exceed the nominal level under weak identification asymptotics Pn,h.
15

I now give two examples of semiparametric models where the parameter of

interest θ may be un- or under-identified depending on the value of an infinite

dimensional nuisance parameter.16 The first is the running example.

Example 1 (continued):As is clear from the model equation Y = f(X1+X
′
2θ)+ϵ,

if f is flat, i.e. f ′ = 0, then the parameter θ is unidentified. The sequences given

in (3) are weak identification asymptotic sequences if f ′ = 0.

Example 2 (IV): Suppose the researcher observes n i.i.d. copies ofW = (Y,X,Z),

Y = X ′θ + Z ′
1β + ϵ, E[ϵ|Z] = 0, Z = (Z ′

1, Z
′
2)

′.

If π(Z) := E[X|Z] is constant, θ is unidentified; if some components of π(Z) are

constant, θ is underidentified.

In Examples 1 and 2, at the points of identification failure, no locally regular

estimator exists, however locally regular C(α) tests are developed in Section 5.17

14If Assumption 1 holds with ∆n having this form, the converse is also true.
15Of course, a (non-regular) test sequence may have asymptotic NRP which depends on b and
yet is bounded by the nominal level under Pn,h for all h = (0, b) ∈ H0 and / or have an
asymptotic power function which depends on b for h = (τ, b) ∈ H1. Restricting attention to
locally regular test sequences may be justified by the power optimality results of Section 3.

16A further example is the linear simultaneous equations model in Lee and Mesters (2024a).
17These examples consider i.i.d. data for simplicity. See Hoesch, Lee, and Mesters (2024) for an

7



2.4 A class of locally regular tests

To construct locally regular tests of H0 : θ = θ0 against H1 : θ ̸= θ0, I use

a generalisation of the class of C(α) tests introduced by Neyman (1959, 1979) to

characterise optimal tests in regular parametric models. These tests are a based on

a quadratic form of (estimators of) a vector of dθ moment conditions gn ∈ L2(Pn)

which satisfy the following requirements.

Assumption 2 (Joint convergence): For gn ∈ L2(Pn)
dθ and each h = (τ, b) ∈ H,

(∆nh, g
′
n)

′ Pn⇝ N (0,Σ(h)) ,

Σ(h) :=

[
σ(h) τ ′Σ′

21

Σ21τ V

]
= lim

n→∞

[
∥∆nh∥2 ⟨∆n(τ, 0) , g

′
n⟩

⟨gn , ∆n(τ, 0)⟩ ⟨gn , g′n⟩

]
.

Built-in to Assumption 2 is a requirement of asymptotic orthogonality of gn

and the scores for the nuisance parameters η. This generalises the analogous

condition in Neyman (1959, 1979) and is key to the local regularity of C(α) tests.

Remark 3: For Assumption 2 to hold it is necessary that the gn are approximately

zero mean: since (gn)n∈N is uniformly Pn-integrable, Pngn = o(1). It is also

necessary that the gn satisfy an approximate orthogonality property with the scores

for nuisance parameters: as ([∆nh]gn)n∈N is uniformly Pn-integrable for each h =

(τ, b) ∈ H, limn→∞ ⟨∆nh , g
′
n⟩ = τ ′Σ′

21 = limn→∞ ⟨∆n(τ, 0) , g
′
n⟩, and so

⟨∆n(0, b) , g
′
n⟩ = ⟨∆nh , g

′
n⟩ − ⟨∆n(τ, 0) , g

′
n⟩ = o(1). (10)

Given any dθ moment conditions fn ∈ L0
2(Pn), moment conditions which satisfy

an exact version of the orthogonality condition (10) may be obtained as

gn := Π
[
fn

∣∣∣{∆n(0, b) : b ∈ B}⊥
]
. (11)

An important special case of this construction is with fn the score function for

θ, i.e. fn = ℓ̇n such that τ ′ℓ̇n = ∆n(τ, 0) for each τ ∈ Rdθ . The function

gn = ℓ̃n := Π
[
ℓ̇n

∣∣∣{∆n(0, b) : b ∈ B}⊥
]
, (12)

is called the efficient score function. This yields a power optimal choice of moment

example of a locally regular C(α) test of the form proposed in this paper for the potentially
un- / under-identified parameter in a structural vector autoregressive model.
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conditions satisfying (10) as shown in Section 3 below.

Example 1 (continued): Let ω : RK → [ω,ω] ⊂ (0,∞). Then gn := Gng,

g(W ) := ω(X)(Y − f(Vθ))f
′(Vθ)

(
X2 −

E[ω(X)X2|Vθ]
E[ω(X)|Vθ]

)
, (13)

has components which belong to {∆n(0, b) : b ∈ B}⊥ (where ∆n is as in (6)).18

Under regularity conditions, gn satisfies Assumption 2 (see Section 5.1 below).

To construct the test statistic, I assume that consistent estimators of gn, V
†

(the Moore-Penrose pseudo-inverse of V ) and r := rank(V ) are available, given θ.

Assumption 3 (Consistent estimation): ĝn,θ, Λ̂n,θ, r̂n,θ ∈ {0, 1, . . . , dθ} satisfy

(i) ĝn,θ − gn
Pn−→ 0;

(ii) Λ̂n,θ
Pn−→ V †;

(iii) If r ≥ 1, then r̂n,θ
Pn−→ r; if r = 0, then rank(Λ̂n,θ)

Pn−→ 0.

Verification of Assumption 3(i) typically proceeds by model specific arguments.

That gn is (asymptotically) orthogonal to {∆n(0, b) : b ∈ B} often helps in estab-

lishing this consistency (cf. Chernozhukov et al., 2022). One generally applicable

approach to obtain an estimator which satisfies Assumption 3(ii) is to take an ini-

tial estimator which is consistent for V , threshold its eigenvalues at an appropriate

rate and then take the pseudo-inverse.19 If one uses the estimator Λ̂n,θ := V̂ †
n,θ

where V̂n,θ
Pn−→ V and r̂n,θ := rank(V̂n,θ) then condition (ii) holds if and only if

condition (iii) holds (Andrews, 1987, Theorem 2). Nevertheless, as emphasised by

the notation, it is not necessary that the estimate Λ̂n,θ be the pseudo-inverse of

an initial estimate.

Example 1 (continued):Given estimators f̂n,i, f̂ ′
n,i of f, f ′ and Ẑ1,n,i, Ẑ2,n,i of

Z1 := E[ω(X)X2|Vθ], Z2 := E[ω(X)|Vθ], define ĝn,θ := 1√
n

∑n
i=1 ĝn,θ,i,

ĝn,θ,i := ω(Xi)(Yi − f̂n,i(Vθ,i))f̂ ′
n,i(Vθ,i)

(
X2,i − Ẑ1,n,i(Vθ,i)/Ẑ2,n,i(Vθ,i)

)
. (14)

18g coincides with the efficient score function ℓ̃ (derived by Newey and Stoker, 1993),

ℓ̃(W ) = ω̃(X)(Y − f(Vθ))f
′(Vθ)

(
X2 −

E[ω̃(X)X2|Vθ]
E[ω̃(X)|Vθ]

)
, ω̃(X) := E[ϵ2|X]−1,

in the (typically infeasible) case with ω = ω̃.
19See Section S5 of Lee and Mesters (2024b) for full details of this approach. Other regularisation
schemes are also possible (see e.g. Dufour and Valéry, 2016).
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Under regularity conditions (see Section 5.1), ĝn,θ satisfies part (i) of Assumption

3, thresholding the eigenvalues of 1
n

∑n
i=1 ĝn,θ,iĝ

′
n,θ,i at an appropriate rate yields

an estimator Λ̂n,θ which satisfies part (ii) and r̂n,θ := rank(Λ̂n,θ) satisfies part (iii).

Given the estimators of Assumption 3, the C(α)-style test statistic is

Ŝn,θ := ĝ′n,θΛ̂n,θĝn,θ. (15)

The C(α) – style test ψn,θ0 of H0 against H1 at level α is:

ψn,θ0 := 1
{
Ŝn,θ0 > cn

}
, (16)

where cn is the 1− α quantile of a χ2
r̂n

random variable.

Local regularity Assumptions 1 – 3 suffice for local regularity of ψn,θ0 .

Proposition 1:Under Assumptions 1 and 2, for h = (τ, b) ∈ H

gn
Pn,h
⇝ N (Σ21τ, V ) .

If Assumption 3 also holds, then additionally

ĝn,θ0
Pn,h
⇝ N (Σ21τ, V ) and Ŝn,θ0

Pn,h
⇝ χ2

r (τ
′Σ′

21V Σ21τ) .

Theorem 1: Suppose that Assumptions 1, 2 and 3 hold and h = (τ, b) ∈ H. Then,

lim
n→∞

Pn,hψn,θ0 = π(τ) :=

1− P
(
χ2
r

(
τ ′Σ′

21V
†Σ21τ

)
≤ cr

)
if r ≥ 1

0 if r = 0
,

where cr is the 1− α quantile of the χ2
r distribution.

Theorem 1 immediately shows that ψn,θ0 is locally regular (cf. (8)). The asymp-

totic orthogonality in (10) is key to this result. If, instead, limn→∞ ⟨∆nh , g
′
n⟩ =

τ ′Σ′
21 + c(b) with c(b) ̸= 0, then (by Le Cam’s third Lemma) the limiting distri-

bution of gn under Pn,h would be N (Σ21τ + c(b), V ) and hence the limiting power

function of the test sequence would not be free of b.

Uniform local regularity The local regularity given by 1 may be “upgraded”

to local uniform regularity (Definition 2) under various conditions. Here I consider

the case where H posseses a (pseudo-)metric structure (e.g. if H is a subset of

10



a (semi-)normed linear space).20 In this case, for ψn,θ0 to be locally uniformly

regular on a compact (or totally bounded) K ⊂ H it is necessary and sufficient

that the functions h = (τ, b) 7→ πn(τ, b) are asymptotically equicontinuous.

Corollary 1: Suppose that the conditions of Theorem 1 hold and that (H, d)

is a pseudometric space. If the functions h = (τ, b) 7→ πn(τ, b) := Pn,hψn,θ0 are

asymptotically equicontinuous on a compact (or totally bounded) subset K ⊂ H,

lim
n→∞

sup
(τ,b)∈K

|πn(τ, b)− π(τ)| = 0.

I now give a sufficient condition for the asymptotic equicontinuity required by

Corollary 1.

