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Abstract

This paper considers hypothesis testing in semiparametric models which may be non –

regular. I introduce a notion of local regularity for (sequences of) tests and show that

C(α) – style tests are locally regular under mild conditions, including in cases where

locally regular estimators do not exist, such as models which are (semiparametrically)

weakly identified. I characterise the appropriate limit experiment in which to study local

(asymptotic) optimality of tests in the non – regular case, permitting the generalisation

of classical power bounds to this case. I give conditions under which these generalised

power bounds are attained by the proposed C(α) – style tests. Two examples are

worked out in detail. The finite sample performance of the proposed tests is evaluated

in a simulation study and an empirical application.
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1 Introduction

It is often considered desirable that estimators are “locally regular” in that they

converge to the same limiting distribution along sequences of “local alternatives”

which cannot be consistently distinguished from the true parameter, even asymp-

totically.1 Unfortunately, there are many semiparametric models in which locally

regular estimators do not exist.2 One necessary condition is given by Chamber-

lain (1986), who shows that if the efficient information for a scalar parameter

is 0, then no locally regular estimator of that parameter exists. This result can

be extended to singularity of the efficient information matrix implying the non-

existence of locally regular estimators of Euclidean parameters. I refer to such

models as “non-regular”.

In this paper, I demonstrate that the situation for testing is different. After

defining an appropriate notion of local regularity for tests, I exhibit a broad class of

tests – based on the C(α) idea of Neyman (1959, 1979) – which have this property.

One key consequence of this result is that it provides a method to construct

tests in a general class of semiparametric models which do not (asymptotically)

over-reject under the a semiparametric generalisation of weak identification asymp-

totics.3 In addition to the well-studied case where weak identification is due to

potential identification failure at certain values of a finite dimensional nuisance

parameter, the results in this paper also apply to the case where identification

failure is due to the value of an infinite dimensional nuisance parameter.

The approach used to construct such test statistics leads to tests which also

behave well in other irregular settings: for example, these tests continue to provide

good inference when nuisance functions have been estimated using regularisation

or under shape restrictions.4

Achieving this local regularity does come at the expense of (local asymptotic)

power. I characterise the appropriate limit experiment in which to study (local

asymptotic) optimality of tests in the case where the efficient information matrix

may be singular: the finite sample experiments converge weakly to an experiment

1Precise definitions will be given below. See Bickel, Klaassen, Ritov, and Wellner (1998); van der
Vaart (2002), for example, for textbook treatments.

2See e.g. Ritov and Bickel (1990); Newey (1990) for some examples.
3The notion of semiparametric weak identification asymptotics used in this paper is essentially
that of Kaji (2021); see also Andrews and Mikusheva (2022). The only difference is that I work
directly with local asymptotic normality [LAN] (as opposed to differentiability in quadratic
mean [DQM], which implies LAN in the i.i.d. case). This allows the theory to apply equally to
non-i.i.d. models.

4See Chetverikov, Santos, and Shaikh (2018) for a recent review of the use of shape constraints
in econometrics.
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which can be “matched” by a Gaussian shift on the quotient of the original (local)

parameter space under an induced covariance function. This permits the gener-

alisation of a number of classical power bounds to this setting. Moreover, I show

that the locally regular C(α) tests proposed in this paper acheive these power

bounds under certain conditions. These conditions are weaker than those in the

literature.5

Following the theoretical development, I provide two worked out examples

which I use to conduct an extensive simulation study into the finite sample per-

formance of the proposed tests. I consider (i) a single index model and (ii) an

instrumental variables model with a nonparametric first stage. In each case, the

parameter of interest may fail to be identified depending on the value of an infi-

nite dimensional nuisance parameter, leading to possible weak identification issues.

Nevertheless, the tests proposed in this paper display good finite sample perfor-

mance in each model, including in weakly identified cases. Additionally, in the

single index model, I investigate the behaviour of the proposed test when the link

function is estimated under a monotonicity constraint which may be close to bind-

ing and compare it to a Wald test with the same asymptotic power function. I find

that plugging in the monotonicity constrained estimator results in lower power for

the Wald test, but not the locally regular C(α) test.

This paper is connected to three main strands of the literature: the first is

that concerned with general results on estimation and testing in semiparametric

models. Much of this is now textbook material: see e.g. Newey (1990); Choi et al.

(1996); Bickel et al. (1998); van der Vaart (1998, 2002). The second is the liter-

ature on C(α) - style tests. Such tests were introduced by Neyman (1959, 1979)

and have seen many useful applications, most recently as a way to handle machine

learning or otherwise high dimensional first steps (see e.g. Chernozhukov, Hansen,

and Spindler, 2015; Bravo, Escanciano, and Van Keilegom, 2020; Chernozhukov,

Escanciano, Ichimura, Newey, and Robins, 2022). In this paper, the structure

which ensures the good performance of these tests in such settings is used for a

different purpose – to create tests which remain robust in non-regular settings.

Lastly, the literature on robust testing in non – regular or otherwise non – stan-

dard settings is closely related to this paper (e.g. Andrews and Guggenberger,

2009; Romano and Shaikh, 2012; Elliott, Müller, and Watson, 2015; McCloskey,

2017). In particular, the locally regular tests derived in this paper are particularly

5In particular, the attainment result is well known if either (a) the observations are i.i.d. (cf.
van der Vaart, 1998, Chapter 25) or (b) the information operator (as defined in Choi, Hall, and
Schick, 1996, p. 846) is boundedly invertible (Choi et al., 1996). The result given in this paper
does not require either of these conditions.
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useful in cases of weak identification and therefore this paper is closely related to

the literature on weak identification robust inference in econometrics (e.g. Staiger

and Stock, 1997; Dufour, 1997; Stock and Wright, 2000; Kleibergen, 2005; An-

drews and Cheng, 2012; Andrews and Mikusheva, 2015, 2016). In particular this

paper is most closely related to the recent work on semiparametric weak identi-

fication (Kaji, 2021; Andrews and Mikusheva, 2022) and extends the notion of

semiparametric weak identification considered there to non – i.i.d. models.6

2 Locally regular testing

The goal considered throughout this paper is to construct hypothesis tests of the

form H0 : θ = θ0 against H1 : θ 6= θ0 in the sequence of models Pn = {Pn,γ : γ ∈ Γ}
where γ = (θ, η) ∈ Γ = Θ × H for some open Θ ⊂ Rdθ and H an arbitrary set.

Each Pn consists of probability measures on a measurable space (Wn,B(Wn)) and

is dominated by a σ-finite measure νn.7

In this section I will define local regularity for testing and heuristically de-

scribe how such tests can be constructed, with technical details deferred until the

following section. I then explain how this concept can be useful to derive robust

testing procedures in two common non-standard inference problems.

2.1 Defining local regularity for tests

Local regularity for estimators To motivate the definition of local regularity

for tests, I first recall the definition of local regularity of estimators. Suppose that

θ̂n is a sequence of estimators of θ and Pn,γ,h = Pn,(θ+τ/√n,ηn(b)) a sequence of local

alternatives to Pn,γ for some h = (τ, b) ∈ H := Rdθ ×B.8 The estimator sequence

θ̂n is then called “locally regular” at γ if

√
n

(
θ̂n − θ −

τ√
n

)
Pn,γ,h
 Lγ, h ∈ H. (1)

6Failure of local identification and singularity of the information matrix are closely linked in
parametric cases, see Rothenberg (1971). In the semiparametric case, parameters may be
nonparametrically identified but nevertheless have a singular efficient information matrix. The
relationship between the efficient information matrix and identification is studied in detail by
Escanciano (2022).

7Typically the index n is sample size and Wn is the space in which a sample of size n takes its
values. This will be the situation considered in Section 3.4 as well as in the examples treated
in Section 4.

8The general definition of a “local alternative” is given in the following section. In the parametric
case one typically takes ηn(b) to be of the form η + b/

√
n.
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for some law Lγ which – as indicated by the notation – may depend on γ but not

on h.9

Local regularity for tests Motivated by (1), I now define a notion of local

regularity for tests of H0 against H1.

Definition 2.1: A sequence of tests φn :Wn → [0, 1] of the hypothesis H0 : θ = θ0

against H1 : θ 6= θ0 is locally regular if

πn(τ, b) := Pn,γ,hφn → πγ(τ), h ∈ H. (2)

In words, the finite sample (local) power function of the test, πn converges

under each Pn,γ,h to a function πγ which depends only on τ . This requirement is

in the same spirit as (1): the parameter b which describes local deviations from η

does not affect the limit.10 If a sequence of tests does not satisfy (2.1) I shall call

it locally non – regular.

In addition to (2), if one is interested in the hypothesis H0 : θ = θ0 against

H1 : θ 6= θ0, typically one additionally wants to ensure that πγ(0) ≤ α, for α a

given significance level, i.e. that the test does not asymptotically over – reject.11

Local regularity of test sequences as in Definition 2.1 is a pointwise concept.

It is also of interest to consider a version of local regularity which holds uniformly

over certain subsets.

Definition 2.2: A sequence of tests φn :Wn → [0, 1] of the hypothesis H0 : θ = θ0

against H1 : θ 6= θ0 is locally uniformly regular on K ⊂ H if (2) holds uniformly

on K

sup
(τ,b)∈K

|πn(τ, b)− πγ(τ)| → 0. (3)

In the case where H is a (pseudo-)metric space and K is a compact set, to

go from the pointwise convergence in (2) to the uniform convergence in (3) it is

9Ideally the law Lγ is the semiparametric efficiency bound for locally regular estimators given
by the Hájek – Le Cam convolution Theorem (see e.g. van der Vaart, 1998, Theorem 25.20 &

Lemma 25.25). In this case the estimator sequence θ̂n is usually called “best regular”.
10τ , describing the local deviation from θ does affect the limit: (1) may be re-written as

√
n(θ̂n − θ)

Pn,γ,h
 Lγ,τ

where Lγ,τ is the law of X − τ for X ∼ Lγ .
11For other testing problems, other restrictions may be preferable. For example, if θ is scalar

and the testing problem is H0 : θ ≤ θ0 against H1 : θ > θ0, a more natural requirement would
be that πγ(τ) ≤ α for all τ ≤ 0.
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necessary and sufficient to show that the sequence of functions πn is asymptotically

equicontinuous on K.12

Directly establishing asymptotic equicontinuity of the power functions πn(τ, b)

may be complicated in many cases. It is, however, often possible to show stronger

results which immediately imply this property. For instance, if one can show that

the functions h 7→ Pn,γ,h are asymptotically equicontinuous in total variation, the

required asymptotic equicontinuity of the power functions follows immediately.

Despite being (much) stronger, this requirement can often be relatively straight-

forward to demonstrate. For example, in the classical case of a parametric model

for i.i.d. data, this asymptotic equicontinuity in total variation follows from the

differentiability in quadratic mean condition typically used to demonstrate local

asymptotic normality (cf. e.g. Theorem 7.2 in van der Vaart (1998) and Theorem

80.13 in Strasser (1985)).

A class of locally regular tests To construct tests of H0 : θ = θ0 against

H1 : θ 6= θ0 which have property (2) (or (3)), I use a generalisation of the class

of C(α) tests introduced by Neyman (1959, 1979) to characterise optimal tests in

regular parametric models.

I will heuristically outline the construction of C(α) tests in such parametric

models to build intuition for the theoretical development in the following section.13

Thus, suppose temporarily that H ⊂ Rdη and the observed data (W1, . . . ,Wn) is

drawn i.i.d. from a parametric density pγ. Let ν̇γ be the score functions for

the (now finite dimensional) nuisance parameter η, i.e. the partial derivatives of

the log likelihood for an observation W : ν̇γ := ∇η log pγ. Let fγ = fθ,η be a

vector of dθ moment conditions which are mean-zero under the null hypothesis,

i.e. Eθ0,ηfθ0,η(W ) = 0.

Such regular parametric models are typically locally asymptotically normal

(“LAN”): the log-likelihood ratio admits a local quadratic approximation:

log
qγ,h
pθ,η

=
1√
n

n∑
i=1

τ ′ ˙̀γ(Wi) + b′ν̇γ(Wi)−Eγ
[
τ ′ ˙̀γ(Wi) + b′ν̇γ(Wi)

]2

+ oPγ (1), (4)

for qγ,h := pθ+τ/√n,η+b/
√
n where (τ, b) ∈ Rdθ+dη and ˙̀

γ the score functions for θ:
˙̀
γ := ∇θ log pγ.

12The same is true if the requirement that K be compact is replaced with the requirement that
K be totally bounded. See e.g. Davidson (2021), p. 123, for the definition of asymptotic
equicontinuity.