Lemma 1: If (H, d) is a pseudometric space and (h 7→ Pn,h)n∈N is asymptoti-

cally equicontinuous in dTV on K ⊂ H, then (h 7→ Pn,hψn,θ)n∈N is asymptotically

equicontinuous on K.

Remark 4: Lemma 1 requires asymptotic equicontinuity in total variation of the

functions (h 7→ Pn,h)n∈N on subsets K ⊂ H. This holds for any compact K under

ULAN (Assumption S1), as shown in Proposition S1.

In the parametric i.i.d. case LAN is often verified by establishing a DQM

condition, e.g. equation (7.1) in van der Vaart (1998). This is sufficient for the

ULAN expansion in Assumption S1 to hold (e.g. van der Vaart, 1998, Theorem

7.2). Semiparametric generalisations of this result are available (e.g. combine

Proposition S1 and Lemma S1).21

The condition in Lemma 1 is natural given its link with the ULAN condition.

Neverthelesss, it is (much) stronger than necessary for the condition required by

Corollary 1; see Lemma S2 for a weaker sufficient condition.

3 Power optimality

The preceding section established the local regularity of the tests ψn,θ0 based on

(estimates of) moment functions gn satisfying certain asymptotic orthogonality

conditions. Thus far, nothing has been said about the choice of gn beyond these

20If H posseses a (finite) measure structure and the functions h = (τ, b) 7→ πn(τ, b) are mea-
surable then ψn,θ0 is locally uniformly regular except on a “small” subset of H by Egorov’s
Theorem. See Section S2.3.2 for details.

21Lee and Mesters (2024a) and Hoesch et al. (2024) verify this asymptotic equicontinuity prop-
erty in i.i.d. and time series semiparametric examples respectively.
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orthogonality requirements. The choice of the functions gn determines the power

of the corresponding test. As such, they ought to be chosen such that the resulting

test has good power against alternatives of interest.

One natural choice is the efficient score function (12). It is well known that

tests based on the efficient score function have certain optimality properties in

regular models when (a) the observations are i.i.d. (cf. Section 25.6 van der

Vaart, 1998) or (b) when the information operator for η is boundedly invertible

(Choi et al., 1996). I show that this optimality persists in non-regular models and

does not require (a) or (b).

The results in this section are derived using the limits of experiments framework

of Le Cam (e.g. Le Cam, 1986; van der Vaart, 1998). In particular, I show that the

local experiments consisting of the measures Pn,h for h ∈ H converge weakly to

a limit experiment which has a close relationship to a Gaussian shift experiment

on the Hilbert space formed by taking the quotient of H under the seminorm

induced by the variance function σ(h). The connection between these experiments

is sufficiently tight that power bounds derived in the latter transfer to the former.22

The limit experiment For this development H is required to be linear and I

will therefore assume that B (hence H) is a linear space. Under LAN, there exists

a positive semi-definite symmetric bilinear form ⟨· , ·⟩K on H = Rdθ ×B such that

σ(h) = ⟨h , h⟩K . This can be seen as a by-product of the following Lemma.

Lemma 2: Suppose Assumption 1 holds and B is a linear space. Let ∆ be a square

integrable stochastic process defined on H such that ∆nh
Pn⇝ ∆h. Then ∆ is a

mean-zero Gaussian linear process with covariance kernel K, where

K(h, g) := lim
n→∞

Pn [∆nh∆ng] .

For h, g ∈ H, setting ⟨h , g⟩K := K(h, g) gives a positive semi-definite sym-

metric bilinear form. Let ∥ · ∥K denote the seminorm induced by ⟨· , ·⟩K on H.

Remark 5: Suppose that ⟨· , ·⟩H is an inner product on H = Rdθ × B. The

existence of the positive semi-definite symmetric bilinear form ⟨· , ·⟩K is equivalent

to the existence of a bounded, self-adjoint, positive semi-definite linear operator B

such that ⟨h , h⟩K = ⟨h , Bh⟩H for h ∈ H (cf. Choi et al., 1996, p. 845).

22That the local experiments do not converge to the mentioned Gaussian shift experiment is
essentially a purely technical point: the Gaussian shift experiment is defined on a different
parameter space to the local experiments, whilst (weak) convergence of experiments (in the
sense of Le Cam, 1986) is defined for experiments with the same parameter space.
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Define H as the quotient of H by the subspace on which ∥ · ∥K vanishes:

H := H / {h ∈ H : ∥h∥K = 0}. (17)

which is an inner product space when equipped with the natural inner product

induced by ⟨· , ·⟩K , which I also denote by ⟨· , ·⟩K . An element of H corresponding

to representative element h ∈ H will be denoted by [h].23

The (weak) limit of the sequence of experiments consisting of the measures

Pn,h can be obtained by standard results on weak convergence of experiments.

Proposition 2: Suppose that Assumption 1 holds, that B is a linear space and

define the sequence of experiments En := (Wn,B(Wn), (Pn,h : h ∈ H)). Let ∆ be

the Gaussian process of Lemma 2 and let (Ω,F ,P) be the probability space on

which it is defined. Define the experiment E := (Ω,F , (Ph : h ∈ H)) according to

P0 := P;
dPh

dP0

= exp

(
∆h− 1

2
∥h∥2

)
, h ∈ H.

Then En converges weakly to E .

Under the assumption that H is separable, the experiment E is equivalent to

a Gaussian shift on (H, ⟨· , ·⟩K), in the sense given by Proposition 3 below.

Assumption 4:B is a linear space and H as defined in (17) is separable.

Proposition 3: Suppose Assumptions 1 and 4 hold. If E is as in Proposition

2, there is a Gaussian shift experiment G := (Ω,F , (G[h] : [h] ∈ H)) such that

dTV (Ph, G[h]) = 0 for each h ∈ H.

The efficient information matrix Power bounds for tests of K0 : h ∈ H0

against K1 : h /∈ H1 can be expressed in terms of the efficient information matrix,

Ĩ, so named because in the i.i.d. setting it is the covariance matrix of the efficient

score function for a single observation. Here I provide an alternative definition of

this matrix which applies more generally, and reduces to the classical definition in

the i.i.d. case (as shown in Lemma S4).

Let ∥τ∥ := infb∈B ∥(τ, b)∥K , which defines a semi-norm on Rdθ . Equipping the

quotient H1 := Rdθ / {τ ∈ Rdθ : ∥τ∥ = 0} with the natural norm induced by ∥ · ∥
23Analogous comments apply to the related space H1, defined below. In both cases, to avoid an
excess of parentheses / brackets, if h = (τ, b) I will write either [h] or [τ, b], rather than [(τ, b)].
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(which I also denote by ∥ · ∥) turns it into a normed space. Define the linear map

π1 : H → H1 as π1([τ, b]) := [τ ]. As π1 is continuous it may be uniquely extended

to a continuous function defined on H, the completion of H; this extension will also

be called π1. Since π1 is continuous, ker π1 ⊂ H is closed. Let Π be the orthogonal

projection onto kerπ1 and define Π⊥ := I − Π, the orthogonal projection onto

[kerπ1]
⊥. Let ei be the i-th canonical basis vector in Rdθ and define the efficient

information matrix Ĩ as the dθ × dθ matrix with i, j-th entry Ĩij given by24

Ĩij =
〈
Π⊥[ei, 0] , Π

⊥[ej, 0]
〉
K
. (18)

Lemma 3:Under Assumption 4, ∥τ∥2 = τ ′Ĩτ and ker Ĩ = {τ ∈ Rdθ : ∥τ∥ = 0}.

3.1 Tests of a scalar parameter

The following Theorem records the power bound for (locally asymptotically) un-

biased two-sided tests of a scalar θ. In this case the matrix Ĩ has rank either 0 or

1. Theorem 2 handles both cases simultaneously.

Theorem 2: Suppose that Assumptions 1 and 4 hold and dθ = 1. Let ϕn : Wn →
[0, 1] be a sequence of locally asymptotically unbiased level α tests of K0 : τ = 0

against K1 : τ ̸= 0. That is,

lim sup
n→∞

Pn,hϕn ≤ α, h ∈ H0, and lim inf
n→∞

Pn,hϕn ≥ α, h ∈ H1.

Then, for any h ∈ H,

lim sup
n→∞

Pn,hϕn ≤ 1− Φ
(
zα/2 − Ĩ1/2τ

)
+ 1− Φ

(
zα/2 + Ĩ1/2τ

)
, (19)

where zα is the 1−α quantile and Φ the CDF of the standard normal distribution.

Theorem 1 implies that the power bound of Theorem 2 is achieved by the test

ψn,θ0 provided Σ21V
†Σ′

21 = Ĩ and r = 1.

Corollary 2: Suppose that Assumptions 1, 2 and 3 hold with Σ21V
†Σ′

21 = Ĩ and

r = 1. Then, for h ∈ H,

lim
n→∞

Pn,hψn,θ0 = 1− Φ
(
zα/2 − Ĩ1/2τ

)
+ 1− Φ

(
zα/2 + Ĩ1/2τ

)
. (20)

24Lemma S3 gives an alternative expression for Ĩ based on the Gaussian process ∆ of Lemma 2.
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3.2 Tests of a multivariate parameter

When dθ > 1 there is an intermediate case where 0 < rank(Ĩ) < dθ. Here I permit

0 < rank(Ĩ) ≤ dθ and establish a maximin power bound for (potentially) non –

regular models, which contains the (regular) full rank case as a special case.25

Theorem 3: Suppose that Assumptions 1 and 4 hold and r := rank(Ĩ) ≥ 1. Let

ϕn : Wn → [0, 1] be a sequence of tests such that for each h = (0, b) ∈ H0

lim sup
n→∞

Pn,hϕn ≤ α

Let cr the 1− α quantile of a χ2
r random variable. Then, if a ≥ 0,

lim sup
n→∞

inf
{
Pn,hϕn : h = (τ, b) ∈ H, τ ′Ĩτ ≥ a

}
≤ 1− P(χ2

r(a) ≤ cr). (21)

By Theorem 1, the power bound on the right hand side of (21) is achieved by

ψn,θ0 provided Σ21V
†Σ′

21 = Ĩ and rank(V ) = rank(Ĩ) = r ≥ 1. In order that the

test be asymptotically maximin over a compact subset Ka of {h = (τ, b) ∈ H :

τ ′Ĩτ ≥ a}, with a = inf{τ ′Ĩτ = a : h ∈ Ka}, some uniformity is required.26

Corollary 3: Suppose that Assumptions 1, 2 and 3 hold with Σ21V
†Σ′

21 = Ĩ and

r = rank(Ĩ) = rank(V ) ≥ 1. Then for h = (τ, b) ∈ H

lim
n→∞

Pn,hψn,θ0 = 1− P
(
χ2
r (a) ≤ cr

)
, a = τ ′Ĩτ. (22)

Additionally, suppose that (H, d) is a (pseudo-)metric space and let Ka be a com-

pact subset of {h = (τ, b) ∈ H : τ ′Ĩτ ≥ a} such that a = inf{τ ′Ĩτ : h = (τ, b) ∈
Ka}. If the functions h 7→ Pn,hψn,θ0 are asymptotically equicontinuous on Ka,

lim
n→∞

inf
h∈Ka

Pn,hψn,θ0 = 1− P
(
χ2
r (a) ≤ cr

)
. (23)

A sufficient condition for the asymptotic equicontinuity required for the sec-

ond part of Corollary 3 based on an asymptotic equicontinuity in total variation

requirement was given as Lemma 1 in the previous section.27

25Section S2.5 shows that the most stringent test (in the sense of Wald, 1943) in the limit ex-
periment has the same power function as the maximin test, and no sequence of asymptotically
level α tests can correspond to a test in the limit experiment with smaller regret.