13That is, I will avoid discussing the required regularity conditions for this construction; such
details are given in full for the general case treated in the subsequent section.
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Under LAN, the asymptotic distribution of scaled sums of the moment con-

dition fγ under the local alternative (θ + τ/
√
n, η + b/

√
n) is given by Le Cam’s

third Lemma (e.g. van der Vaart, 1998, Example 6.5):

1√
n

n∑
i=1

fγ(Wi)
Pn,γ,h
 N

(
Eγ[fγ(W ) ˙̀

γ(W )′]τ + E[fγ(W )ν̇γ(W )′]b, Eγ[fγ(W )fγ(W )′]
)
.

In consequence, the limiting distribution will depend on b if and only if E[fγ(W )v̇γ(W )] 6=
0.

In order to ensure this covariance is zero, a C(α) test is not based on the

original moment condition fγ, but rather on the orthogonal projection

gγ := fγ − Eγ [fγ(W )ν̇γ(W )′]Eγ [ν̇(W )ν̇γ(W )′]
−1
ν̇γ = Π

[
fγ
∣∣Span(ν̇γ)

⊥] , (5)

where Π[·|S] is the orthogonal projection onto the closed subspace S ⊂ L2(Pγ).
14

Then, as E[gγ(W )ν̇γ(W )′] = 0 by construction, by the same argument as above

1√
n

n∑
i=1

gγ(Wi)
Pn,γ,h
 N

(
Eγ[gγ(W ) ˙̀

γ(W )′]τ, Eγ[gγ(W )gγ(W )′]
)
. (6)

In practice, for the test to be feasible one must replace the unknown nui-

sance parameters η with an estimator (which may be estimated under the null).

Typically one also estimates the (pseudo-)inverse of Vγ := Eγ[gγ(W )gγ(W )′] and

weights the estimated components 1√
n

∑n
i=1 ĝn,θ(Wi) by this matrix in a quadratic

form, forming a feasible test statistic Ŝn,θ. Provided these estimators are suffi-

ciently accurate, Ŝn,θ will converge to a χ2 distribution under Pn,γ,h. As such score

– type test statistics based on the moment conditions gγ will have asymptotic dis-

tributions free of b. One can then choose an appropriate critical value c such that

the test of the form 1{Ŝn,θ > c} does not over-reject under any Pn,γ,h consistent

with H0.

Tests constructed in this manner will be locally regular tests in the sense of

definition 2.1. The (rigorous) extension of this argument to the semiparametric

case, with possible singularity of the variance matrix Vγ (as may happen, for

example, in cases with potential identification failure or in underidentified models)

is given in Section 3.

14See equation (5) and the surrounding discussion in Neyman (1979).
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The non-iid case The heuristic derivation of the class of C(α) tests given above

imposed that the researcher observed a random sample, i.e. that the model Pn
consists of n-fold product measures Pn,γ := P n

γ . This is not necessary for the local

regularity of C(α) tests, and is not imposed in the general theory discussed in

Section 3. It does, however, routinely simplify expressions and the demonstration

of the required regularity conditions. Given this and its central role as a benchmark

case in statistics and econometrics, the simplifications available in the i.i.d. case

are explicitly discussed in Section 3.4.

Power optimality As noted above, Neyman (1959, 1979) initially developed the

C(α) test in order to discuss testing optimality. In regular parametric models, the

conclusion is (up to regularity conditions) that C(α) tests based on ˙̀
γ, the scores

for θ, attain the (local asymptotic) power bounds for various classes of testing

problems. This is known to also be true in (regular) semiparametric models if (a)

the data is i.i.d. (cf. Chapter 25 in van der Vaart, 1998) or (b) the information

operator (as defined in Choi et al., 1996, p. 846) is boundedly invertible (Choi

et al., 1996). In Section 3, I show that this result holds without requiring either

(a) or (b) and, moreover, persists in the non – regular case, where the efficient

information matrix may be rank deficient.15

2.2 Robust testing in non-standard problems

I now explain how the ideas just described can be used to derive tests which are

well behaved in the face of two commonly encountered non-standard inference

problems in econometrics.16 I provide examples in each case, for which locally

regular C(α) style tests will be explicitly developed in Section 4.

Weak identification As noted in the introduction, in many models there are

values of γ such that estimators satisfying (1) do not exist. Points γ, where

the parameter of interest is un- or under-identified provide an important class of

examples.17 As is well known, even if θ is identified at γ, finite sample inference

may still be poor if γ is too close to a point of identification failure relative to

15This more general result contains the classical regular case as a special case.
16I note that, whilst widely applicable, the approach developed in this paper does not apply

to all types of non-standard inference problems encountered in econometrics. For instance,
AR(1) models with a local-to-unity root are locally asymptotically quadratic (LAQ) rather
than LAN (Jansson, 2008). The results in this paper are derived for LAN models and hence
do not apply in this case.

17For such cases it is not possible to estimate θ consistently, let alone regularly.
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the amount of information contained in the sample. Such weak identification

concerns have been widely studied in models where the part of η which causes

the potential identification failure is finite dimensional (e.g. Andrews and Cheng,

2012; Andrews and Mikusheva, 2015). There are also many examples where this

may occur due to the value of infinite-dimensional nuisance parameters. Kaji

(2021) considers estimation in weakly identified semiparametric models, whilst

Andrews and Mikusheva (2022) consider semiparametric weak identification in

GMM models. Both use a differentiability in quadratic mean (DQM) condition

to define “weak identification embeddings” in i.i.d. models. As such DQM - type

conditions are less straightforward to work with in non - i.i.d. cases, in this paper I

use an analogous notion – based directly on the LAN expansion – which broadens

the applicability of this class of semiparametric weak identification sequences. The

key property of these sequences is that they are local (i.e. contiguous) alternatives

to a point of identification failure.

I now give three examples of semiparametric models where the parameter of

interest θ may be un- or under- identified depending on the value of an infinite

dimensional nuisance parameter.

Example 2.1 (Single – index model): Suppose that the researcher observes n i.i.d.

copies of W = (Y,X) where

Y = f(X1 +X ′2θ) + ε, E[ε|X] = 0,

and where f belongs to some set of continuously differentiable functions F . The

description of the model is completed by a parameter ζ which describes the distri-

bution of (X, ε). If f is flat, i.e. f ′ = 0, then the parameter θ is unidentified.

Example 2.2 (Instrumental variables): Suppose the researcher observes n i.i.d.

copies of W = (Y,X,Z) where

Y = X ′θ + Z ′1β + ε, E[ε|Z] = 0, Z = (Z ′1, Z
′
2)′.

If the k-th component of π(Z) := E[X|Z] is zero, θk is unidentified.

Example 2.3 (Independent components supply & demand model): Suppose the

researcher observes n i.i.d. copies of W = Y ∈ R2, where

Y = A(θ, σ)−1ε, Eε = 0, Var(ε) = I, ε1 ⊥⊥ ε2,
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with

A(θ, σ) =

[
σ−1

1 0

0 σ−1
2

][
1 −θ1

1 −θ2

]
, σ ∈ (0,∞)2, θ ∈ (−∞, 0)× (0,∞).

This simple equilibrium supply & demand model is completed by the density func-

tions ζ1, ζ2 of ε1, ε2 respectively. If no more than one εk has a standard Gaussian

distribution, θ is identified (Comon, 1994). If ε ∼ N (0, I), θ is underidentified.

In each of the above examples, no locally regular estimator exists. For Exam-

ples 2.1 and 2.2, locally regular C(α) tests which satisfy π(0) ≤ α are developed in

Section 4. The local regularity of these tests ensures that they do not asymptot-

ically over-reject under semiparametric weak identification parameter sequences.

The simulation exercises reported in the same section demonstrate that this ap-

proximation provides a good guide to the finite sample reality: unlike many alter-

native procedures, these tests exhibit finite sample rejection frequencies close to

the nominal level under the null, even in very weakly identified settings.

Each of these examples are in the i.i.d. case, though as emphasised above, this

is not a requirement. For example, locally regular C(α) tests for the potentially

un- / under- identified parameter in a structural vector autoregressive model built

on top of an ICA model similar to Example 2.3 were developed in Hoesch, Lee,

and Mesters (2024).18

Parameters close to the boundary A second non-standard inference problem

which has attracted substantial attention in statistics & econometrics is inference

when a finite - dimensional nuisance parameters may be at, or close to, the bound-

ary. See, amongst others, Geyer (1994); Andrews (1999, 2001); Ketz (2018).

In this scenario, as explained in detail in the aforementioned papers, the lim-

iting distributions of extremum estimators are non-normal when true parameter

is at the boundary of the parameter space. In otherwise regular models, the same

true when the true parameter is “close” to this boundary, i.e. along local (con-

tiguous) alternatives to such a boundary point, by virtue of Le Cam’s third lemma

(e.g. van der Vaart, 1998, Theorem 6.6).

In consequence, using the “standard” normal approximations which usually

obtain for extremum estimators (cf. Newey and McFadden, 1994) can lead to

either misleading inference or poor power. In the literature there are examples of

18Lee and Mesters (2024) provided locally regular C(α) tests for the potentially un- / under-
identified parameter in linear simultaneous equations models built on an ICA model similar
to Example 2.3.
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boundary problems where “standard” tests over-reject (e.g. Andrews and Guggen-

berger, 2010) as well as examples where they are conservative and exhibit poor

power (e.g. Ketz, 2018).

Under regularity conditions, boundary - constrained estimators of the nuisance

parameters typically remain
√
n - consistent (albeit not asymptotically normal).

Due to the orthogonalisation (5), plugging in any
√
n - consistent estimator η̂n of η

is sufficient to ensure that the resulting feasible moment function (i.e. ĝn,θ = gθ,η̂n)

achieves the same normal limit as in (6).

In the semiparametric setting a natural generalisation of this boundary - con-

strained phenomenon is that of inference when nuisance functions are estimated

under shape restrictions which may be close to binding. Consider the following

example, based on the single index model of Example 2.1.

Example 2.4: Recall the model of Example 2.1:

Y = f(X1 +X ′2θ) + ε, E[ε|X] = 0,

and now suppose that f belongs to some subset of continuously differentiable func-

tions F which also satisfy a shape restriction. For instance, F may contain only

monotonically increasing functions or convex functions.

Analogously to in the parametric case, plugging in nuisance functions estimated

under shape constraints causes no problems for C(α) style tests, which retain the

same asymptotic distribution whether or not the constraints are (close to) binding.

In the simulation study of Section 4, this phenomenon is explored in the context

of Example 2.4. The locally regular C(α) test with f estimated under a mono-

tonicity restriction demonstrates good performance, including when the imposed

restriction is close to binding. In contrast, a Wald test based on a non-linear least

squares estimator (as in Ichimura (1993)) delivers conservative inference when

such a restricted estimator of f is used.

3 Main results

This section establishes the main theoretical results of the paper. These are first

established under high-level assumptions, which allows the results to be stated

in a manner which applies to many situations, including cases with dependent or

non-identically distributed data. Section 3.4 considers simplifications which are

valid in the benchmark case of i.i.d. data and a “smooth” statistical model.
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3.1 The setting

Local asymptotic normality I now formalise and generalise the required LAN

condition as in (4). Let Hγ = Rdθ × Bγ be a subset of a linear space containing

0, and suppose that {Pn,γ,h : h ∈ Hγ} ⊂ Pn are such that Pn,γ = Pn,γ,0. A typical

element of Hγ will be written as h = (τ, b) ∈ Rdθ × Bγ.
19 The measures Pn,γ,h

should be interpreted as local perturbations of the measure Pn,γ in a direction

h ∈ Hγ.

The null hypothesis H0 : θ = θ0 corresponds to the set of perturbations Hγ,0 :=

{(0, b) : b ∈ Bγ} and the alternative H1 : θ 6= θ0 to Hγ,1 := {h = (τ, b) : 0 6= τ ∈
Rdθ , b ∈ Bγ}. As such, Pn,γ,h for h ∈ Hγ,0 will be referred to as local perturbations

consistent with the null hypothesis, whilst Pn,γ,h for h ∈ Hγ,1 are local alternatives.

To frame this another way, I consider tests of τ = 0 against τ 6= 0 in the local

models {Pn,γ,h : h ∈ Hγ}.
The key technical condition under which the theory in this paper is developed

is local asymptotic normality (see e.g. van der Vaart, 1998, Chapter 7 or Le Cam

and Yang, 2000, Chapter 6). Define the log-likelihood ratios

Ln,γ(h) := log
pn,γ,h
pn,γ,0

, where pn,γ,h :=
dPn,γ,h

dνn
, for h ∈ Hγ. (7)

Assumption 3.1 (Local asymptotic normality): Ln,γ(h) satisfies

Ln,γ(h) = ∆n,γh−
1

2
‖∆n,γh‖2 +Rn,γ(h), (8)

where h = (τ, b), ∆n,γ : lin Hγ → L0
2(Pn,γ) are bounded linear maps and for all h

in Hγ, Rn,γ(h)
Pn,γ−−→ 0. Additionally, suppose that for each h in Hγ, (∆n,γh)n∈N is

uniformly square Pn,γ-integrable and

∆n,γh
Pn,γ
 N (0, σγ(h)), σγ(h) := lim

n→∞
‖∆n,γh‖2.