26The pseudometric d in Corollary 3 need not be related to the seminorm ∥ · ∥K .
27As noted there Lemma S2 provides some weaker sufficient conditions; in the present context,
condition (iii) of Lemma S2 is not required (cf. Remark S3).
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3.3 The degenerate case

If the efficient information matrix Ĩ is zero, no test with correct asymptotic size

has non – trivial asymptotic power against any sequence of local alternatives.

Proposition 4: Suppose Assumptions 1 and 4 hold and r := rank(Ĩ) = 0. Let

ϕn : Wn → [0, 1] be a sequence of tests such that lim supn→∞ Pn,hϕn ≤ α for each

h = (0, b) ∈ H0 Then, for h ∈ H, lim supn→∞ Pn,hϕn ≤ α.

3.4 Discussion of the power bounds

There are a number of important aspects to highlight regarding the interpretation

of the power bounds obtained in the preceding subsections.

Optimality in multivariate testing problems Just as in the classical finite

– dimensional case, the multivariate optimality results just presented should not

be taken in an absolute sense. Nevertheless they seem reasonable if the researcher

does not have directions against which they wish to direct power a priori. If there

are alternatives of particular interest, one could construct a locally regular test

by utilising the same moment conditions gn but weighting them differently (cf.

Bickel, Ritov, and Stoker, 2006).

The intermediate case with 1 ≤ rank(Ĩ) < dθ A key benefit of the multivari-

ate power results is that they apply equally to non-regular models, i.e. cases where

Ĩ is rank deficient. This scenario can occur for various reasons. Firstly the model

may not identify all parameters of interest θ (i.e. underidentification). Secondly

some of the elements of θ may be weakly identified (i.e. weak underidentification).

The power results above apply in either of these cases.

There are a number of other papers which provide inference results in similarly

rank deficient settings (e.g. Rotnitzky, Cox, Bottai, and Robins, 2000; Han and

McCloskey, 2019; Andrews and Guggenberger, 2019; Amengual, Bei, and Sentana,

2023); none of these papers consider optimal testing.

Alternative approximations In the case where rank(Ĩ) = 0, Proposition 4

reveals that the LAN approximation in Assumption 1 is, in a certain sense, the

wrong approximation: it does not provide any useful way of (asymptotically)

comparing tests. Other approximations might provide valuable comparisons. Al-

ternative approximations have been explored in, for example, the IV model (e.g.

16



Moreira, 2009) and semiparametric GMM models by Andrews and Mikusheva

(2022, 2023). For example, in the IV case Moreira (2009) considers alternatives

which are at a fixed distance from the true parameter, rather than in a shrinking
√
n-neighbourhood. Whether such an approach can be developed for the class of

models considered here is an interesting question for future work.

3.5 Attaining the power bounds

Provided that the L2 distance between gn and ℓ̃n (as defined in (12)) vanishes, ψn,θ0

attains the power bounds established in the preceding subsections. For regular

models this result is well known in two special cases: (a) the i.i.d. case (cf.

Section 25.6 in van der Vaart (1998); Lemma S4) and (b) when the information

operator B in Remark 5 is positive-definite with B22, the information operator for

η, boundedly invertible (Choi et al., 1996). Here I provide a general version of this

result which applies to both regular and non-regular models and does not require

(a) or (b). In particular, I show that Σ21V
†Σ′

21 = Ĩ, which suffices given Theorem

1 and the power bounds in Theorems 2 and 3.

Theorem 4: Suppose that Assumptions 1, 2, 3 and 4 hold and gn is such that

limn→∞
∫
∥gn − ℓ̃n∥2 dPn = 0. Then Σ21 = V = Ĩ, hence Σ21V

†Σ′
21 = Ĩ.

4 The smooth i.i.d. case

In this section I give conditions which are sufficient for some of the foregoing

Assumptions in the in the benchmark case for semiparametric theory: where the

observations are i.i.d. and the model is “smooth”.

Assumption 5 (Product measures): Suppose W (n) = (W1, . . . ,Wn) ∈
∏n

i=1 W =

Wn and that each Pn,h is a product measure: Pn,h = P n
h . Each probability measure

in Pn is dominated by the n-fold product of a σ-finite measure ν.

In the i.i.d. setting, it is well known that quadratic mean differentiability of the

square root of the density p = dP
dν

of P := P0 is sufficient for LAN. In particular, if

lim
n→∞

∫ [√
n
(√

phn −√
p
)
− 1

2
Ah

√
p

]2
= 0, (24)

for a measurable Ah : W → R, then with ∆nh := 1√
n

∑n
i=1[Ah](Wi) the remainder

term Rn in the LAN expansion satisfies Rn(hn)
P−→ 0 (e.g. van der Vaart and
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Wellner, 1996, Lemma 3.10.11). This can be used to establish either the LAN

expansion required by Assumption 1 by taking hn = h for each n ∈ N or the

ULAN expansion as in Assumption S1 by considering sequences hn → h. Sufficient

conditions for (24) are well known (e.g. van der Vaart, 1998, Lemma 7.6).

In this case, the scores Ah typically take the form

[Ah](Wi) = τ ′ℓ̇(Wi) + [Db](Wi), h = (τ, b) ∈ H, (25)

where ℓ̇ is a dθ-vector of functions in L0
2(P ) (typically the partial derivatives of

θ 7→ log pγ at γ) and D : lin B → L0
2(P ) a bounded linear map. Showing that (24)

holds (with hn = h) is typically the most straightforward way to verify the LAN

expansion required by Assumption 1. If A : lin H → L2(P ) is a bounded linear

map, then the remainder of Assumption 1 also follows directly.28

Lemma 4: Suppose that Assumption 5 holds and for each h ∈ H equation (24)

holds (with hn = h) with A : lin H → L2(P ) a bounded linear map. Then

Assumption 1 holds with Pn,h = P n
h/

√
n
and [∆nh](W

(n)) = GnAh.

When the data are i.i.d., the the joint convergence of (∆nh, g
′
n) as in Assump-

tion 2 is particularly straightforward to verify. As noted in the discussion around

(11), the required orthogonality condition can be ensured by performing an or-

thogonal projection. Assumption 2 then follows straightforwardly. In the i.i.d.

setting typically gn will have the form gn(W
(n)) = Gng.

Lemma 5: Suppose that Assumptions 1 and 5 hold, with ∆nh = 1√
n

∑n
i=1Ah, where

Ah is as in equation (25). Additionally suppose that g ∈ {Db : b ∈ B}⊥ ⊂ L0
2(P ).

Then Assumption 2 holds with gn(W
(n)) := Gng.

Corollary 4: In the setting of Lemma 5, if f ∈ L0
2(P ) and g is the orthogonal

projection g = Π[f |{Db : b ∈ B}⊥] then Assumption 2 holds with gn(W
(n)) := Gng.

5 Examples

I now illustrate the application of the theoretical results to the single index and IV

models and conduct simulation studies to investigate finite sample performance of

the proposed approach. In this section I work under high level conditions to avoid

repeating standard regularity conditions; lower level sufficient conditions are given

in section S4 of the supplementary material.

28A version of Lemma 4 for ULAN (Assumption S1) is Lemma S1 in the supplementary material.
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5.1 Single index model

Consider the single index model of Example 1. I now formalise the development

given in Section 2. The model parameters are γ = (θ, η) where η = (f, ζ) and the

density of one observation with respect to a σ-finite measure ν̃ is pγ as in (2); Pγ

denotes the corresponding probability measure. The parameters γ are restricted

by the following Asssumption. Let X be the support of X, D a convex open set

containing {x1+x′2θ : θ ∈ Θ, x ∈ X } and C1
b (D) the class of real functions which

are bounded and continuously differentiable with bounded derivative on D .

Assumption 6: The parameters γ = (θ, f, ζ) ∈ Γ = Θ × F × Z where Θ is an

open subset of Rdθ , F = C1
b (D) and ζ ∈ Z , for

Z :=

{
ζ ∈ L1(R1+K , ν) : ζ ≥ 0,

∫
R×X

ζ dν = 1, if (ϵ,X) ∼ ζ then (26) holds

}
,

with L1(A, ν) is the space of ν – integrable functions on A and

E[ϵ|X] = 0, E[ϵ2] <∞, E[(|ϵ|2+ρ + |ϕ(ϵ,X)|2+ρ + 1)∥X∥2+ρ] <∞, E[XX ′] ≻ 0,

(26)

for ϕ(ϵ,X) the derivative of e 7→ log ζ(e,X). Additionally, for each γ ∈ Γ, pγ is a

probability density with respect to some σ-finite measure ν̃.

That pγ is a valid probability density holds automatically (with ν̃ = ν) when

ϵ|X is continuously distributed.