∆n,γ is the score operator (cf. van der Vaart, 1998, p. 371). It produces score

functions (or “scores”) from “directions” h ∈ Hγ. As such, the LAN expansion

(8) requires that the log-likelihoods are approximately equal to the score less half

of its variance. This approximation and the asymptotic normality of the scores

leads to contiguity.

19In most examples, Hγ will be a linear space. The more general situation as considered here
is nevertheless important to allow for, for example, Euclidean nuisance parameters subject to
boundary constraints. In such a setting, if the constraint is binding at η, then η can only be
perturbed in certain directions if Pn,γ,h is to remain within the model.
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Remark 3.1: Assumption 3.1 ensures that the pairs of sequences (Pn,γ)n∈N and

(Pn,γ,h)n∈N are mutually contiguous for any h ∈ Hγ (see e.g. van der Vaart, 1998,

Example 6.5).

Remark 3.2: If Hγ is (pseudo-)metrised one may consider a uniform version of

Assumption 3.1, i.e. uniform local asymptotic normality. Such a version is given

in Assumption S2.1 and – as shown by Proposition S2.2 – is equivalent to As-

sumption 3.1 plus asymptotic equicontinuity on compact sets of h 7→ ∆n,γh (in

L2(Pn,γ)) and h 7→ Pn,γ,h (in total variation). The latter equicontinuity condi-

tion, in particular, is of interest regarding local uniform regularity and hence local

uniformity of size control; cf. Corollaries 3.3, 3.4 and Lemma 3.1 below.

In the case where the index n corresponds to an increasing sample of i.i.d. data,

LAN is satisfied under a pathwise differentiability in quadratic mean condition

(e.g. van der Vaart, 1998, Lemma 25.14); this situation will be discussed further

in Section 3.4. Whilst LAN is particularly straightforward to establish in this

“smooth i.i.d.” case, it also holds in other settings and sufficient conditions for

LAN applicable to various settings exist in the literature.20

C(α) – style test statistics The C(α) – style test statistics proposed in this

paper are feasible versions of a quadratic form of dθ-moment conditions gn,γ ∈
L2(Pn,γ). In particular, the statistic will be a quadratic form of estimators of

the moment conditions weighted by an estimator of the Moore-Penrose pseudo-

inverse of their variance matrix. To derive the limiting distribution of the statistic,

I impose a high-level joint convergence requirement on the scores and moment

functions.

Assumption 3.2 (Joint convergence): For dθ-dimensional moment conditions gn,γ ∈
L2(Pn,γ), (

∆n,γh, g
′
n,γ

)′ Pn,γ
 N (0,Σγ(h)) , for each h ∈ Hγ,

where, for h = (τ, b),

Σγ(h) :=

[
σγ(h) τ ′Σ′γ,21

Σγ,21τ Vγ

]
= lim

n→∞

[
‖∆n,γh‖2

〈
∆n,γ(τ, 0) , g′n,γ

〉
〈gn,γ , ∆n,γ(τ, 0)〉

〈
gn,γ , g

′
n,γ

〉 ]
.

Built-in to Assumption 3.2 is a requirement of asymptotic orthogonality of the

20Cf. McNeney and Wellner (2000), Lemma 1 in Swensen (1985), Chapter 2 in Taniguchi and
Kakizawa (2000) and Section 74 of Strasser (1985).
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moment functions and scores for the nuisance parameters η. This generalises the

explicit orthogonal projection construction discussed around equations (5) – (6).

Remark 3.3: For Assumption 3.2 to hold it is necessary that the gn,γ are approx-

imately zero mean: since (gn,γ)n∈N is uniformly integrable, Pn,γgn,γ = o(1). It

is also necessary that the gn,γ satisfy an approximate orthogonality property with

the scores for nuisance parameters. In particular, as ([∆n,γh]gn,γ)n∈N is uniformly

integrable for each h = (τ, b) ∈ Hγ,

lim
n→∞

〈
∆n,γh , g

′
n,γ

〉
= τ ′Σ′γ,21 = lim

n→∞

〈
∆n,γ(τ, 0) , g′n,γ

〉
,

and so

〈
∆n,γ(0, b) , g

′
n,γ

〉
=
〈
∆n,γh , g

′
n,γ

〉
−
〈
∆n,γ(τ, 0) , g′n,γ

〉
= o(1). (9)

Given any dθ moment conditions fn,γ ∈ L0
2(Pn,γ) moment conditions which

satisfy an exact version of the orthogonality condition (9) may be obtained as

gn,γ := Π
[
fn,γ

∣∣∣{∆n,γ(0, b) : b ∈ Bγ}⊥
]
. (10)

An important special case of this construction is with fn,γ equal to the score

function for θ. That is, fn,γ = ˙̀
n,γ, a vector of functions in L0

2(Pn,γ) such that

τ ′ ˙̀n,γ = ∆n,γ(τ, 0) for each τ ∈ Rdθ . In this case, the function gn,γ = ˜̀
n,γ :=

Π
[

˙̀
n,γ

∣∣∣{∆n,γ(0, b) : b ∈ Bγ}⊥
]

is often called the efficient score function.21 This

yields the optimal choice of moment conditions satisfying Assumption 3.2 in the

context of power optimality, as shown in Section 3.3.5 below

In order to construct a C(α) – style statistic, I additionally assume that the

researcher can estimate gn,γ and the pseudo-inverse of Vγ consistently, given θ.

Assumption 3.3 (Consistent estimation): ĝn,θ, Λ̂n,θ, r̂n,θ ∈ {0, 1, . . . , dθ} satisfy

(i) ĝn,θ − gn,γ
Pn,γ−−→ 0;

(ii) Λ̂n,θ
Pn,γ−−→ V †γ ;

(iii) If r := rank(Vγ) ≥ 1, then r̂n,θ
Pn,γ−−→ r; if r = 0, then rank(Λ̂n,θ)

Pn,γ−−→ 0.

Verification of Assumption 3.3 (i) typically proceeds by model specific argu-

ments.22 One generally applicable approach to obtain an estimator which satisfies

21This terminology is used in, for example, Bickel et al. (1998); van der Vaart (1998, 2002). In
some other works (e.g. Choi et al., 1996) “effective” is used in place of “efficient”.

22See pp. 395 – 396 of van der Vaart (1998) for a heuristic discussion of how this condition may
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Assumption 3.3(ii) is to take an initial estimator which is consistent for Vγ, thresh-

old its eigenvalues at an appropriate rate and then take the pseudo-inverse.23 If

one uses the estimator Λ̂n,θ := V̂ †n,θ where V̂n,θ
Pn,γ−−→ Vγ and r̂n,θ := rank(V̂n,θ) then

condition (ii) holds if and only if condition (iii) holds (Andrews, 1987, Theorem 2).

Nevertheless, as emphasised by the notation, it is not necessary that the estimate

Λ̂n,θ be the pseudo-inverse of an initial estimate.

Given the estimators of Assumption 3.3, the C(α) - style test statistic is

Ŝn,θ := ĝ′n,θΛ̂n,θĝn,θ. (11)

The “Ŝ test” will be the C(α) – style test ψn,ϑ of H0 : θ = θ0 against H1 : θ 6= θ0

at level α, defined as

ψn,θ0 := 1
{
Ŝn,θ0 > cn

}
, (12)

where cn is the 1− α quantile of a χ2
r̂n

random variable.

3.2 Local regularity

Under the assumptions given so far we have the following result for the asymptotic

distribution of the moment conditions gn,γ and test statistic.24

Proposition 3.1: Under Assumptions 3.1 and 3.2, for h = (τ, b) ∈ Hγ

gn,γ
Pn,γ,h
 N (Σγ,21τ, Vγ) .

If Assumption 3.3 also holds, then additionally

ĝn,θ
Pn,γ,h
 N (Σγ,21τ, Vγ) and Ŝn,θ

Pn,γ,h
 χ2

r

(
τ ′Σ′γ,21VγΣγ,21τ

)
,

with r = rank(Vγ).

Pointwise local regularity Based on the preceding proposition standard ar-

guments allow the derivation of the asymptotic rejection probabilities based on

the tests ψn,θ. In particular, Theorem 3.1 demonstrates that the proposed C(α) -

be satisfied based on a Taylor expansion in the case where the estimand is the efficient score
function and the observations are i.i.d.. Example 25.61 in van der Vaart (1998) further points
out that this condition should be particularly simple to verify in the special case where the
dependence on η is linear and the model appropriately convex.

23Full details of this approach are given in Appendix section S2.1. Other regularisation schemes
are also possible; cf. Lütkepohl and Burda (1997); Dufour and Valéry (2016)

24χ2
r(ν) denotes the non-central χ2 distribution with r degrees of freedom and non-centrality ν.
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style test is locally regular in the sense of Definition 2.1.

Theorem 3.1: Suppose that Assumptions 3.1, 3.2 and 3.3 hold and h = (τ, b) ∈
Hγ. Then, if r ≥ 1

lim
n→∞

Pn,γ,hψn,θ = 1− P
(
χ2
r (a) ≤ cr

)
, a = τ ′Σ′γ,21V

†
γ Σγ,21τ,

where cr is the 1− α quantile of the χ2
r distribution. If, instead, r = 0, then

lim
n→∞

Pn,γ,hψn,θ = 0.

Remark 3.4: Theorem 3.1 shows that the test sequence (ψn,θ)n∈N is locally regular

in the sense of Definition 2 as its local power function πn(τ, b) := Pn,γ,hψn,θ satisfies

πn(τ, b)→ π(τ) :=

1− P (χ2
r (a) ≤ cr) if r ≥ 1

0 otherwise
, a = τ ′Σ′γ,21V

†
γ Σγ,21τ.

Since a in Remark 3.4 is equal to zero when τ = 0, i.e. when h ∈ Hγ,0,

the sequence of tests ψn,θ is asymptotically of level α under any local perturbation

consistent with the null hypothesis. Inverting the C(α) - style test yields confidence

sets with analogous coverage properties.

Corollary 3.1: Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then ψn,θ is

of asymptotic level α for the hypothesis H0 : h ∈ Hγ,0 against H1 : h ∈ Hγ,1. In

particular, if r ≥ 1

lim
n→∞

πn(0, b) = lim
n→∞

Pn,γ,hψn,θ = α, h = (0, b) ∈ Hγ,0.

If, instead, r = 0, then

lim
n→∞

πn(0, b) = lim
n→∞

Pn,γ,hψn,θ = 0, h = (0, b) ∈ Hγ,0.

Corollary 3.2: Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Define

Cn :=
{
ϑ ∈ Θ : Ŝn,ϑ ≤ cn

}
.

Then, if r ≥ 1,

lim
n→∞

Pn,γ,h(θ ∈ Cn) = 1− α, h = (0, b) ∈ Hγ,0.
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If, instead, r = 0, then

lim
n→∞

Pn,γ,h(θ ∈ Cn) = 1, h = (0, b) ∈ Hγ,0.

Uniform local regularity The limit results in the foregoing section are point-

wise in h. These can be extended to limits which hold (locally) uniformly (i.e.

uniformly over some subsets K of Hγ) under various conditions. I provide explicit

versions of such results for the testing case; analogous results hold for confidence

sets.

In order to state these results, some additional structure on Hγ (or Hγ,0 if a uni-

form version of Corollary 3.1 is all that is desired) is required. One straightforward

approach to this is to place a measure structure on Hγ whence uniformity except

for on a “small” subset of Hγ holds automatically by Egorov’s Theorem, provided

h = (τ, b) 7→ πn(τ, b) is measurable. See Appendix section S2.6 for details.

An alternative approach, detailed below, is to work with a (pseudo-)metric

structure on Hγ (or Hγ,0). As pointwise convergence of the finite sample (local)

power functions is given by Remark 3.4, to “upgrade” this to uniform convergence

on compact (or totally bounded) subsets it is (necessary and) sufficient that the

(local) power functions are asymptotically equicontinuous.

Corollary 3.3: Suppose that the conditions of Theorem 3.1 hold and that (Hγ, d)

is a pseudometric space. If the functions h = (τ, b) 7→ πn(τ, b) are asymptotically

equicontinuous on a compact subset K ⊂ Hγ then

lim
n→∞

sup
(τ,b)∈K

|πn(τ, b)− π(τ)| = 0,

i.e. the sequence of tests (ψn,θ)n∈N is locally uniformly regular on K as in Defini-

tion 2.2.