Local Asymptotic Normality Consider local perturbations Pγ+φn(h) for

φn(h) =

(
τ√
n
, φn,2(b1, b2)

)
, h = (τ, b1, b2) ∈ H = Rdθ ×B1 ×B2. (27)

B1 is the set which indexes the perturbations to f and consists of a subset of the

continuously differentiable functions b1 : D → R. B2 indexes the perturbations to

ζ and consists of a subset of the functions b2 : R1+K → R which are continuously

differentiable in their first argument and satisfy

E[b2(ϵ,X)] = 0, E[ϵb2(ϵ,X)|X] = 0, E[b2(ϵ,X)2] <∞ for (ϵ,X) ∼ ζ. (28)

The precise form of φn,2 is left unspecified. It is required only that the local

perturbations satisfy the LAN property below.29

29Examples of φn,2 and B for which Assumption 7 holds are given in Section S4.1.2.
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Assumption 7: Suppose that Wn =
∏n

i=1 R1+K and Pn,h := P n
γ+φn(h)

≪ νn for all

γ ∈ Γ and h ∈ H and are such that Assumption 1 holds with

log
pn,h
pn,0

=
1√
n

n∑
i=1

[Ah](Wi)−
1

2
σ(h) + oPn,0(1), h ∈ H, (29)

where σ(h) =
∫
[Ah]2 dP and A is as in equation (25) with

ℓ̇(W ) := −ϕ(Y − f(Vθ), X)f ′(Vθ)X2

[Db](W ) := −ϕ(Y − f(Vθ), X)b1(Vθ) + b2(Y − f(Vθ), X).

The moment conditions The test statistic is based on gn := Gng for g given

in (13). This satisfies Assumption 2 under Assumptions 6 & 7 and (30) below.

Proposition 5: Suppose Assumptions 6 & 7 hold and under P ,

E[ϵ2|X] ≤ C <∞, E [ϵϕ(ϵ,X)|X] = −1, a.s. . (30)

Then Assumption 2 holds with gn := Gng for g given in (13).

A feasible test To form a feasible test gn must be replaced by an estimator ĝn,θ.

Let this have the form ĝn,θ(W
(n)) := 1√

n

∑n
i=1 ĝn,θ,i, for ĝn,θ,i defined as in (14). To

keep the notation concise let Z3 := f , Z4 := f ′, Z0 := Z1/Z2 and correspondingly

Ẑ0,n,i := Ẑ1,n,i/Ẑ2,n,i. Let V̌n,θ := 1
n

∑n
i=1 ĝn,θ,iĝ

′
n,θ,i and If V is known to have full

rank then let V̂n,θ := V̌n,θ, Λ̂n,θ := V̂ −1
n,θ and r̂n,θ = rank(V ). Form the estimator

V̂n,θ according to the construction in Section S5 of Lee and Mesters (2024b) using

a truncation rate νn. Λ̂n,θ is then taken to be V̂ †
n,θ and r̂n,θ := rank(V̂n,θ). Under

the following condition, these estimators satisfy the conditions of Assumption 3.

Assumption 8: Suppose that equation (30) holds (under P ), X has compact sup-

port, E[ϵ4] <∞, and with P probability approaching one Rl,n,i ≤ rn = o(n−1/4),

Rl,n,i :=

[∫ ∥∥∥Ẑl,n,i(v)− Zl(v)
∥∥∥2 dV(v)

]1/2
, l = 1, . . . 4,

where V is the law of Vθ under P and where Ẑl,n,i(Vθ,i) is σ({Vθ,i}∪ Cn,j) measurable

with j = 1 if i > ⌊n/2⌋ and 2 otherwise, with Cn,1 := {Wj : j ∈ {1, . . . , ⌊n/2⌋}}
and Cn,2 := {Wj : j ∈ {⌊n/2⌋+ 1, . . . , n}}.

The rate conditions in Assumption 8 can be satisfied by e.g. (sample – split)
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series estimators under standard conditions; see e.g. Belloni, Chernozhukov,

Chetverikov, and Kato (2015).

Proposition 6: Suppose Assumptions 6, 7 and 8 hold and νn is such that rn =

o(νn). Then Assumption 3 holds with V :=
∫
gg′ dP .

A consequence of Assumption 7 and Propositions 5 and 6 is that the test ψn,θ0

formed as in (16) is locally regular by Theorem 1.

Simulation study I take K = 1 and test H0 : θ = θ0 = 1 at a nominal level of

5%. Each study reports the results of 5000 monte carlo replications with a sample

size of n ∈ {400, 600, 800}. I report empirical rejection frequencies for the ψn,θ0

test along with a Wald test based on an estimator in the style of Ichimura (1993).

I consider two different classes of link function. The first sets f(v) = fj(v) =

5 exp(−v2/2c2j) (“exponential”); the second f(v) = fj(v) = 25 (1 + exp(−v/cj))−1

(“logistic”). The values of cj considered are recorded in Table 1.

Table 1: Functions used in the simulation experiments

name expression c1 c2 c3

Exponential fj(v) = 5 exp(−v2/2c2j ) 1 2 4
Logistic fj(v) = 25(1 + exp(−v/cj))−1 1 4 32

In each case, as cj increases, the derivative of f flattens out, moving towards

a point with f ′ = 0, at which θ is unidentified.30 I draw covariates as X =

(Z1, 0.2Z1 + 0.4Z2 + 0.8), where each Zk ∼ U(−1, 1) is independent. The error

term is drawn either as ϵ = υ/
√

3/2 with υ ∼ t(6) (“homoskedastic”) or ϵ ∼
N (0, 1 + sin(X1)

2) (“heteroskedastic”).

I compute the test ψn,θ0 as described on p. 20, with ω(X) = 1. The functions

f, f ′ and Z1 are estimated via sample split smoothing splines.31 The truncation

parameter ν is set to 10−3. I additionally compute a Wald test in the style of

Ichimura (1993), using the same non-parametric estimates as for ĝn,θ.
32

The empirical rejection frequencies of these procedures are recorded in Table 2:

ψn,θ0 rejects at close to the nominal 5% for all simulation designs considered whilst

the Wald test over – rejects in most of the simulation designs considered. Figure

30The functions f and f ′ are plotted in Figures S1 and S2.
31I use the base R function smooth.spline with 20 knots. In this setting Z2(Vθ) = 1 is known.
32Given f̂ , θ̂ = argminθ∈Θ⋆

1
n

∑n
i=1(Yi − f̂(Vθ,i))

2, for Θ⋆ = [−10, 10]. The asymptotic variance

is estimated by σ̂2/ 1
n

∑n
i=1

(
f̂ ′(Vθ̂,i)

[
X2 − Ẑ(Vθ̂,i)

])2
, for σ̂2 = 1

n

∑n
i=1(Yi − f̂(Vθ̂,i))

2.
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1 contains power plots of the ψn,θ0 test (n = 800). For almost flat link functions

there is very identifying information and hence very little power available. As

the link function moves away from the point of identification failure (f ′ = 0), the

available power increases and is captured by the ψn,θ0 test.

Table 2: ERF (%), Single-index model

Exponential Logistic

Homoskedastic Heteroskedastic Homoskedastic Heteroskedastic

n f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

ψn,θ0

400 6.08 5.90 5.30 5.66 5.68 5.12 6.36 5.94 4.80 5.66 6.00 4.68
600 6.12 5.68 5.26 5.44 4.76 4.32 6.04 5.74 4.10 5.26 5.18 4.62
800 6.20 6.04 5.28 5.46 5.72 5.22 6.00 5.90 4.26 5.62 5.16 4.46

Wald

400 13.06 18.94 13.54 15.20 20.32 14.38 8.12 13.60 14.74 8.24 15.52 14.92
600 10.28 16.32 12.58 10.60 18.92 14.18 7.18 10.74 13.88 6.82 12.60 14.84
800 10.30 16.64 12.84 9.60 19.00 13.62 6.86 10.68 12.94 6.74 11.26 14.18

Figure 1: Single-index model, ψ power
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5.2 IV model

In the IV model of Example 2, n i.i.d. copies ofW = (Y,X,Z) are observed where

Y = X ′θ + Z ′
1β + ϵ, E[ϵ|Z] = 0, Z = (Z ′

1, Z
′
2)

′. (31)
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Let dW := dθ + dZ + 1. With π(Z) := E[X|Z] and υ = X − π(Z),

Y = X ′θ + Z ′
1β + ϵ

X = π(Z) + υ
, E[U |Z] = 0, U := (ϵ, υ′)′. (32)

If π(Z) is constant the instruments Z provide no information about θ. Weak

identification in this model can be very different from in the IV model with a

linear first stage: there are many data configurations in which Var(E[X|Z]) may

be “large” whilst E[XZ ′]E[ZZ ′]−1 ≈ 0. In such situations, tests which can exploit

such non-linear identifying information can provide substantially more power than

tests which (implicitly) use a linear first stage. In this section I develop a ψn,θ0

test which can capture such identifying information whilst remaining robust to

weak identification.33, 34

Let ζ denote the density of ξ := (ϵ, υ′, Z ′) with respect to a σ-finite measure

ν. The parameters of the IV model are γ = (θ, η) with the nuisance parameters

collected in η = (β, π, ζ). The density of one observation is

pγ(W ) = ζ(Y −X ′θ − Z ′
1β,X − π(Z), Z), (33)

with respect to a σ-finite measure ν̃ and Pγ denotes the corresponding measure.

The model parameters are restricted as follows.

Assumption 9: The parameters γ = (θ, β, π, ζ) ∈ Γ = Θ× B × P × Z where

(i) Θ is an open subset of Rdθ and B is an open subset of Rdβ ;

(ii) Z is a subset of the set of density functions on RdW with respect to ν;

(iii) For (π, ζ) ∈ P × Z , if ξ := (U ′, Z ′)′, then

E[U |Z] = 0, E∥ξ∥4 <∞, E∥π(Z)∥4 <∞, E∥ϕ(ξ)∥4 <∞,

where ϕ1 := ∇ϵ log ζ(ϵ, υ, Z), ϕ2 := ∇υ log ζ(ϵ, υ, Z) and ϕ := (ϕ1, ϕ
′
2)

′.

Additionally, pγ is a probability density for each γ ∈ Γ with respect to a σ-finite

measure ν̃.

33This does not contradict optimality results that are known for, e.g., the AR test (Moreira,
2009; Chernozhukov, Hansen, and Jansson, 2009) as these results assume a linear first stage.

34An alternative approach to capturing this non-linear identifying information (whilst remaining
robust to weak instruments) is to use a large number of transformations of the instruments,
f1(Z), . . . , fM (Z), in a linear first stage, combined with a testing procedure which remains
robust in the presence of many weak instruments. In the simulation study below, I compare
the ψn,θ0 test to this approach, using the test of Mikusheva and Sun (2022).
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Assumption 9 imposes the existence of certain moments and the (IV) condi-

tional mean restriction. That pγ is a valid probability density holds automatically

(with ν = ν̃) when U |Z is continuously distributed.