This can be specialised to a result concerning only the rejection probability

under the null as follows.

Corollary 3.4: Suppose that the conditions of Corollary 3.1 hold and that (Hγ,0, d)

is a pseudometric space. If the functions h = (τ, b) 7→ πn(τ, b) are asymptotically

equicontinuous on a compact subset K ⊂ Hγ,0 then

lim
n→∞

sup
(τ,b)∈K

πn(τ, b) = lim
n→∞

sup
h∈K

Pn,γ,hψn,θ =

α if r ≥ 1

0 if r = 0
.
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I now give two sufficient conditions for the asymptotic equicontinuity require-

ments of Corollaries 3.3 and 3.4. The first is a trivially sufficient condition but con-

cerns only the measures Pn,γ,h and is tightly connected with the uniform strength-

ening of the LAN condition in Assumption 3.1 discussed in Remark 3.2 and Ap-

pendix section S2.3.

Lemma 3.1: If (Hγ, d) (resp. (Hγ,0, d)) is a pseudometric space and (h 7→ Pn,γ,h)n∈N

is asymptotically equicontinuous in total variation on a subset K ⊂ Hγ (resp.

K ⊂ Hγ,0), then (h 7→ Pn,γ,hψn,θ)n∈N is asymptotically equicontinuous on K.

Remark 3.5: Application of Lemma 3.1 to Corollary 3.3 (or Corollary 3.4) re-

quires (asymptotic) equicontinuity in total variation of the functions h 7→ Pn,γ,h

on compact subsets K ⊂ Hγ. This holds for any compact K under the uniform

LAN (ULAN) condition in Assumption S2.1, as shown in Proposition S2.2.

In the parametric i.i.d. case LAN is often verified by establishing a differentia-

bility in quadratic mean condition, e.g. equation (7.1) in van der Vaart (1998). As

established by Theorem 7.2 of van der Vaart (1998), this suffices to ensure that the

remainder Rn,γ in the LAN expansion (8) satisfies Rn,γ(hn) → 0 for any hn → h.

This is sufficient for the ULAN expansion in Assumption S2.1 to hold (with the

usual Euclidean metric). Provided the remainder of this condition holds, the

asymptotic equicontinuity required by Lemma 3.1 holds for any compact K ⊂ Hγ

(Proposition S2.2).

Despite the close link this compact asymptotic equicontinuity in total variation

requirement has with the ULAN condition, it is stronger than necessary for the

results in Corollaries 3.3, 3.4 and may require a relatively strong pseudometric on

Hγ. The following Lemma provides a weaker condition at the expense of a more

complicated statement.

Lemma 3.2: Suppose the conditions of Theorem 3.1 hold and that (Hγ, d) (resp.

(Hγ,0, d)) is a pseudometric space. Let δ be metrise weak convergence on the space

of probability measures on (R,B(R)) and let Qn,γ,h be the pushforward measure of

Pn,γ,h under Ŝn,θ. Suppose that on a subset K ⊂ Hγ (resp. K ⊂ Hγ,0),

(i) (h 7→ Qn,γ,h)n∈N is asymptotically equicontinuous in δ;

(ii) (h 7→ Pn,γ,h(r̂n,θ = r))n∈N is asymptotically equicontinuous;

(iii) (h 7→ Pn,γ,h(Λ̂n,θ = 0))n∈N is asymptotically equicontinuous;

then (h 7→ Pn,γ,hψn,θ)n∈N is asymptotically equicontinuous on K.
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Remark 3.6: In Lemma 3.2, Conditions (i) and (ii) are required only in the case

where r ≥ 1 whilst Condition (iii) is required only in the case where r = 0. This

is evident from inspection of its proof.

The case with r = 0 Throughout the results in this section a distinction has

been made between the case where r = rank(Ĩγ) ≥ 1 and where r = 0. This

distinction is not artificial: it appears in the proofs of the above results, which

require different arguments for the case with r = 0, and will resurface in the

subsequent section on power bounds. As will be presented there, when the moment

conditions gn,γ are chosen optimally and r = 0 the model contains no information

(asymptotically) about deviations from the null in any direction τ . This is in

contrast to the “intermediate” case where 0 < r < dθ. In such a case, whilst

no locally regular estimator of θ can exist (Chamberlain, 1986), the model does

contain information about deviations from the null in certain directions τ , which

can be exploited by C(α) - style tests of the proposed form.

3.3 Local asymptotic power bounds

The preceding section established the local regularity of C(α) - style tests based

on moment functions gn,γ satisfying certain asymptotic orthogonality conditions.

Thus far, nothing has been said about the choice of gn,γ beyond these orthogonality

requirements.

The choice of the functions gn,γ is fundamentally what determines the attain-

able power of the corresponding test. As such, they ought to be chosen such that

the resulting test has good power against alternatives of interest. One natural

choice is the efficient score function:

˜̀
n,γ := Π

[
˙̀
n,γ

∣∣∣{∆n,γ(0, b) : b ∈ Bγ}⊥
]

(13)

where ˙̀
n,γ are elements of L0

2(Pn,γ) such that ∆n,γ(τ, 0) = ˙̀′
n,γτ for each τ ∈ Rdθ .25

It is well known that tests based on the efficient score function have certain opti-

mality properties in regular models when the observations are (a) i.i.d. (cf. Section

25.6 van der Vaart, 1998) or (b) when the information operator is boundedly in-

vertible Choi et al. (1996). I show below that this result holds without requiring

(a) or (b). Moreover, a generalised version of this result continues to hold for the

class of non-regular models considered in this paper.

25That is, if e1, . . . , edθ are the canonical basis vectors in Rdθ , the i-th element of ˙̀
n,γ is

∆n,γ(ei, 0).
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In particular, under conditions on the limit variance matrix Vγ which appears

in Assumption 3.2, I show that,

(i) If θ ∈ R, ψn,θ achieves the local asymptotic power bound for uniformly most

powerful asymptotically unbiased tests;

(ii) If θ ∈ Rdθ and 1 ≤ r ≤ dθ, ψn,θ posseses a local asymptotic maximin

optimality property and a local asymptotic minimal regret property.

(i) is essentially classical as dθ = 1 implies that r ∈ {0, 1} and there is no

“intermediate” case between the regular and fully degenerate cases. This case

is included partially for completeness given the importance of testing a scalar

parameter in practical applications and partially because the required conditions

are weaker than in other treatments in the literature, as noted above.

(ii) generalises the classical results on (local asymptotic) maximin optimality

and minimal regret to encompass also the non – regular case. In the (regular) case

where r = dθ, the classical results are recovered. The results here establish that

the test is a good choice if the researcher does not have particular alternatives in

mind against which they wish to direct power.26

I also formally demonstrate the unsurprising result that if r = 0, then no

test with correct asymptotic size has non-trivial asymptotic power against any

sequence of local alternatives.

The results in this section are derived using the limits of experiments framework

of Le Cam (e.g. Strasser, 1985; Le Cam, 1986; Le Cam and Yang, 2000; van der

Vaart, 1998). In particular, I show that the local experiments consisting of the

measures Pn,γ,h for h ∈ Hγ converge weakly to a limit experiment which has a close

relationship to a Gaussian shift experiment on the Hilbert space formed by taking

the quotient of Hγ under the seminorm induced by the variance function σ(h).

The relation between these experiments is sufficiently tight that power bounds

derived in the latter transfer to the former.27

The inner – product structure For this development the space Hγ is required

to be linear and I will therefore assume that Bγ (and hence Hγ) is a linear space.28

26If the researcher does have particular alternatives in mind, tests can be constructed which
direct power towards these alternatives (cf. Bickel, Ritov, and Stoker, 2006).

27That the local experiments do not converge to the mentioned Gaussian shift experiment is
essentially a purely technical point: the Gaussian shift experiment is defined on a different
parameter space to the local experiments, whilst (weak) convergence of experiments in the
sense of Le Cam (1986) is defined for experiments with the same parameter space.

28In the preceding sections Hγ was required only to be a subset of a linear space containing the
zero vector.
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Then, under LAN, there exists a positive semi-definite symmetric bilinear form

〈· , ·〉γ on Hγ = Rdθ ×Bγ such that

σγ(h) = 〈h , h〉γ .

This can be seen as a by-product of the following Lemma.

Lemma 3.3: Suppose Assumption 3.1 holds and Bγ is a linear space. Let ∆γ be

the square integrable stochastic process defined on Hγ such that

∆n,γh
Pn,γ
 ∆γh.

Then ∆γ is a mean-zero Gaussian linear process with covariance kernel Kγ, where

Kγ(h, g) := lim
n→∞

Pn,γ [∆n,γh∆n,γg] .

For h, g ∈ Hγ, setting 〈h , g〉γ := Kγ(h, g), where Kγ is the covariance kernel

of ∆γ yields a positive semi-definite symmetric bilinear form. Let ‖ · ‖γ denote the

seminorm induced by 〈· , ·〉γ on Hγ and note that with this definition ‖h‖2
γ = σγ(h).

Remark 3.7: Suppose that 〈· , ·〉 is an inner product on Hγ = Rdθ × Bγ. The

existence of the positive semi-definite symmetric bilinear form 〈· , ·〉γ is equivalent

to the existence of a bounded, self-adjoint, positive semi-definite linear operator

Bγ such that 〈h , h〉γ = 〈h , Bγh〉 for h ∈ Hγ (cf. Choi et al., 1996, p. 845).

With this established, define Hγ as the quotient of Hγ by the subspace on

which the semi-norm ‖ · ‖γ vanishes:

Hγ := Hγ / {h ∈ Hγ : ‖h‖γ = 0}. (14)

which is an inner product space when equipped with the natural inner product

induced by 〈· , ·〉γ, which I also denote by 〈· , ·〉γ. Elements of the quotient space

Hγ are not elements of Hγ but sets of such elements (“cosets”). To emphasise

this distinction, often the coset corresponding to a representative element h ∈ Hγ

is denoted by [h], a convention which is followed here. Further details on this

construction are given in section S2.2 of the supplementary material.29

29Analogous comments apply to the related space Hγ,1, defined below. In both cases, to avoid
an excess of parentheses / brackets, if h = (τ, b) I will write either [h] or [τ, b], rather than
[(τ, b)].
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The limit experiment The weak limit of the sequence of experiments consist-

ing of the measures Pn,γ,h can be obtained by standard results on weak convergence

of experiments.

Proposition 3.2: Suppose that Assumption 3.1 holds and that Bγ is a linear space

and define the sequence of experiments

En,γ := (Wn,B(Wn), (Pn,γ,h : h ∈ Hγ)) .

Let ∆γ be the Gaussian process defined in Lemma 3.3 and let (Ω,F ,P) be the

probability space on which it is defined. Define the experiment Eγ := (Ω,F , (Pγ,h :

h ∈ Hγ)) according to

Pγ,0 := P,
dPγ,h
dPγ,0

= exp

(
∆γh−

1

2
‖h‖2

γ

)
.

Then En,γ converges weakly to Eγ.

Under the additional assumption that Hγ is separable, this limiting experiment

is, at least for the purpose of testing, essentially equivalent to a Gaussian shift on

(Hγ, 〈· , ·〉γ), in the sense given by the Proposition below.

Assumption 3.4:Bγ is a linear space and Hγ as defined in (14) is separable.

Proposition 3.3: Suppose that Assumptions 3.1 and 3.4 hold. If Eγ is the ex-

periment defined in Proposition 3.2, there is a Gaussian shift experiment Gγ :=

(Ω,F , (G[h] : [h] ∈ Hγ)) such that

dTV (Pγ,h, G[h]) = 0, h ∈ Hγ.

The efficient information matrix I next define the efficient information ma-

trix, Ĩγ, via an orthogonal projection in the Hilbert space Hγ, the completion of

Hγ. Ĩγ determines the power bounds for tests of τ = 0. In the i.i.d. case Ĩγ is

the covariance matrix of the efficient score function for a single observation (as

shown in Section 3.4 below) and thus this definition coincides with the usual one

(cf. van der Vaart, 1998, Section 25.4).

Let ‖τ‖ := infb∈Bγ ‖(τ, b)‖γ, which defines a semi-norm on Rdθ . Equipping

the quotient Hγ,1 := Rdθ / {τ ∈ Rdθ : ‖τ‖ = 0} with the natural norm induced by

‖ · ‖ (which I will also denote by ‖ · ‖) turns it into a normed space.30 Define

30See Section S2.2 for further details on this construction.
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the linear map π1 : Hγ → Hγ,1 as π1([τ, b]) := [τ ]. π1 is continuous: suppose

that [hn] = [τn, bn] → [0]. Then π1[hn] = [τn] → [0] = π1[0], since ‖[τn]‖ =

infb∈Bγ ‖(τn, b)‖γ → 0. As such there is a unique continuous extension of π1 to Hγ,

which will henceforth also be called π1.

Since π1 is continuous, its kernel kerπ1 = π−1
1 ({[0]}) is closed. Let Π be the

orthogonal projection onto kerπ1 and define Π⊥ := I−Π, the orthogonal projection

onto [kerπ1]⊥. By the Pythagorean theorem

‖[h]‖2
γ = ‖Π⊥[h]‖2

γ + ‖Π[h]‖2
γ.

Let ei be the i-th canonical basis vector in Rdθ and define the efficient infor-

mation matrix Ĩγ as the dθ × dθ matrix with i, j-th entry Ĩγ,ij given by

Ĩγ,ij =
〈
Π⊥[ei, 0] , Π⊥[ej, 0]

〉
γ
.

The next Lemma records the relationship between Ĩγ and (a) the subspace

{τ ∈ Rdθ : ‖τ‖ = 0}, (b) the norm on Hγ,1.

Lemma 3.4: Under Assumption 3.4, ‖τ‖2 = τ ′Ĩγτ and ker Ĩγ = {τ ∈ Rdθ : ‖τ‖ =

0}.

An alternative expression for Ĩγ, based on the limiting Gaussian process of

Lemma 3.3, is given in the following Lemma.

Lemma 3.5: Suppose that Assumption 3.1 holds, Bγ is a linear space and suppose

that the Gaussian process ∆γ as defined in Lemma 3.3 is defined on the probability

space (Ω,F ,P). Let T := {∆γ(h) : h = (0, b) ∈ Hγ} ⊂ L2(P). For ei the i-th

canonical basis vector in Rdθ , let ∆̃γ(ei, 0) := Π
[
∆γ(ei, 0)

∣∣T ⊥]. Then,

E
[
∆γ(ei, 0)∆̃γ(ej, 0)

]
= E

[
∆̃γ(ei, 0)∆̃γ(ej, 0)

]
= Ĩγ,ij.

With this setup local asymptotic power bounds can be readily obtained via

known results for the Gaussian shift experiment Gγ.

3.3.1 Two-sided tests of a scalar parameter

The following Theorem records the power bound for (locally asymptotically) un-

biased two-sided tests of a scalar θ. As previously mentioned, in the case where

dθ = 1, the matrix Ĩγ has rank either 0 or 1 and there is no intermediate case.

Theorem 3.2 handles both cases simultaneously.
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Theorem 3.2: Suppose that assumptions 3.1 and 3.4 hold and dθ = 1. Let φn :

Wn → [0, 1] be a sequence of locally asymptotically unbiased level α tests of H0 :

τ = 0 against H1 : τ 6= 0. That is,

lim sup
n→∞

Pn,γ,hφn ≤ α, h ∈ Hγ,0

and

lim inf
n→∞

Pn,γ,hφn ≥ α, h ∈ Hγ,1.

Then, for any h ∈ Hγ,

lim sup
n→∞

Pn,γ,hφn ≤ 1− Φ
(
zα/2 − Ĩ1/2

γ τ
)

+ 1− Φ
(
zα/2 + Ĩ1/2

γ τ
)
,

where zα is the 1−α quantile and Φ the CDF of the standard normal distribution.

That the two-sided power bound of Theorem 3.2 is achieved by the test ψn,θ

provided Σγ,21V
†
γ Σγ,21 = Ĩγ and r = 1 is an immediate consequence of Theorem

3.1.31

Corollary 3.5: Suppose that assumptions 3.1, 3.2 and 3.3 hold with Σγ,21V
†
γ Σ′γ,21 =

Ĩγ and r = 1. Then, for h ∈ Hγ,

lim
n→∞

Pn,γ,hψn,θ = 1− Φ
(
zα/2 − Ĩ1/2

γ τ
)

+ 1− Φ
(
zα/2 + Ĩ1/2

γ τ
)
.

3.3.2 Tests for multivariate parameters

Unlike in the scalar case, when dθ > 1 there is a truly intermediate case where:

0 < rank(Ĩγ) < dθ. Here I permit 0 < rank(Ĩγ) ≤ dθ and establish two results each

of which contains the corresponding full rank case as a special case (rank(Ĩγ) = dθ).

The first is a maximin power bound for potentially non – regular models, which

shows that the local asymptotic maximin power over h = (τ, b) with τ ′Ĩγτ ≥ a

of any test of τ = 0 which is asymptotically of level α is bounded above by

1 − P (χ2
r(a) ≤ cr). In the case that τ ∈ ker Ĩγ, one has that τ ′Ĩγτ = 0 and the

result demonstrates that no test can have non-trivial local asymptotic maximin

power against such alternatives. Following this, I establish a related result: the

most stringent test (in the sense of Wald, 1943) in the limit experiment has the

same power function as the maximin test, and no sequence of asymptotic level

α tests can correspond to a test in the limit experiment with smaller regret (as

31Typically the moment conditions gn,γ will be chosen such that Σγ,21 = Vγ = Ĩγ in order to
achieve this equality. See Section 3.3.5 below.
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defined in equation (18) below). I give conditions under which the test sequence

ψn,θ attains these power bounds.

Maximin optimal testing

Theorem 3.3: Suppose that assumptions 3.1 and 3.4 hold and r := rank(Ĩγ) ≥ 1.

Let φn :Wn → [0, 1] be a sequence of tests such that for each h = (0, b) ∈ Hγ,0

lim sup
n→∞

Pn,γ,hφn ≤ α

Let cr the 1− α quantile of a χ2
r random variable. Then, if a ≥ 0,

lim sup
n→∞

inf
{
Pn,γ,hφn : h = (τ, b) ∈ Hγ, τ

′Ĩγτ ≥ a
}
≤ 1− P(χ2

r(a) ≤ cr). (15)

Similarly to the two-sided case, that the power bound on the right hand side

of (15) is achieved by the test ψn,θ provided Σγ,21V
†
γ Σγ,21 = Ĩγ and rank(Vγ) =

rank(Ĩγ) = r ≥ 1 is a consequence of Theorem 3.1.32 In order that the test be

asymptotically maximin over a compact subset Ka of {h = (τ, b) ∈ Hγ : τ ′Ĩγτ ≥
a}, with a = inf{τ ′Ĩγτ = a : h ∈ Ka}, some uniformity (and hence additional

structure) is required. In particular, I suppose that (Hγ, d) is a pseudometric space

for some pseudometric d. I emphasise that this pseudometric need not be related

to ‖ · ‖γ as defined just preceding Remark 3.7:

Remark 3.8: The pseudometric d placed on Hγ in the second part of Corollary

3.6 and in Lemmas 3.1, 3.6 need not be related to the seminorm ‖ · ‖γ.

Corollary 3.6: Suppose that assumptions 3.1, 3.2 and 3.3 hold with Σγ,21V
†
γ Σ′γ,21 =

Ĩγ and r = rank(Ĩγ) = rank(Vγ) ≥ 1. Then for h = (τ, b) ∈ Hγ

lim
n→∞

Pn,γ,hψn,θ = 1− P
(
χ2
r (a) ≤ cr

)
, a = τ ′Ĩγτ. (16)

Additionally, suppose that (Hγ, d) is a metric space and let Ka be a compact subset

of {h = (τ, b) ∈ Hγ : τ ′Ĩγτ ≥ a} such that a = inf{τ ′Ĩγτ : h = (τ, b) ∈ Ka}. If the

functions h 7→ Pn,γ,hψn,θ are asymptotically equicontinuous on Ka,

lim
n→∞

inf
h∈Ka

Pn,γ,hψn,θ = 1− P
(
χ2
r (a) ≤ cr

)
. (17)

A sufficient condition for the asymptotic equicontinuity required for the second

32See footnote 31.
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part of Corollary 3.6 based on an asymptotic equicontinuity in total variation

requirement was given as Lemma 3.1 in the previous section. A version based on

the weaker conditions used in Lemma 3.2 is given below, adapted to the present

context (cf. Remark 3.6).

Lemma 3.6: Suppose the conditions of the first part of Corollary 3.6 hold and that

(Hγ, d) is a pseudometric space. Let δ be any metric on the space of probabil-

ity measures which metrises weak convergence and let Qn,γ,h be the pushforward

measure of Pn,γ,h under Ŝn,θ. Suppose that on a compact subset K ⊂ Hγ,

(i) the functions h 7→ Qn,γ,h are asymptotically equicontinuous in δ;

(ii) the functions h 7→ Pn,γ,h(r̂n,θ = r) are asymptotically equicontinuous,

then h 7→ Pn,γ,hψn,θ are asymptotically equicontinuous on K.

Most stringent tests The last power optimality concept I consider is based on

the concept of stringency (due to Wald, 1943) and delivers a similar message.33

Let C be the class of all tests of level α for the hypothesis K0 : τ = 0 against

K1 : τ 6= 0 in the experiment Eγ. That is, if φ ∈ C then Pγ,hφ ≤ α for all

h = (0, b) ∈ Hγ,0. Define π?(h) := supφ∈C Pγ,hφ for all h ∈ Hγ,1 and define the

regret of a test φ ∈ C as

R(φ) := sup {π?(h)− Pγ,hφ : h ∈ Hγ,1} . (18)

A test φ ∈ C is called most stringent at level α if it minimises R(φ) over C.

Theorem 3.4: Suppose that Assumptions 3.1 and 3.4 hold and r = rank(Ĩγ) ≥ 1.

The most stringent level α test of K0 : τ = 0 against K1 : τ 6= 0 in Eγ, ψ, has

power function

π(h) := Pγ,hψ = 1− P(χ2
r(a) ≤ cr), a = τ ′Ĩγτ, h = (τ, b). (19)

The first part of Corollary 3.6 provides conditions under which this is the

asymptotic power of ψn,θ under the sequence of local alternatives Pn,γ,h. The

following Proposition demonstrates that if πn : Hγ → [0, 1] is a sequence of power

functions corresponding to tests in the experiments En,γ of asymptotic size α, then

33The development here is based on Section 9, Chapter 11 in Le Cam (1986); in particular
compare Theorem 3.4 with Corollary 2 of (Le Cam, 1986, Section 9, Chapter 11) which treats
the case of a Gausian shift experiment indexed by a Euclidean space.
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each cluster point of πn corresponds to a test φ in the limit experiment Eγ whose

regret is bounded below by that of the most stringent test, ψ.34

Proposition 3.4: Suppose that Assumptions 3.1 and 3.4 hold and that r = rank(Ĩγ) ≥
1. Let φn :Wn → [0, 1] be a sequence of tests such that for each h = (0, b) ∈ Hγ,0,

lim sup
n→∞

Pn,γ,hφn ≤ α.

For each h ∈ Hγ, let πn(h) := Pn,γ,hφn. If π is a cluster point of πn (with respect

to the topology of pointwise convergence on [0, 1]Hγ), then π is the power function

of a test φ in Eγ where R(φ) ≥ R(ψ).

3.3.3 The degenerate case

Finally, I record a negative, if unsurprising, result. If the efficient information

matrix Ĩγ is zero, no test with correct asymptotic size has non – trivial asymptotic

power against any sequence of local alternatives.

Proposition 3.5: Suppose that assumptions 3.1 and 3.4 hold and r := rank(Ĩγ) =

0. Let φn :Wn → [0, 1] be a sequence of tests such that for each h = (0, b) ∈ Hγ,0

lim sup
n→∞

Pn,γ,hφn ≤ α.

Then for h ∈ Hγ,

lim sup
n→∞

Pn,γ,hφn ≤ α.

3.3.4 Discussion of the power bounds

There are a number of important aspects to highlight regarding the interpretation

of the power bounds obtained in the preceding subsections.

Optimality in multivariate testing problems Just as in the classical finite –

dimensional case, the maximin optimality and stringency results presented across

Theorems 3.3, 3.4, Corollary 3.6 and Proposition 3.4 should not be taken in an

absolute sense. Nevertheless, they seem reasonable if the researcher does not have

directions against which they wish to direct power a priori. If there are alternatives

of particular interest, then one could construct a locally regular test by utilising

34The space of functions from Hγ to [0, 1] is equipped with the topology of pointwise convergence.
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the same moment conditions gn,γ but weighting them differently, similarly to as

in Bickel et al. (2006).

The intermediate case with 1 ≤ rank(Ĩγ) < dθ A key benefit of these multi-

variate power results is that they apply equally to cases where the efficient infor-

mation matrix has reduced rank. Such a scenario can occur for various reasons.