Local Asymptotic Normality Consider local perturbations Pγ+φn(h) for

φn(h) :=

(
τ√
n
,
b0√
n
, φn,1(b1), φn,2(b2)

)
, h = (τ, b) ∈ H := Rdθ ×B, (34)

with B := Rdβ ×B1 ×B2. B1 is a subset of the bounded functions b1 : RdZ → Rdθ

andB2 a subset of the functions b2 : RdW → R which are bounded and continuously

differentiable in its first 1+dθ components with bounded derivative and such that

E [b2(U,Z)] = 0, E [Ub2(U,Z)|Z] = 0, for (U ′, Z ′)′ ∼ ζ. (35)

The precise forms of φn,1, φn,2 are left unspecified. It is required only that the

local perturbations satisfy LAN.35

Assumption 10: Suppose that Wn =
∏n

i=1 RdW , Pn,h := P n
γ+φn(h)

≪ νn for all

γ ∈ Γ and h ∈ H and are such that Assumption 1 holds with

log
pn,h
pn,0

=
1√
n

n∑
i=1

[Ah](Wi)−
1

2
σ(h) + oPn,0(1), h ∈ H, (36)

where σ(h) =
∫
[Ah]2 dP and A is as in equation (25) with

ℓ̇(W ) := −ϕ1(ϵ(θ, β), υ(π), Z)X1

[Db](W ) := −ϕ(ϵ(θ, β), υ(π), Z)′ [ b′0Z1 b1(Z) ] + b2(ϵ(θ, β), υ(π), Z),

where ϵ(θ, β) := Y −X ′θ − Z ′
1β and υ(π) := X − π(Z).

The moment conditions The test will be based on moment conditions related

to the efficient score function for θ, ℓ̃. This is given in the following Lemma.36

Lemma 6: Suppose Assumptions 9, 10 hold, for J(Z) := E[UU ′|Z],

0 < c ≤ λmin(J(Z)) ≤ λmax(J(Z)) ≤ C <∞, λmin(E[Z1Z
′
1]) > 0,

E [ϕ(ϵ, υ, Z)U ′|Z] = −I, E[ϕ1(ϵ, υ, Z)υU
′] = 0,

(37)

35Examples of φn,1, φn,2 and B for which Assumption 10 holds are given in Section S4.2.2.
36The last two conditions in (37) hold if lim|ui|→∞ |ui|ζ(u, z) = 0 for i = 1, . . . , dα.
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and that B1 is dense in L2. Define ω(Z) := E[ϵ2|Z]−1. The efficient score for θ is

ℓ̃(W ) = ω(Z)(Y −X ′θ − Z ′
1β)
[
π(Z)− E[ω(Z)XZ ′

1]E[ω(Z)Z1Z
′
1]

−1Z1

]
. (38)

For simplicity, I will use the moment functions

g(W ) := E[ϵ2]−1(Y −X ′θ − Z ′
1β)
[
π(Z)− E[XZ ′

1]E[Z1Z
′
1]

−1Z1

]
. (39)

g belongs to the orthocomplement of {Db : b ∈ B} and coincides with the efficient

score function when J(Z) = E[UU ′] a.s. (i.e. under homoskedasticity).37

Lemma 7: Suppose that Assumptions 9, 10 and equation (37) hold. Then, the

moment conditions g ∈ {Db : b ∈ B}⊥. If E[ϵ2|Z] = E[ϵ2] a.s., then g = ℓ̃ a.s..

Proposition 7: Suppose that Assumptions 9, 10 and equation (37) hold. Then

Assumption 2 is satisfied with gn = Gng.

A feasible test Suppose that β̂n and π̂n,i(Zi) are estimators of β and π(Zi)

respectively. Let the i-th residual in (31) based on θ = θ0 and β̂n be ϵ̂n,i :=

Yi −X ′
iθ − Z ′

1,iβ̂n. Let ŝn := 1
n

∑n
i=1 ϵ̂

2
n,i and define

ĝn,θ,i := ŝ−1
n ϵ̂n,i

π̂n(Zi)−
[
1

n

n∑
i=1

XiZ
′
1,i

][
1

n

n∑
i=1

Z1,iZ
′
1,i

]−1

Zi

 , (40)

and

V̌n,θ :=
1

n

n∑
i=1

ĝn,θ,iĝ
′
n,θ,i. (41)

Based on V̌n,θ, form V̂n,θ according to the construction in Section S5 of Lee and

Mesters (2024b) using a truncation rate νn, set Λ̂n,θ := V̂ †
n,θ and r̂n,θ := rank(V̂n,θ).

The following assumption provides sufficient high-level conditions on the es-

timators β̂n and π̂n,i(Zi) such that Assumption 3 holds. These conditions are

compatible with π̂n,i being a leave-one-out series estimator.38, 39

Assumption 11: Suppose that, given θ0, (i) β̂n is an estimator valued in Sn :=

37Nevertheless, homoskedasticity is not assumed and the results below hold under heteroskedas-
ticity. For full efficiency one could base the test on (38). This is left for future work.

38The discretisation of β̂n is a technical device which permits the proof to go through under
weaker conditions (cf. Le Cam and Yang, 2000, Chapter 6). This can be arranged given a

√
n

– consistent initial estimator, by replacing its value with the closest point in the set Sn.
39See e.g. Belloni et al. (2015) for sufficient conditions for (42) and Section S4.2 for a discussion
of (43).
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{CZ/√n : Z ∈ Zdβ} for some C ∈ Rdβ×dβ and satisfying
√
n(β̂n − β) = OPn,0(1)

and (ii) π̂n,i(Zi) are estimators such that π̂n,i(Zi) is σ(Zi, Cn,−i) measurable for

Cn,−i := {Wj : j = 1, . . . , n, j ̸= i}, and on events Fn with Pn,0(Fn) → 1,

[∫
∥π̂n,i(z)− π(z)∥2 dζZ(z)

]1/2
≤ δn = o(1), (42)

where ζZ is the marginal distribution of Z and for each k = 1, . . . , dθ, i ̸= j,

E [1Fn1Gn(π̂n,i,k(Zi)− πk(Zi))(π̂n,j,k(Zj)− πk(Zj))
′ϵiϵj] ≲ δ2n/n, Pn,0(Gn) → 1.

(43)

Suppose also δ2n + n−1/2 = o(νn), (37) holds and E [ϵ4(∥π(Z)∥+ ∥Z1∥)4] <∞.

There is no requirement on the rate δn in (42), (43) beyond δn = o(1).

Proposition 8: Suppose that Assumptions 9, 10, & 11 hold. Then Assumption 3

holds with ĝn,θ :=
1√
n

∑n
i=1 ĝn,θ,i, gn := Gng and Λ̂n,θ defined below equation (41).

A consequence of Assumption 10 and Propositions 7 and 8 is that the test ψn,θ0

formed as in (16) is locally regular by Theorem 1.

Simulation study I test H0 : θ = θ0 = 0 at a nominal level of 5%. Each

study reports the results of 5000 monte carlo replications with a sample size of

n ∈ {200, 400, 600}.40 Two simulation designs are considered.

Design 1 is a bivariate, just identified design. Here dθ = 2 and Z2 is drawn

from a zero-mean multivariate normal distribution with covariance matrix [ 1 0.4
0.4 1 ].

The error terms ϵ, υ are drawn from a zero-mean multivariate normal such that

each has variance 1 and the covariances are Cov(ϵ, υi) = 0.9 and Cov(υ1, υ2) = 0.7.

Z1 = 1 with β = 1 and π(Z) = π(Z2) = (π1(Z2,1), π2(Z2,2))
′ with each πi (i = 1, 2)

being one of the exponential or logistic functions fj in Table 1. The exponential

form is a prototypical function shape for which the linear projection of X on Z

will provide essentially no identifying information; for the logistic form this linear

projection should perform well.41, 42

I consider the ψn,θ0 test developed above, with a leave-one-out series estimator

of π based on (tensor product) Legendre polynomials. I consider both fixing the

40The power surfaces in Design 1 are computed with 2500 replications.
41These functions are plotted in Figures S1 and S2. The separation π(Z2) = (π1(Z2,1), π2(Z2,2))

′

is assumed unknown and is not imposed in the estimation of π.
42Results for the case where π(Z2) is linear are very similar to the “approximately linear” logistic
case and are therefore unreported.
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number of polynomials at k = 3 in each of the univariate series which form the

tensor product basis and choosing k ∈ {3, 4, 5, 6, 7} using information criteria. ν is

set to 10−2. I additionally consider the Anderson and Rubin (1949) (AR) test.43,44

The empirical rejection frequencies under the null are shown in Tables 3 and

4. The parameter j controls the level of identification: the larger is j the closer

πj is to a constant function. In each specification all the considered tests reject at

close to the nominal level. Power surfaces for the ψn,θ0 and AR tests are shown

in figures 2 – 7. As can be seen in these figures, the ψn,θ0 test is able to detect

deviations from the null when πj has the exponential form, unlike the AR test.45

For the logistic form, the power of the two tests is similar. Unsurprisingly, neither

test provides non-trivial power when identification is very weak.

Table 3: Empirical rejection frequencies, IV, Design 1

Exponential - Exponential Logistic - Logistic Exponential - Logistic

AR ψ AR ψ AR ψ

n j k = 3 AIC BIC k = 3 AIC BIC k = 3 AIC BIC

200 1 5.52 5.10 4.00 5.18 5.52 4.88 3.40 4.48 5.52 4.56 3.76 4.68
200 2 5.52 6.24 6.26 6.24 5.52 5.46 5.30 5.46 5.52 5.78 5.86 5.78
200 3 5.52 8.36 7.80 8.36 5.52 8.44 7.98 8.44 5.52 7.92 7.74 7.92

400 1 5.60 4.96 4.48 4.80 5.60 4.96 4.14 4.78 5.60 4.88 4.34 4.80
400 2 5.60 6.12 6.20 6.12 5.60 5.68 5.52 5.68 5.60 6.08 6.02 6.08
400 3 5.60 6.76 6.94 6.76 5.60 7.72 7.60 7.72 5.60 6.46 6.60 6.46

600 1 5.38 5.30 4.90 5.22 5.38 5.20 3.80 5.16 5.38 5.32 4.64 5.04
600 2 5.38 6.08 6.10 6.08 5.38 4.98 4.98 4.98 5.38 5.56 5.76 5.56
600 3 5.38 4.36 4.78 4.36 5.38 5.02 5.50 5.02 5.38 4.40 5.06 4.40

Notes: E.g. “Exponential - Logistic” indicates that π1, π2 have the exponential and logistic
form in Table 1 respectively, with cj corresponding to column j.