Firstly the model may simply not identify all parameters of interest θ (e.g. under-

identification). Secondly some (but not all) of the elements of θ may be weakly

identified (e.g. weak underidentification). The power results above apply in either

of these cases.

There are a number of other papers which provide inference results in similarly

rank deficient settings, including Rotnitzky, Cox, Bottai, and Robins (2000); Han

and McCloskey (2019); Andrews and Guggenberger (2019); Amengual, Bei, and

Sentana (2023). Unlike the present paper, none of these papers consider optimal

testing in this setting.

Alternative approximations In the case where rank(Ĩγ) = 0, Proposition

3.5 reveals that the LAN approximation in 3.1 is, in a certain sense, the wrong

approximation: it does not provide any useful way of (asymptotically) comparing

tests, whilst other approximations might provide valuable comparisons.

Alternative approximations have been explored in, for example, the IV model

(e.g. Moreira, 2009) and semiparametric GMM models by Andrews and Mikusheva

(2022, 2023). For example, in the IV case Moreira (2009) considers alternatives

which are at a fixed distance from the true parameter, rather than in a shrinking
√
n-neighbourhood. Whether such an approach can be generalised to general

semiparametric models is an interesting question for future research.

3.3.5 Attaining the power bounds

I now demonstrate that provided that gn,γ is equal to the efficient score function,
˜̀
n,γ as defined in (13) up to an error which vanishes in mean – square, the C(α) –

style test based on gn,γ attains the power bounds established in Section 3.3. This

result is well known in two special cases: (i) the regular i.i.d. case (cf. Section

25.6 in van der Vaart (1998); Corollary 3.8 below) and (ii) when the information

operator Bγ in Remark 3.7 is positive – definite with the information operator

for η, Bγ,22, boundedly invertible (Choi et al., 1996). Here I provide a general

version of the result which does not require (i) or (ii). In particular, I show that
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Σγ,21V
†
γ Σγ,21 = Ĩγ, which suffices given Theorem 3.1 and the power bounds in

Theorems 3.2, 3.3 and 3.4.

Theorem 3.5: Suppose that Assumptions 3.1, 3.2, 3.3 and 3.4 hold and that gn,γ =
˜̀
n,γ. Then Σγ,21 = Vγ = Ĩγ, hence Σγ,21V

†
γ Σγ,21 = Ĩγ.

Remark 3.9: More generally, if Assumptions 3.1, 3.2, 3.3, 3.4 hold and

limn→∞ Pn,γ

∥∥∥gn,γ − ˜̀
n,γ

∥∥∥2

= 0, then

lim
n→∞

〈
˙̀
n,γ , g

′
n,γ

〉
= Σγ,21 = Ĩγ = Vγ = lim

n→∞

〈
gn,γ , g

′
n,γ

〉
,

hence Σγ,21V
†
γ Σγ,21 = Ĩγ.

3.4 The smooth i.i.d. case

In this section we provide lower level conditions which are sufficient for some of

the high level conditions in the in the benchmark case for semiparametric theory:

where our data observations are i.i.d. and the model is “smooth”. The discussion

here is intended to (a) demonstrate that the results of the foregoing section apply to

a large range of semiparametric models that are used in practice and (b) facilitate

the application of these results. It should not be interpreted to suggest that the

results of the foregoing section do not apply to situations with dependent or non-

identically distributed data. They often do, though sufficient conditions may be

more complex to verify.

Assumption 3.5 (Product measures): Suppose that W (n) = (W1, . . . ,Wn) ∈∏n
i=1W =

Wn and that each of the probability measures Pn,γ,h is product measure: Pn,γ,h =

P n
γ,h. Each measure in {Pγ : γ ∈ Γ} is dominated by a σ-finite measure ν.

In this i.i.d. setting, it is well known that quadratic mean differentiability of

the square root of the density pγ = dPγ
dν

is sufficient for LAN. In particular, if

lim
n→∞

∫ [√
n
(√

pγ,hn −
√
pγ
)
− 1

2
Aγh
√
pγ

]2

= 0, (20)

for a measurable Aγh : W → R, then with ∆n,γh := 1√
n

∑n
i=1[Aγh](Wi) the

remainder term Rn,γ in the LAN expansion satisfies Rn,γ(hn)
Pγ−→ 0 (see e.g. van der

Vaart and Wellner, 1996, Lemma 3.10.11). This can be used to establish either the

LAN condition required by Assumption 3.1 by taking hn = h for each n ∈ N or
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the ULAN condition as in Assumption S2.1 by considering convergent sequences

hn → h. Sufficient conditions for (20) (at least with hn = h) are well known: see

e.g. Lemma 7.6 in van der Vaart (1998).

In this case, the variables Aγh typically take the form

[Aγh](Wi) = τ ′ ˙̀γ(Wi) + [Dγb](Wi), h = (τ, b) ∈ Hγ, (21)

where ˙̀
γ is a vector of functions in L0

2(Pγ) (typically the partial derivatives of

θ 7→ log pγ at γ) and Dγ : lin Bγ → L0
2(Pγ) a bounded linear map. Showing that

condition (20) holds (with hn = h) is typically the most straightforward way to

verify the quadratic approximation to the log likelihood required by Assumption

3.1. If Aγ : lin Hγ → L2(Pγ) is a bounded linear map, then the remainder of

Assumption 3.1 also follows directly.

Lemma 3.7: Suppose that Assumption 3.5 holds and for each h ∈ Hγ equation

(20) holds (with hn = h) with Aγ : lin Hγ → L2(Pγ) a bounded linear map. Then

Assumption 3.1 holds with Pn,γ,h = P n
γ,h/
√
n

and [∆n,γh](W (n)) = GnAγh.

When the data are i.i.d., the the joint convergence of (∆n,γh, g
′
n,γ) as in As-

sumption 3.2 is particularly straightforward to verify. As noted in the discussion

around (10), it can be ensured that the orthogonality condition holds exactly, by

performing an orthogonal projection. The convergence required by Assumption

3.2 then follows straightforwardly. As with [∆n,γh](W (n)) = GnAγh, in the i.i.d.

setting typically gn,γ will have the form gn,γ(W
(n)) = Gngγ.

Lemma 3.8: Suppose that Assumptions 3.5 and 3.1 hold, with ∆n,γh = 1√
n

∑n
i=1 Aγh,

where Aγh is as in equation (21). Additionally suppose that gγ ∈ {Dγb : b ∈ Bγ}⊥ ⊂
L0

2(Pγ). Then Assumption 3.2 holds with gn,γ(W
(n)) := Gngγ.

Corollary 3.7: In the setting of Lemma 3.8, if fγ ∈ L0
2(Pγ) and gγ is the orthog-

onal projection of fγ onto the orthogonal complement of {Dγb : b ∈ Bγ} ⊂ L2(Pγ),

then Assumption 3.2 holds with gn,γ(W
(n)) := Gngγ.

In this i.i.d. setting, the power bounds of section 3.3 can be attained by

choosing gγ as the efficient score for a single observation ˜̀
γ. This follows from the

following corollary which shows that Σγ,21 = Vγ = Ĩγ, hence Σγ,21V
†
γ Σγ,21 = Ĩγ as

required for the C(α)-style test based on gn,γ to obtain the power bounds.

Corollary 3.8: In the setting of Corollary 3.8, if fγ = ˙̀
γ, then Σγ,21 = Vγ = Ĩγ.
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4 Examples

I will now illustrate the application of the general results in Section 3 to the single

index and IV models (introduced as Examples 2.1 and 2.2 respectively). In each

example I construct a locally regular C(α) test and conduct a simulation study to

investigate its finite sample performance. As each of these models is well known,

in the main text I work under high level conditions to avoid repeating standard

regularity conditions; lower level sufficient conditions are given in section S3 of

the supplementary material.

4.1 Single index model

Consider the single index (regression) model (SIM) of Example 2.1: the researcher

observes n i.i.d. copies of W = (Y,X) such that

Y = f(X1 +X ′2θ) + ε, E[ε|X] = 0, (22)

for X = (X1, X2) ∈ RK a vector of covariates such that (ε,X) ∼ ζ for some

density ζ (with respect to some σ-finite measure ν) and an unknown, continuously

differentiable link function f : R→ R, which may be required to satisfy additional

shape and smoothness constraints.

Chapter 2 of Horowitz (2009) provides an overview of this model. The efficient

score and semiparametric efficiency bound for this model were obtained by Newey

and Stoker (1993). Ichimura (1993) demonstrated that θ could be estimated by

minimising a semiparametric least squares criterion and that, under homoskedas-

ticity, this yields an efficient estimator. More recently, the estimation of θ subject

to shape constraints on f has been considered (e.g. Kuchibhotla, Patra, and Sen,

2023).

I will consider two cases in which potentially non-standard inference problems

may arise in this model. Firstly, I will consider the case where θ is potentially

weakly identified due to f being close to flat, i.e. f ′ ≈ 0.35 Secondly I will

consider the case where inference on θ is conducted with f estimated subject to

a monotonicity restriction which is close to binding. As the latter case imposes

a different restriction on the potential f functions, I distinguish these cases by

refering to the former as “Model A” and the latter as “Model B”.

35That θ is unidentified if f ′ = 0 is clear from (22); cf. Theorem 2.1 in Horowitz (2009).
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Model setup Both models are accomodated simultaneously in the following

development. The model parameters are γ = (θ, η) where η = (f, ζ) and the

density of one observation with respect to a σ-finite measure ν̃ is

pγ(W ) := ζ(Y − f(Vθ), X), Vθ := X1 +X ′2θ. (23)

Let Pγ denote the corresponding probability measure. The parameters γ are re-

stricted by the following Asssumption. Let X be the support of X, D a convex

open set containing {x1 + x′2θ : θ ∈ Θ, x ∈ X }, C1
b (D) the class of real functions

which are bounded and continuously differentiable with bounded derivative on D

and I (D) the set of monotone increasing functions f : D → R.

Assumption 4.1: The parameters γ = (θ, f, ζ) ∈ Γ = Θ×F ×Z where

(i) Θ is an open subset of Rdθ ;

(ii) F = C1
b (D) (Model A) or F = C1

b (D) ∩I (D) (Model B);

(iii) ζ ∈ Z where

Z :=

{
ζ ∈ L1(R1+K , ν) : ζ ≥ 0,

∫
R×X

ζ dν = 1, if (ε,X) ∼ ζ then (24) holds

}
,

with L1(A, ν) is the space of ν – integrable functions on A and

E[ε|X] = 0, E[ε2] <∞, E[(|ε|2+ρ+|φ(ε,X)|2+ρ+1)‖X‖2+ρ] <∞, E[XX ′] � 0,

(24)

for φ(ε,X) the derivative of e 7→ log ζ(e,X).

Additionally, for each γ ∈ Γ, pγ is a probability density with respect to some

σ-finite measure ν̃.

That pγ is a valid probability density holds automatically (with ν̃ = ν) when

ε|X is continuously distributed, see Appendix section S3.1.2.

Local Asymptotic Normality Consider local perturbations Pγ+ϕn(h) for

ϕn(h) =

(
τ√
n
, ϕn,2(b1, b2)

)
, h = (τ, b1, b2) ∈ Hγ = Rdθ ×Bγ,1 ×Bγ,2. (25)

Bγ,1 is the set which indexes the perturbations to f and consists of a subset of the

continuously differentiable functions b1 : D → R. Bγ,2 indexes the perturbations

to ζ and consists of a subset of the functions b2 : R1+K → R which are continuously
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differentiable in their first argument and satisfy36

E[b2(ε,X)] = 0, E[εb2(ε,X)|X] = 0, E[b2(ε,X)2] <∞ for (ε,X) ∼ ζ. (26)

The precise form of ϕn,2 is left unspecified. It is required only that the resulting

local perturbations satisfy the LAN property below.37

Assumption 4.2: Suppose that Wn =
∏n

i=1 R1+K and Pn,γ,h := P n
γ+ϕn(h) � νn for

all γ ∈ Γ and h ∈ Hγ and are such that Assumption 3.1 holds with

log
pn,γ,h
pn,γ,0

=
1√
n

n∑
i=1

[Aγh](Wi)−
1

2
σγ(h) + oPn,0(1), h ∈ Hγ, (27)

where σγ(h) =
∫

[Aγh]2 dPγ and [Aγh](Wi) is as in equation (21) with

˙̀
γ(W ) := −φ(Y − f(Vθ), X)f ′(Vθ)X2

[Dγb](W ) := −φ(Y − f(Vθ), X)b1(Vθ) + b2(Y − f(Vθ), X).

The test statistic In order to construct the test, I set gn,γ = Gngγ for:

gγ(W ) := ω(X)(Y − f(Vθ))f
′(Vθ)

(
X2 −

E[ω(X)X2|Vθ]
E[ω(X)|Vθ]

)
, (28)

for a known weighting function ω : RK → [ω,ω] ⊂ (0,∞).38 To verify the joint

convergence conditions in Assumption 3.2 I additionally assume that (under Pγ)

E[ε2|X] ≤ C <∞, E [εφ(ε,X)|X] = −1, a.s. . (29)

The latter condition can be shown to hold under Assumption 4.1 and additional

regularity conditions.39

36A heuristic motivation for these restrictions is given in Appendix section S3.1.2.
37Specific examples of ϕn,2(b) and Bγ for which this condition is satisfied are given in Appendix

section S3.1.2.
38This coincides with the efficient score function ˜̀

γ (as derived by Newey and Stoker, 1993),

˜̀
γ(W ) = ω̃(X)(Y − f(Vθ))f

′(Vθ)

(
X2 −

E[ω̃(X)X2|Vθ]
E[ω̃(X)|Vθ]

)
, ω̃(X) := E[ε2|X]−1,

in the (typically infeasible) case with ω = ω̃.
39In particular, if for all x ∈X with positive marginal density ζX one has lim|e|→∞ |e|ζ(e, x) = 0,

then integrating by parts yields that for almost all such x,∫
eφ(e, x)

ζ(e, x)

ζX(x)
de =

∫
e
ζ ′(e, x)

ζX(x)
de = ζX(x)−1

[
lim
e→∞

eζ(e, x)− lim
e→−∞

eζ(e, x)

]
−
∫
ζ(e, x)

ζX(x)
de = −1,
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Proposition 4.1: Suppose Assumptions 4.1 and 4.2 hold and (under Pγ) (29)

holds. Then Assumption 3.2 holds with gn,γ = Gngγ for gγ as in (28).

To form a feasible ĝn,θ, estimators of f, f ′, Z1 and Z2 are required for Z1(V ) :=

E[ω(X)X2|V ] and Z2(V ) := E[ω(X)|V ]. To keep the notation concise let Z3 := f ,

Z4 := f ′ Define also Z0 := Z1/Z2 and correspondingly Ẑ0,n,i := Ẑ1,n,i/Ẑ2,n,i. The

estimator of gn,γ is ĝn,θ
(
W (n)

)
:= 1√

n

∑n
i=1 ĝn,θ,i with

ĝn,θ,i := ω(Xi)(Yi − f̂n,i(Vθ,i))f̂ ′n,i(Vθ,i)
(
X2,i − Ẑ1,n,i(Vθ,i)/Ẑ2,n,i(Vθ,i)

)
. (30)

Let V̌n,θ := 1
n

∑n
i=1 ĝn,θ,iĝ

′
n,θ,i. If Vγ is known to have full rank then let V̂n,θ := V̌n,θ,

Λ̂n,θ := V̂ −1
n,θ and r̂n,θ = rank(Vγ). Else form the estimator V̂n,θ according to the

construction in subsection S2.1 using a truncation rate νn. Λ̂n,θ is then taken to

be V̂ †n,θ and r̂n,θ := rank(V̂n,θ). Under the following condition, these estimators

satisfy the conditions of Assumption 3.3.

Assumption 4.3: Suppose that equation (29) holds (under Pγ), X has compact

support, E[ε4] < ∞, and with Pγ probability approaching one each Rl,n,i ≤ rn =

o(n−1/4) where

Rl,n,i :=

[∫ ∥∥∥Ẑl,n,i(v)− Zl(v)
∥∥∥2

dVγ(v)

]1/2

,

where Vγ the law of Vθ under Pγ for l = 1, . . . , 4 and where Ẑl,n,i(Vθ,i) is σ({Vθ,i}∪
Cn,j) measurable where j = 1 if i > bn/2c and 2 otherwise, with Cn,1 := {Wj : j ∈
{1, . . . , bn/2c}} and Cn,2 := {Wj : j ∈ {bn/2c+ 1, . . . , n}}.

The rate conditions in Assumption 4.3 can be satisfied by e.g. sample – split

series estimators under standard smoothness conditions; see e.g. Belloni, Cher-

nozhukov, Chetverikov, and Kato (2015). Appropriate estimators for f and f ′

may differ between Model A and Model B: in Model B one may wish to impose

the restriction that f is monotonically increasing in the estimation. This can be

achieved by using, for example, I – Splines (cf. Ramsay, 1988; Meyer, 2008).

Proposition 4.2: Suppose Assumptions 4.1, 4.2 and 4.3 hold and that either Vγ

is known to be full rank or V̂n,θ is constructed as in subsection S2.1 with truncation

rate νn such that rn = o(νn). Then Assumption 3.3 holds with Vγ := Pγ[gγg
′
γ].

where ζ ′ denotes the derivative of ζ with respect to its first argument.
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A consequence of Assumption 4.2 and Propositions 4.1 and 4.2 is that the test

ψn,θ formed as in (12) is locally regular by Theorem 3.1 (cf. Remark 3.4). See

Appendix section S3.1.3 for a discussion of uniform local regularity in this model.

4.1.1 Simulation studies

I examine the finite sample performance of the proposed test in a simulation study.

The simulation designs focus on two non-standard cases: (i) where f ′ ≈ 0 and

hence θ weakly identified and (ii) where f is estimated subject to a monotonicity

constraint which is close to binding. I take K = 1 and test the hypothesis that

H0 : θ = θ0 at a nominal level of 5%. Each study reports the results of 5000

monte carlo replications with a sample size of n ∈ {400, 600, 800}. A number

of different choices for the link function f and the distribution ζ are considered.

I report empirical rejection frequencies for the proposed test of H0 based on ĝn,θ

along with a Wald test in the style of Ichimura (1993). Finite sample power curves

for the test proposed in this paper are also reported.

Design 1: Weak identification I set θ0 = 1 and consider two different classes

of link function f . The first has f(v) = fj(v) = 5 exp(−v2/2c2
j), whilst the

second sets f(v) = fj(v) = 25 (1 + exp(−v/cj))−1. The values of cj considered are

recorded in Table 4. In each case, as cj increases, the derivative of f flattens out

as depicted in Figures S2 and S4 respectively.40

For each link function I consider various possible distributions for ζ. X is

taken to be either X = (Z1, Z2) or X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), where each

Zk is independently drawn from a U(−1, 1). The error term is drawn as ε ∼
N (0, 1). Results for other error distributions, including heteroskedastic designs,

are qualitatively similar and are presented in section S4.1 of the supplementary

material.

I compute the Ŝ test based on ĝn,θ as in (30), with ω(X) = 1. The func-

tions f, f ′ and Z1 are estimated via smoothing splines using the base R function

smooth.spline with 20 knots.41 The truncation parameter ν is set to 10−4. I

additionally compute a Wald test in the style of Ichimura (1993), using the same

non-parametric estimates as for ĝn,θ.
42

40Figures S1 and S3 depict the functions themselves.
41In this setting Z2(Vθ) = 1 is known.
42That is, given an estimate f̂ , θ̂ = arg minθ∈Θ?

1
n

∑n
i=1(Yi − f̂(Vθ,i))

2, for some
compact Θ?. I take Θ? = [−10, 10]. The variance matrix is computed as

σ̂2/ 1
n

∑n
i=1

(
f̂ ′(Vθ̂,i)

[
X2 − Ẑ(Vθ̂,i)

])2

, for σ̂2 = 1
n

∑n
i=1(Yi − f̂(Vθ̂,i))

2.
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The finite sample empirical rejection frequencies for both of these procedures

are recorded in Table 5 for the case with exponential fj and Table 6 for the case

with logistic fj. The Ŝ test display empirical rejection frequncies close to the nom-

inal 5% for all simulation designs considered. In contrast, the Wald test based on

the Ichimura (1993) – style estimator over – rejects in most of the simulation de-

signs considered. As n increases, the size of the Wald test reduces and approaches

the nominal level, though in many designs the rejection rate remains substantially

above the nominal level at n = 800.

Figures 1 & 2 contain power plots of the Ŝ test, which show the expected shape

given the power results in section 3.3. For particularly flat index functions there

is very identifying information and hence very little power available. As the index

function moves away from the point of identification failure, the available power

increases, which is reflected in the increased power provided by the proposed test.

Design 2: Monotonicity constraint I set θ0 = 0 and consider three possible

link functions: f1 is a logistic function, whilst f2 and f3 are double logistic functions

which include a flat section inbetween two increasing sections. These functions are

plotted in Figure S5.43 These flat sections may cause any monotonicity constraints

to bind in the estimation of f . I explore the effect this has on the rejection

frequencies of the Ŝ test based on (30) with ω(X) = 1 and the Ichimura (1993)

– style Wald test. Both tests are computed with f, f ′ estimated by 9 monotonic

I – splines, whilst Z1 is estimated using 6 cubic B – splines. As the efficient

information is always positive in this simulation design, ν = 0.

Similar to in Design 1, X is taken to be either X = (Z1, Z2) or X = (Z1, 0.2Z1+

0.4Z2 + 0.8), where each Zk is independently drawn from a U(−3/2, 3/2). The

error term is drawn as ε ∼ N (0, 1).

Table 7 displays the empirical rejection frequencies attained by the Ŝ test and

the Wald test. The Ŝ test provides rejection rates close to the nominal level of 5%

in each simulation design considered. The Wald test displays both over- and under-

rejection depending on the exact simulation design. In particular, for the logistic

function f1, the Wald test over-rejects (similarly as to the strongly identified cases

in Design 1). For the two double logistic functions, the rejection rate is lower: it

slightly exceeds the nominal level for f2 and under-rejects for f3, likely due to the

(close to) binding monotonicity constraint. Results for other error distributions,

including heteroskedastic designs, are qualitatively similar and are presented in

section S4.1 of the supplementary material.

43Formal definitions can be found in section S4.1.2.
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The 3 panels of Figure 3 depict the finite-sample power curves for the Ŝ and

Wald tests with X = (Z1, Z2), with f = f1, f2, f3 respectively. In each panel, the Ŝ

typically appears to provide higher power.44 This is particularly true for f = f3,

where the under-rejection of the Wald test under the null observed in Table 7

persists under the alternative, yielding an under-powered test relative to the Ŝ

test. The results for the case with X = (Z1, 0.2Z1 + 0.4Z2 + 0.8) are qualitatively

similar, see Figure S7 in the Supplementary material.

4.2 IV model

Consider the instrumental variables model of Example 2.2: n i.i.d. copies of

W = (Y,X,Z) are observed where

Y = X ′θ + Z ′1β + ε, E[ε|Z] = 0, Z = (Z ′1, Z
′
2)′. (31)

Let K := dθ + dZ + 1, i.e. the dimension of W . Define π(Z) := E[X|Z] and

υ = X −E[X|Z] = X − π(Z) such that E[υ|Z] = 0. This yields the following two

equation model:

Y = X ′θ + Z ′1β + ε

X = π(Z) + υ
, E[U |Z] = 0, U := (ε, υ′)′, α := (θ′, β′)′. (32)

If π(Z) = 0 the instruments Z provide no information about θ. More generally,

π(Z) being rank deficient a.s. can cause underidentification of θ. Note that lack

of identification or weak identification in this model can be very different from the

model with an assumed linear first stage as there are many data configurations

in which E[X|Z] provides substantial identifying information about θ whilst the

linear projection of X onto the columns of Z may be uniformative. In such situa-

tions, tests which can exploit such non-linear identifying information can provide

substantially more power than tests which (implicitly) use a linear first stage. This

is illustrated in the simulation study and the empirical applications below.45

In the special case where π(Z) = $f(Z) =
∑J

j=1$jfj(Z) for a known func-

tion f , such non-linear effects could also be captured by classical weak-instrument

robust statistics, such as the LM test (Kleibergen, 2002), by replacing the instru-

44This is not true for alternatives around the null for f = f1. However, this is not a like-for-like
comparison, as the Wald test over-rejects when f = f1, see Table 7.

45This does not contradict the optimality results that have been derived for, e.g., the AR test
(e.g. Moreira, 2009; Chernozhukov, Hansen, and Jansson, 2009) as these results are derived
under an imposed linear first-stage.
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ments Z with f(Z). In practice f is generally not known but π may be non-

parametrically estimated by using an approximation of the form $nf
(n)(Z) =∑Jn

j=1 $n,jfj(Z) with (f1, . . . , fJn) an increasing number of basis functions. The

test developed below is a LM type test based on an orthogonalised score statistic

in which such a non-parametric estimate of π is plugged-in. The orthogonalisation

ensures that neither (i) weak identification nor (ii) the plugged-in nonparametric

estimator causes the resulting sequence of tests to be (locally) non – regular.