Design 2 is a univariate, over identified model with heteroskedastic errors. Z1,

β and Z2 are as in Design 1, and π(Z2) = (π1(Z2,1) + π2(Z2,2))/2 where the πi

have one of the exponential or logistic forms of Table 1.46 I draw (ϵ̃, υ̃) from a

zero-mean multivariate normal distribution with unit variances, covariance 0.95

and set (ϵ, υ)′ =

[√
1+sin(Z2,1)2 0

0
√

1+cos(Z2,2)2

]
(ϵ̃, υ̃)′.

43The AR test is computed with Z2 as instruments, after partialling out Z1.
44I do not consider alternative weak instrument robust tests based on a linear first stage (e.g. LM,
CLR) in this design as the AR test is known to be optimal when the model is just-identified.

45One could consider an AR test using e.g. some basis functions f1(Z2), . . . , fK(Z2) however as
noted in (Mikusheva and Sun, 2022, p. 2669), the AR statistic is not well behaved for large
K. The jackknife AR test of Mikusheva and Sun (2022) applies only to the case where dθ = 1.

46This functional form is treated as unknown and not imposed in the estimation of π.
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Table 4: Empirical rejection frequencies, IV, Design 1

Exponential - Exponential Logistic - Logistic Exponential - Logistic

AR ψ AR ψ AR ψ

n j1 − j2 k = 3 AIC BIC k = 3 AIC BIC k = 3 AIC BIC

200 1 - 3 5.52 6.36 5.30 6.48 5.52 7.18 6.40 7.12 5.52 6.34 5.40 6.30
200 2 - 3 5.52 6.26 6.44 6.26 5.52 6.94 6.78 6.94 5.52 6.46 6.64 6.46
200 3 - 3 5.52 8.36 7.80 8.36 5.52 8.44 7.98 8.44 5.52 7.92 7.74 7.92

400 1 - 3 5.60 5.70 5.38 5.68 5.60 6.24 5.82 6.20 5.60 6.14 5.54 5.98
400 2 - 3 5.60 6.22 6.48 6.22 5.60 6.24 6.40 6.24 5.60 6.74 6.90 6.74
400 3 - 3 5.60 6.76 6.94 6.76 5.60 7.72 7.60 7.72 5.60 6.46 6.60 6.46

600 1 - 3 5.38 5.66 5.40 5.60 5.38 5.46 4.52 5.34 5.38 5.58 5.26 5.36
600 2 - 3 5.38 6.00 6.10 6.00 5.38 5.40 5.40 5.40 5.38 6.12 6.32 6.12
600 3 - 3 5.38 4.36 4.78 4.36 5.38 5.02 5.50 5.02 5.38 4.40 5.06 4.40

Notes: E.g. “Exponential - Logistic” indicates that π1, π2 have the exponential and logistic
form in Table 1 respectively, with cj1 and cj2 corresponding to column j1 - j2.

Figure 2: IV Design 1, AR power, πi exponential
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Figure 3: IV Design 1, ψ (k = 3) power, πi exponential
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Figure 4: IV Design 1, AR power, πi logistic
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Figure 5: IV Design 1, ψ (k = 3) power, πi logistic
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Figure 6: IV Design 1, AR power, π1 exponential, π2 logistic
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Figure 7: IV Design 1, ψ (k = 3) power, π1 exponential, π2 logistic
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The ψ tests are computed in the same manner as in Design 1. I also compute

the AR, LM and CLR tests based on Z2 (with Z1 partialled out) as well as the many

weak instrument robust jackknife AR test of Mikusheva and Sun (2022). MS1 uses

Z2 as instruments; MS2 uses the (tensor product) of Legendre polynomials used

to estimate π as instruments.

The empirical rejection frequencies under the null are shown in Tables 5 – 7. As

in Design 1, the parameter j controls the level of identification: the larger is j the

closer πj is to a constant function and hence θ unidentified. In each specification

all the considered tests reject close to the nominal level; the MS2 test is somewhat

oversized for smaller n. The power of these tests is plotted in Figures 8 – 10;

the ψn,θ0 tests are denoted by k = 3, AIC and BIC, corresponding to how π is

estimated. For the design with both πi exponential, the ψn,θ0 test clearly delivers

the highest power whenever there is non-trivial power available; of the other tests,

only MS2 delivers non-trivial power in this specification. For the case with both

πi logistic, all tests except MS2 perform similarly, with MS2 offering lower power.

The same holds for the final specification, where π1 is exponential and π2 logistic.

6 Empirical applications

In this section I re-analyse two IV studies with potentially weak instruments by

inverting the ψn,θ0 test developed in section 5.2 to construct weak-instrument

robust confidence intervals (CIs). In each case the ψn,θ0 test is able to exploit

non-linearities to yield substantial reductions in CI length relative to AR CIs.
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Table 5: Empirical rejection frequencies, IV, Design 2, Exponential - Exponential

AR LM CLR MS1 MS2 ψ

n j k = 3 AIC BIC

200 1 5.68 5.52 5.94 7.56 9.24 6.36 5.74 6.36
200 2 5.68 6.08 5.88 7.56 9.24 7.62 7.62 7.62
200 3 5.68 6.46 6.16 7.56 9.24 7.36 7.44 7.36

400 1 5.28 5.48 5.26 7.18 8.78 6.32 5.38 6.36
400 2 5.28 5.72 5.48 7.18 8.78 7.98 7.98 7.98
400 3 5.28 6.06 5.84 7.18 8.78 3.42 3.68 3.42

600 1 5.86 5.48 6.04 7.58 7.92 5.16 5.16 5.14
600 2 5.86 5.50 5.86 7.58 7.92 6.28 6.20 6.28
600 3 5.86 5.76 6.30 7.58 7.92 1.32 1.74 1.32

Notes: The functions πi have the exponential form in Table 1
with cj corresponding to column j.

Table 6: Empirical rejection frequencies, IV, Design 2, Logistic - Logistic

AR LM CLR MS1 MS2 ψ

n j k = 3 AIC BIC

200 1 5.68 5.78 6.94 7.56 9.24 4.82 4.46 4.80
200 2 5.68 5.94 7.22 7.56 9.24 5.76 5.74 5.76
200 3 5.68 5.82 6.86 7.56 9.24 7.68 7.78 7.68

400 1 5.28 4.76 5.98 7.18 8.78 4.32 4.04 4.18
400 2 5.28 4.80 6.26 7.18 8.78 4.90 4.98 4.90
400 3 5.28 4.94 5.80 7.18 8.78 3.18 3.52 3.18

600 1 5.86 5.12 6.42 7.58 7.92 4.84 4.50 4.66
600 2 5.86 5.20 6.32 7.58 7.92 5.00 4.90 5.00
600 3 5.86 5.14 6.28 7.58 7.92 1.56 1.84 1.56

Notes: The functions πi have the logistic form in Table 1 with
cj corresponding to column j.

Figure 8: IV design 2, Power curves, exponential πi
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Table 7: Empirical rejection frequencies, IV, Design 2, Exponential - Logistic

AR LM CLR MS1 MS2 ψ

n j k = 3 AIC BIC

200 1 5.68 6.14 7.12 7.56 9.24 5.28 4.62 5.30
200 2 5.68 5.92 7.18 7.56 9.24 6.90 6.90 6.90
200 3 5.68 5.90 6.60 7.56 9.24 7.16 7.26 7.16

400 1 5.28 4.94 6.44 7.18 8.78 4.74 4.28 4.70
400 2 5.28 5.24 6.54 7.18 8.78 5.52 5.64 5.52
400 3 5.28 5.00 5.66 7.18 8.78 3.10 3.42 3.10

600 1 5.86 5.20 6.30 7.58 7.92 4.86 4.56 5.00
600 2 5.86 5.14 6.48 7.58 7.92 5.62 5.50 5.62
600 3 5.86 5.22 6.24 7.58 7.92 1.20 1.58 1.20

Notes: π1, π2 have the exponential and logistic form in Table 1
respectively with cji corresponding to column j.

Figure 9: IV Design 2, Power curves, logistic πi
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Figure 10: IV Design 2, Power curves, exponential π1, logistic π2
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6.1 The effect of skilled immigration on productivity

Hornung (2014) studies the long term effect of skilled immigration on productivity

using a natural experiment in which the skilled but religiously persecuted French

protestants (Hugenots) fled and settled in Prussia.47 In the notation of Example

2, Y is log output in textile manufacturing, X is the proportion of Hugenots in

each town and Z1 contains various control variables, see Hornung (2014) for details.

Hornung (2014) argues that “by the order of centralized ruling by the king and his

agents Huguenots were channeled into Prussian towns in order to compensate for

severe population losses during the Thirty Years’ War”, motivating the instrument

Z2: the percentage population losses during the war. In particular, three different

measurements of this population loss are used and refered to as specifications (1),

(2) and (3) hereafter.48

As noted in Hornung (2014), this instrument may be weak: in each case the

first stage F statistic is “small”.49 I implement the ψn,θ0 test using a leave-one-out

series estimator of π of the form

π̂i(Zi) = π̂′
ipK(Z2,i) + β̂iZ1,i, (44)

where the i subscript on the estimated coefficients indicates they have been esti-

mated on all observations except for the i-th. pK is a vector of a constant and the

first K Legendre polynomials. I choose K ∈ {1, 2, 3, 4} and whether to include Z1

in the model for π by using BIC: all specifications include Z1 and K = 4.

Table 8 reports 2SLS estimates of θ along with 2SLS (Wald) CIs, AR CIs and

CIs found by inverting the ψn,θ0 test.50 The resulting CIs provide a similar inter-

pretation as that based on the AR CIs: the effect of (skilled) Hugenot immigration

was positive on textile output. However, the ψn,θ0 based CIs are smaller than the

AR CIs, achieving approximately a 40% - 50% reduction in length.

6.2 The effect of racial segregation on inequality

Ananat (2011) estimates the effect of racial segregation (X) on poverty and in-

equality (Y , measured respectively by the poverty rate and log gini coefficient for

black / white city residents), instrumenting segregation by a “railroad division

47That the Hugenots were more skilled (on average) than the Prussian population seems to be
broadly accepted cf. pp. 85-86, 93-95 in Hornung (2014).

48Specifications (1) & (2) are those considered in the left and and right hand parts of Table 4 of
Hornung (2014); Specification (3) is that considered in the left hand part of Table 5.

49It is less than the cutoff of 10 suggested by Staiger and Stock (1997) for homoskedastic IV.
50The inversion is performed over a grid of 5000 equally spaced points from -1 to 7.
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Table 8: Point estimates and confidence intervals

(1) (2) (3)

n 150 150 186

F 3.668 4.791 5.736

Point estimate

2SLS 3.475 3.38 1.671

Confidence intervals

2SLS [1.27, 5.68] [1.294, 5.467] [0.032, 3.31]

AR [1.427, 6.303] [1.43, 5.985] [-0.022, 3.379]

ψ [1.626, 4.099] [1.637, 4.073] [1.136, 3.228]

Relative length of confidence intervals to AR

2SLS 0.904 0.916 0.964

ψ 0.507 0.535 0.615

Notes: F is the first stage F statistic. All confidence
intervals have nominal coverage of 95%.

index” (RDI, Z2), “a variation on a Herfindahl index that measures the dispersion

of a city’s land into subunits” via the layout of railroad tracks.51 The first and

second stages also include an intercept and control for railroad track length (Z1).

The instrument may be weak: I calculate the first stage F statistic to be

2.307.52 I implement the ψn,θ0 test using a leave-one-out series estimator of π of

the form (44). I choose K ∈ {1, 2, 3, 4} and whether to include Z1 in the model

for π by using BIC: this excludes Z1 and chooses K = 2.

Table 9 reports 2SLS estimates of θ along with 2SLS (Wald) CIs, AR CIs

and CIs found by inverting the ψn,θ0 test.53 The resulting CIs provide a similar

interpretation as that based on the AR CIs: racial segregation increases poverty

and inequality within the Black community and decreases poverty and inequality

within the White community. The ψn,θ0 based CIs are shorter than the AR CIs,

achieving a reduction in length varying from 5% to around 38%.

51Section 3 and Appendix A of Ananat (2011) provides evidence that the choice of railroad
placement was not related to local social or economic concerns.

52Ananat (2011) refers to Column 1 of Table 1 when discussing the first stage F statistic. The
values in this table imply a first stage F of (0.357/0.088)2 ≈ 16.458. This “discrepancy” arises
from different default choices of robust covariance estimate in R’s sandwich package (HC3; my
calculation) and STATA’s robust command (HC1; Ananat, 2011).

53The inversion is performed over a grid of 5000 equally spaced points from -1 to 2.
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Table 9: Point estimates and confidence intervals

Poverty rate Gini coefficient

White Black White Black

Point estimate

2SLS 0.258 -0.196 0.875 -0.334

Confidence intervals

2SLS [-0.026, 0.543] [-0.334, -0.058] [0.277, 1.474] [-0.558, -0.111]

AR [-0.04, 0.598] [-0.394, -0.075] [0.319, 1.684] [-0.674, -0.149]

ψ [0.072, 0.568] [-0.376, -0.097] [0.29, 1.138] [-0.608, -0.106]

Relative length of confidence intervals to AR

2SLS 0.891 0.866 0.877 0.853

ψ 0.775 0.877 0.622 0.955

Notes: All confidence intervals have nominal coverage of 95%.

7 Conclusion

In this paper I establish that C(α)-style tests are locally regular under mild con-

ditions, including in non-regular cases where locally regular estimators do not

exist. As a consequence, these tests do not overreject under semiparametric weak

identification asymptotics. Additionally I generalise the classical local asymptotic

power bounds for LAN models to the case where the efficient information matrix

has positive, but potentially deficient, rank, such that these results also apply in

cases of underidentification (or weak underidentification). I show that, if the C(α)

test is based on the efficient score function, it attains these power bounds. This

(attainment) result improves on results known in the literature in two ways: (i)

it applies also to non-regular models and (ii) it does not require the data to be

i.i.d. nor the information operator to be boundedly invertible. A simulation study

based on two examples shows that the asymptotic theory provides an accurate

approximation to the finite sample performance of the proposed tests.
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A Proofs of the main results

Proof of Proposition 1. Combination of Assumptions 1 and 2 yields

(g′n, Ln(h))
′ Pn⇝ N

((
0

−1
2
σ(h)

)
,

(
V τ ′Σ′

21

Σ21τ σ(h)

))
.

By Le Cam’s third Lemma gn
Pn,h
⇝ Zτ ∼ N (Σ21τ, V ). The second claim follows

from the first with Assumption 3(i), Remark 1 and Slutsky’s Theorem. By the

second claim, Assumption 3(ii) and standard arguments, Ŝn,θ0

Pn,h
⇝ Z ′

τV
†Zτ .

Proof of Theorem 1. If r ≥ 1, as r̂n
Pn−→ r, Pn{cn = cα} → 1. By Proposition 1,

Remark 1 and Slutsky’s Theorem, Ŝn,θ0 −cn ⇝ S−c under Pn,h where S ∼ χ2
r (a).

By the Portmanteau Theorem,

lim
n→∞

Pn,hψn,θ0 = lim
n→∞

Pn,h

(
Ŝn,θ0 > cn

)
= L{S − c > 0} = 1− P(χ2

r(a) ≤ cα),

for L the law of S. If r = 0, rank(Λ̂n,θ0)
Pn−→ 0 =⇒ PnRn → 1 for Rn := {Λ̂n,θ0 =

0}. OnRn Ŝn,θ0 = 0 =⇒ ψn,θ0 = 0. By Remark 1, Pn,hψn,θ0 ≤ 1−Pn,hRn → 0.

Proof of Corollary 1. By Theorem 1, πn(h) → π(h) (h ∈ H), pointwise. Since the

πn are asymptotically equicontinuous on K, the convergence is uniform on K.

Proof of Lemma 1. Immediate from |Pn,hψn,θ0 −Pn,h′ψn,θ0 | ≤ dTV (Pn,h, Pn,h′).

Proof of Lemma 2. For a, b ∈ R, h1, h2 ∈ H, ∆n(a1h1+ a2h2) = a1∆nh1+ a2∆nh2

and so ∆(a1h1 + a2h2) = a1∆(h1) + a2∆(h2), hence ∆ is linear. We now establish

K is a well-defined covariance kernel. For h ∈ H, (∥∆nh∥2)n∈N is Cauchy. Letting

Kn(h, g) := Pn [∆nh∆ng] and using Cauchy – Schwarz

|Kn(h, g)−Km(h, g)| ≤ ∥∆nh−∆mh∥∥∆ng∥+ ∥∆mh∥∥∆ng −∆mg∥,

hence (Kn(h, g))n∈N is also Cauchy and thus has a limit. Bilinearity and symmetry

are straightforward to check. For positive semi-definiteness, let h1, . . . , hK ∈ H,

a ∈ RK . As ∆nh ∈ L0
2(Pn), Kn := [Kn(hk, hj)]

K
k,j=1 is a covariance matrix, hence∑K

k=1

∑K
j=1 akajKn(hk, hj) = a′Kna ≥ 0 for each n ∈ N and hence the same holds

with Kn and Kn replaced by K and K := [K(hk, hj)]
K
k,j=1.

By Assumption 1 and the fact thatK(h, h) = σ(h), ∆h ∼ N (0, K(h, h)). That

∆ is a mean-zero Gaussian process with covariance kernel K then follows from the

40



Cramér – Wold Theorem as
∑K

k=1 ak∆hk ∼ N (0, a′Ka) and

K∑
k=1

ak∆n(hk) = ∆n

(
K∑
k=1

akhk

)
Pn⇝ ∆

(
K∑
k=1

akhk

)
=

K∑
k=1

ak∆hk.

Proof of Proposition 2. Remark 1 and the transitivity of (mutual) contiguity en-

sures that the experiments En are contiguous. By Theorem 61.6 of Strasser (1985)

it suffices to show that the finite dimensional marginal distributions (fdds) of Ln

converge (under Pn) to those of L, where L(h) := ∆h− 1
2
∥h∥2. This follows as the

fdds of ∆n converge to those of ∆ (under Pn), by the Cramér – Wold Theorem.

Proof of Proposition 3. Let G[0] := P0. Define Z : H → L2(Ω,F , G[0]) by Z[h] :=

∆(h) for an arbitrary h ∈ π−1
V ([h]), where πV is the quotient map from H → H.

This is a standard Gaussian process forH. DefineG[h] by
dG[h]

dG[0]
= exp

(
Z[h]− 1

2
∥[h]∥2K

)
.

G is a Gaussian shift on (H, ⟨· , ·⟩K) (Strasser, 1985, Theorem 69.4). For any

h ∈ H we have that Z[h] = ∆g for some g ∈ π−1
V ([h]) and ∆h = ∆g P0–

almost surely. Since ∥h∥K = ∥[h]∥K , P0-a.s.,
dG[h]

dG[0]
= exp

(
Z[h]− 1

2
∥[h]∥2K

)
=

exp
(
∆h− 1

2
∥h∥2K

)
= dPh

dP0
. As each Ph ≪ P0 and G[h] ≪ G[0], and P0 = G[0],

dTV (Ph, G[h]) =
1
2

∫ ∣∣∣dPh

dP0
− dG[h]

dP0

∣∣∣ dP0 =
1
2

∫ ∣∣∣dPh

dP0
− dG[h]

dG[0]

∣∣∣ dP0 = 0.

Proof of Lemma 3. By straightforward calculation

⟨[τ, b] , [t, g]⟩K = τ ′Ĩt+ ⟨Π[τ, 0] + [0, b] , Π[t, 0] + [0, g]⟩K (45)

This and Π[(τ, 0)] ∈ kerπ1 imply ∥[τ ]∥2 = infb∈B ∥[τ, b]∥2K = τ ′Ĩτ+inf [h]∈kerπ1 ∥Π[τ, 0]−
[h]∥2K = τ ′Ĩγτ . Hence, ∥τ∥ = ∥[τ ]∥ = 0 =⇒ τ ′Ĩγτ = 0 =⇒ Ĩ1/2

γ τ = 0, and so

Ĩγτ = 0. Conversely τ ∈ ker Ĩγ =⇒ ∥τ∥2 = 0 =⇒ ∥τ∥ = 0.

Proof of Theorem 2. Define the bounded linear map T : H → R according to

T [h] :=
〈
Π⊥[1, 0] , Π⊥[h]

〉
K
=
〈
Π⊥[1, 0] , [h]

〉
K
. For any [h] = [τ, b] ∈ H,

T [h] =
〈
Π⊥[1, 0] , Π⊥[τ, b]

〉
K
= Ĩτ. (46)

If Ĩ = 0, (19) follows from Proposition 4, so assume Ĩ ≠ 0. Any unbiased level

α test ϕ of T [h] = 0 against T [h] ̸= 0 in the (restricted) Gaussian shift G satisfies

G[h]ϕ ≤ 1− Φ
(
zα/2 − Ĩ1/2τ

)
+ 1− Φ

(
zα/2 + Ĩ1/2τ

)
, (47)

(Strasser, 1985, Lemma 71.5). By Proposition 2, En ⇝ E ; E is dominated. Let

πn(h) := Pn,hϕn and fix an arbitrary h⋆. There is a subsequence (πnm)m∈N such
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that limm→∞ πnm(h
⋆) = lim supn→∞ πn(h

⋆). Since [0, 1]H is compact in the prod-

uct topology, there is a subnet (πnm(s)
)s∈S and a function π : H → [0, 1] such that

lims∈S πnm(s)
(h) = π(h) for all h ∈ H. By our hypotheses and equation (46) for

any h0 such that [h0] ∈ kerT ∩H and any h1 such that [h1] ∈ H \ (kerT ∩H)

π(h0) = lim
s∈S

πnm(s)
(h0) ≤ α ≤ lim

s∈S
πnm(s)

(h1) = π(h1). (48)

There exists a test ϕ in E with power function π (van der Vaart, 1991, Theorem

7.1). (48) and Proposition 3 ensure that ϕ is an unbiased, level α test of kerT ∩H
against H \ (kerT ∩H) in G . Conclude by combining (47) and (by Proposition 3)

lim sup
n→∞

Pn,h⋆ϕn = lim
m→∞

πnm(h
⋆) = π(h⋆) = Ph⋆ϕ = G[h⋆]ϕ.

Proof of Corollary 2. By Theorem 1, limn→∞ Pn,hnψn,θ = 1 − P(Z2 > cα) where

Z ∼ N
(
Ĩ1/2τ, 1

)
. 1− P(Z2 > cα) is equal to the RHS of (20).

Proof of Theorem 3. By Lemma 3, H1 = Rdθ / ker Ĩ. π1 : H → H1 is surjective:

for any [τ ] ∈ H1 let t ∈ π−1

ker Ĩ({[τ ]}) where πker Ĩ is the quotient map from Rdθ to

H1. Then π1[t, 0] = [t] = [τ ]. It follows that dim ranπ1 = codimker π1 = r. By

linearity and [0, b] ∈ kerπ1, Π[τ, b] = Π[τ, 0] + [0, b]. This with Lemma 3 yields

∥[τ, b]− Π[τ, b]∥2K = ∥[τ, 0]− Π[τ, 0]∥2K = ∥[τ ]∥2 = τ ′Ĩτ . Define the sets

Ma :=
{
[τ, b] ∈ H : τ ′Ĩτ = a

}
, Ma :=

{
[τ, b] ∈ H : τ ′Ĩτ = a

}
.

It is straightforward to check that clMa = Ma. Suppose that ϕ is a test on G

with G[0]ϕ ≤ α. First suppose a > 0. ϕ is a level α test of K0 : {[0]} against

K1 : [ker π1]
⊥ \ {[0]} in the restriction of the standard Gaussian shift experiment

on [ker π1]
⊥. By Theorem 30.2 in Strasser (1985)

inf
[h]∈Ma

G[h]ϕ = inf
[h]∈M̄a

G[h]ϕ ≤ inf
[h]∈M̄a∩[kerπ1]⊥

G[h]ϕ ≤ 1− P(χ2
r(a) ≤ cr), (49)

since [h] 7→ G[h]ϕ is continuous. If, instead, a = 0, note that [0] ∈M0 and so,

inf
[h]∈M0

G[h]ϕ ≤ G[0]ϕ ≤ α = 1− P(χ2
r(0) ≤ cr). (50)

Fix a ≥ 0 and let R := 1−P(χ2
r(a) ≤ cr). Let πn(h) := Pn,hϕn and define βn :=

inf
{
Pn,hϕn : h = (τ, b) ∈ H, τ ′Ĩτ = a

}
. Suppose that lim supn→∞ βn ≥ R+ ε for

some ε > 0. Hence, for some subsequence (nm)m∈N, limm→∞ βnm ≥ R + ε. Since
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[0, 1]H is compact in the product topology, there is a subnet (πnm(s)
)s∈S and a

function π : H → [0, 1] such that lims∈S πnm(s)
(h) = π(h) for all h ∈ H. Take any

h such that [h] ∈Ma. The preceding display implies

π(h) = lim
s∈S

πnm(s)
(h) ≥ lim

s∈S
inf
{
πnm(s)

(h) : h = (τ, b) ∈ H, τ ′Ĩτ = a
}
≥ R+ ε.

(51)

By Proposition 2, En ⇝ E ; E is dominated. There is a test ϕ in E with power

function π (van der Vaart, 1991, Theorem 7.1). Consider the restriction of G to

[kerπ1]
⊥. By hypothesis, Corollary S2 and Proposition 3 G[0]ϕ = P0ϕ = π(0) =

lims∈S πnm(s)(0) ≤ lim supπn(0) ≤ α, hence ϕ is a test of level α of K0 against K1

in this experiment, and inf [h]∈Ma G[h]ϕ = infh:[h]∈Ma Phϕ = infh:[h]∈Ma π(h) ≥ R+ε,

by (51) and Proposition 3, but this contradicts (49) if a > 0 or (50) if a = 0.

Proof of Corollary 3. Equation (22) follows from Theorem 1. For equation (23),

let fn(h) := Pn,hψn,θ0 . By (22) and the asymptotic equicontinuity, limn→∞ fn(h) =

1−P
(
χ2
r

(
τ ′Ĩτ

)
≤ cr

)
=: f(h), uniformly on Ka. Conclude that if hn → h ∈ Ka,

lim
n→∞

fn(hn) = f(h) ≥ f⋆ := 1− P
(
χ2
r (a) ≤ cr

)
. (52)

If (23) fails there is a sequence hn ∈ Ka with lim supn→∞ fn(hn) < f⋆. Extract a

subsequence hnm → h ∈ Ka. Let h∗m := hn1 for m = 1, . . . , n1 and h∗m := hnk
for

nk ≤ m < nk+1. fnm(hnm) is a subsequence of fm(h
∗
m) and h∗m → h, so by (52)

limm→∞ fnm(hnm) = limm→∞ fm(h
∗
m) = f(h) ≥ f⋆ > lim supn→∞ fn(hn).

Proof of Proposition 4. By (45), r = 0 implies ∥[h] − Π[h]∥K = 0 and so [h] =

Π[h] ∈ kerπ1. Hence there is a h∗ ∈ H0 with ∥h− h∗∥K = 0. By Corollary S2,

lim supPn,γ,hϕn ≤ lim sup
n→∞

Pn,γ,h∗ϕn + lim sup
n→∞

|Pn,γ,h∗ϕn − Pn,γ,hϕn| ≤ α.

Proof of Theorem 4. Since limn→∞ Pn[ℓ̇ng
′
n] = limn→∞ Pn[ℓ̇nℓ̃

′
n] we may assume

gn = ℓ̃n. By Theorem 12.14 in Rudin (1991), Ĩn := Pn[ℓ̃nℓ̃
′
n] = Pn[ℓ̇nℓ̃

′
n]. Set

Kn(h, g) := Pn[∆nh∆ng] and let Gn be a zero-mean Gaussian process with co-

variance kernel Kn. There exists a Hilbert space isomorphism, Zn : cl{∆nh : h ∈
H} → cl{Gnh : h ∈ H} (Janson, 1997, Theorem 1.23). LetR := Π

[
·
∣∣∣{Gn(0, b) : b ∈ B}⊥

]
and Q := Π

[
·
∣∣{∆n(0, b) : b ∈ B}⊥

]
. RGnh = RZn(∆nh) = ZnQZ

−1
n Zn(∆nh) =

ZnQ∆nh for h ∈ H and extends to elements in the closure by continuity. Hence

Ĩn,ij = Pn [∆n(ei, 0)Q∆n(ej, 0)] = E [Gn(ei, 0)RGn(ej, 0)] . (53)
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By Theorem 9.1 in Janson (1997),

E [Gn(ej, 0)|{Gn(0, b) : b ∈ B}] = Π [Gn(ej, 0)|cl {Gn(0, b) : b ∈ B}] , (54)

and so G̃n(ej, 0) := Gn(ej, 0)−E [Gn(ej, 0)|{Gn(0, b) : b ∈ B}] = RGn(ej, 0). Then,

Ĩn,ij = E
[
Gn(ei, 0)G̃n(ej, 0)

]
by (53). Set Gn := σ({Gn(0, b) : b ∈ B}), Gn :=

σ({G(0, b) : b ∈ B}) and define Xn := (Gn(ei, 0),E[Gn(ej, 0)|Gn]) and X :=

(G(ei, 0),E[G(ej, 0)|G ]), where G := ∆. By (54) and Kn(h, h) → K(h, h) (Lemma

2), (Xn)n∈N are uniformly square integrable Gaussian random vectors andXn ⇝ X

(by Theorem S3). Combine with Lemma S3 and Theorem 9.1 of Janson (1997).

Proof of Lemma 4. Rn(h)
Pn−→ 0 in (5) and Ah ∈ L0

2(P ) follows from (24) (van

der Vaart and Wellner, 1996, Lemma 3.10.11). Hence ∆nh is uniformly square

integrable (i.i.d) and [∆nh](W
(n)) = GnAh⇝ N (0,

∫
(Ah)2 dP ) (CLT).

Proof of Lemma 5. P n (∆nh, g
′
n) = 0. By g ∈ {Db : b ∈ B}⊥ and Assumption 5,

the covariance matrix of (∆nh, g
′
n) (under P

n) is Σ(h) = P
[
[Ah]2 τ ′ℓ̇g′

gℓ̇′τ gg′

]
. For each

h ∈ H, the central limit theorem gives (∆nh, g
′
n)

Pn

⇝ N (0,Σ(h)).

Proof of Corollary 4. g ∈ {Db : b ∈ B}⊥. Apply Lemma 5.
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