Model setup Let ζ denote the density of ξ := (ε, υ′, Z ′) with respect to a σ -

finite measure ν. The parameters of the IV model are γ = (θ, η) with the nuisance

parameters collected in η = (β, π, ζ) and the density of one observation given by

pγ(W ) = ζ(Y −X ′θ − Z ′1β,X − π(Z), Z), (33)

with respect to a σ - finite measure ν̃ and Pγ denotes the corresponding measure.

The model parameters are restricted by the following assumption.

Assumption 4.4: The parameters γ = (θ, β, π, ζ) ∈ Γ = Θ× B ×P ×Z where

(i) Θ is an open subset of Rdθ and B is an open subset of Rdβ ;

(ii) Z is a subset of the set of density functions on RK with respect to ν;

(iii) For (π, ζ) ∈P ×Z , if ξ := (U ′, Z ′)′, then

E[U |Z] = 0, E‖ξ‖4 <∞, E‖π(Z)‖4 <∞, E‖φ(ξ)‖4 <∞,

where φ1 := ∇ε log ζ(ε, υ, Z), φ2 := ∇υ log ζ(ε, υ, Z) and φ := (φ1, φ
′
2)′.

Additionally, for each γ ∈ Γ, pγ is a probability density with respect to some

σ-finite measure ν̃.

Assumption 4.4 essentially imposes only that certain moments exist and the

IV conditional mean restriction. That pγ is a valid probability density holds

automatically (with ν = ν̃) when U |Z is continuously distributed; see Appendix

section S3.2.2 for a discussion.

Local Asymptotic Normality Consider local perturbations of the form Pγ+ϕn(h)

for

ϕn(h) :=

(
τ√
n
,
b0√
n
, ϕn,1(b1), ϕn,2(b2)

)
, h = (τ, b) ∈ Hγ := Rdθ ×Bγ, (34)
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with Bγ := Rdβ ×Bγ,1×Bγ,2. Bγ,1 is a subset of the bounded functions b1 : RdZ →
Rdθ and Bγ,2 a subset of the functions b2 : RK → R which are bounded and

continuously differentiable in its first 1 + dθ components with bounded derivative

and such that46

E [b2(U,Z)] = 0, E [Ub2(U,Z)|Z] = 0, for (U ′, Z ′)′ ∼ ζ. (35)

The precise form of ϕn,1 and ϕn,2 is left unspecified. It is required only that the

resulting local perturbations satisfy the LAN property below.47

Assumption 4.5: Suppose thatWn =
∏n

i=1 RK and Pn,γ,h := P n
γ+ϕn(h) for all γ ∈ Γ

and h ∈ Hγ and are such that Assumption 3.1 holds with

log
pn,γ,h
pn,γ,0

=
1√
n

n∑
i=1

[Aγh](Wi)−
1

2
σγ(h) + oPn,0(1), h ∈ Hγ, (36)

where σγ(h) =
∫

[Aγh]2 dPγ and [Aγh](Wi) has the form given in equation (21)

with

˙̀
γ(W ) := −φ1(Y −X ′θ − Z ′1β,X − π(Z), Z)X1

[Dγb](W ) := −φ(Y −X ′θ − Z ′1β,X − π(Z), Z)′ [ b′0Z1 b1(Z) ] + b2(Y −X ′θ − Z ′1β,X − π(Z), Z).

The test statistic gγ will be set equal to the efficient score function for θ, ˜̀
γ,

under homoskedasticity. I first give the efficient score for θ in the following Lemma

(without imposing homoskedasticity), for which I introduce some additional no-

tation. Let J(Z) := E[UU ′|Z] (under γ) and E = (E1, E
′
2)′ = J(Z)−1U where the

partitioning is conformal with U = (ε, υ′)′ = (Y −X ′θ − Z ′1β,X ′ − π(Z)′)′. I also

assume the following conditions hold a.s.:48

0 < c ≤ λmin(J(Z)) ≤ λmax(J(Z)) ≤ C <∞,
E [φ(ε, υ, Z)U ′|Z] = −I, E[φ1(ε, υ, Z)υU ′] = 0.

(37)

Lemma 4.1: If Assumptions 4.4, 4.5 and equation (37) hold, then for E taken

46A heuristic motivation for these restrictions is given in Appendix section S3.2.2.
47Examples of ϕn,1, ϕn,2 and Bγ,1, Bγ,2 for which this condition is satisfied are given in Appendix

section S3.2.2.
48Under Assumption 4.4 the second two equations hold provided for each i = 1, . . . , 1 + dα,

lim|ui|→∞ |ui|ζ(u, z) = 0; see Lemma S3.2. All expectations in (37) are taken under Pγ and
the i− j indexing in the definition of q1 is conformal with U = (ε, υ′)′.
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under Pγ,

l̃γ(W ) =

[
l̃γ,1(W )

l̃γ,2(W )

]
=

[
π(Z)

Z1

] [
E1 − E[E1E

′
2|Z]E[E2E

′
2|Z]−1E2

]
is the efficient score for (θ, β). In consequence,

˜̀
γ(W ) = l̃γ,1(W )− E

[
l̃γ,1l̃

′
γ,2

]
E
[
l̃γ,2l̃

′
γ,2

]−1

l̃γ,2(W )

= q1(J(Z))(Y −X ′θ − Z ′1β)
[
π(Z)− E[XZ ′1]E[Z1Z

′
1]−1Z1

]
,

(38)

is the efficient score for θ, where q1(J) := (J1,1)−1.

Define J̄ := E[J(Z)] = E[UU ′] and use in in place of J(Z) in (38) to form

¯̀
γ(W ) := q1(J̄)(Y −X ′θ − Z ′1β)

[
π(Z)− E[XZ ′1]E[Z1Z

′
1]−1Z1

]
. (39)

This function also belongs to the orthocomplement of {Dγb : b ∈ Bγ} and, more-

over, when J(Z) = J̄ a.s., coincides with the efficient score function. These facts

are shown in the next Lemma.

Lemma 4.2: Suppose that Assumptions 4.4, 4.5 and equation (37) hold. Then, ¯̀
γ

as defined in (39) belongs to the orthocomplement of {Dγb : b ∈ Bγ} (in L2(Pγ)).

If J(Z) = J̄ a.s., then ¯̀
γ = ˜̀

γ a.s..

Assumption 3.2 is satisfied with gn,γ = Gn
¯̀
γ.

Proposition 4.3: Suppose that Assumptions 4.4, 4.5 and equation (37) hold.

Then Assumption 3.2 is satisfied with gn,γ = Gn
¯̀
γ.

Suppose that β̂n and π̂n,i(Zi) are estimators of β and π(Zi) respectively. Let

the i-th residual in based on these estimators be Ûn,i, that is:

Ûn,i :=

[
Yi −X ′iθ − Z ′1,iβ̂n
Xi − π̂n(Zi)

]
, (40)

and set Ĵn := 1
n

∑n
i=1 Ûn,iÛ

′
n,i Then put

ĝn,θ,i := q1(Ĵn)
(
Yi −X ′iθ − Z ′1,iβ̂n

)π̂n(Zi)−
[

1

n

n∑
i=1

XiZ
′
1,i

][
1

n

n∑
i=1

Z1,iZ
′
1,i

]−1

Zi

 ,
(41)
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and

V̌n,θ :=
1

n

n∑
i=1

ĝn,θ,iĝ
′
n,θ,i. (42)

If Vγ := E[¯̀γ ¯̀′
γ] is known to have full rank, put V̂n,θ := V̌n,θ, Λ̂n,θ := V̂ −1

n,θ

and r̂n,θ = rank(Vγ). Else form the estimator V̂n,θ according to the construction

in subsection S2.1 using a truncation rate νn. Λ̂n,θ is then taken to be V̂ †n,θ and

r̂n,θ := rank(V̂n,θ).

Assumption 4.6: Suppose that, given θ, β̂n and π̂n,i(Zi) are estimators such that
√
n(β̂n − β) = OPn,γ (1), β̂n takes values in Sn := {CZ/√n : Z ∈ Zdβ} for some

dβ × dβ matrix C and and with Pn,γ – probability approching one,

[∫
‖π̂n,i(z)− π(z)‖2 dζZ(z)

]1/2

≤ δn = o(1), (43)

where ζZ is the marginal distribution of Z and π̂n,i(Zi) is σ({Zi} ∪ Cn,j) – mea-

surable where j = 1 if i > bn/2c and 2 otherwise, with Cn,1 := {Wj : j ∈
{1, . . . , bn/2c}} and Cn,2 := {Wj : j ∈ {bn/2c+ 1, . . . , n}}.

Suppose also that

E
[
ε4‖π(Z)‖4

]
<∞, E

[
ε4‖Z1‖4

]
<∞, E[Z1Z

′
1] is nonsingular,

and that either Vγ is full rank, or the truncation rate νn satisfies δ2
n+n−1/2 = o(νn).

Assumption 4.6 merits some commentary. Firstly the discretisation of β̂n is a

technical device due to Le Cam (1960) which permits the proof of Proposition 4.4

below to go through under weaker conditions. This can always be arranged given

a
√
n – consistent initial estimator, by replacing its value with the closest point

in the set Sn. Secondly, due to the structure of the estimands ¯̀
γ(Wi), the rate

δn in (43) need only converge to zero. There is no requirement that, for example,

δn = o(n−1/4).

Proposition 4.4: Suppose that Assumptions 4.4, 4.5, 4.6 hold along with equation

(37). Then Assumption 3.3 holds with ĝn,θ := 1√
n

∑n
i=1 gn,θ,i for gn,θ,i in (41),

gn,γ := 1√
n

∑n
i=1

¯̀
γ(Wi) and Λ̂n,θ defined below equation (42).

A consequence of Assumption 4.5 and Propositions 4.3 and 4.4 is that the test

ψn,θ formed as in (12) is locally regular by Theorem 3.1 (cf. Remark 3.4). See

Appendix section S3.2.3 for a discussion of uniform local regularity in this model.
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4.2.1 Simulation study

I explore the quality of the asymptotic approximation developed above in the finite

sample setting in various simulation designs. In all simulation settings considered

below I consider n ∈ {200, 400, 600} and empirical rejection frequencies are com-

puted based on 5000 simulated data sets (Design 1) or 2500 simulated data sets

(Design 2). Two simulation designs are reported here (some additional simula-

tion results for these designs are reported in section S4.2.1 of the supplementary

material) and two additional designs covering (i) heteroskedasticity and (ii) over-

identified models are reported in section S4.2.2 of the supplementary material.

Design 1: Univariate, just identified The first case considered is a setting

with dθ = 1, Z1 = 1, Z2 univariate and homoskedastic errors. I consider π(Z) =

π(Z2) equal to the exponential, logistic and linear functions detailed in Table 8

and plotted in Figures S8 – S10. For each function type there are 3 considered

functions, indexed by j = 1, . . . , 3. The higher j, the weaker the identification

of θ (for given values of all other parameters). I draw (ε, υ) from a multivariate

normal distribution with unit variances and covariance 0.95. Z2 is drawn as an

independent standard normal random variable.

I consider the results of applying the test developed in the previous section

with π estimated by (i) OLS, (ii) series regression with Legendre polynomials.

The truncation parameter ν is set to 0.1. I consider both setting the number

of polynomials, k, to 6 and selecting k via information criteria. I additionally

consider a number of alternative testing approaches: the Anderson and Rubin

(1949) test (AR), a TSLS Wald test (both implicitly using a linear first stage) and

GMM Wald and LM tests using k = 6 Legendre polynomials.49

The empirical rejection frequencies under the null for each of these tests are

reported in Table 9. The results indicate that the empirical null rejection proba-

bility of the Ŝ tests proposed in this paper is well controlled in all scenarios. When

θ is well identified (i.e. low j), the Ŝ tests generally are very close to the nominal

5% level, whilst in cases of high j they typically reject between 0 and 5% of the

time.50 The exception to this finding is when π(Z2) is estimated by OLS and the

49In the homoskedastic just identified setting (with a linear first stage) the AR test is numerically
equivalent to the LM test (Kleibergen, 2002) and CLR test (Moreira, 2003). Moreover, if π is
truly linear, all of these tests (and therefore the AR in particular) are uniformly most powerful
unbiased as demonstrated by Moreira (2009).

50A null rejection probability of 0 is for weakly identified cases is in accordance with the the-
oretical predictions of Theorem 3.1, corresponding to the conservative case observed when
r = 0.
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true π is exponential, where the empirical rejection frequency is always close to

zero, as this estimator performs very poorly in this setting.

As expected the AR test always yields a rejection frequency of around 5%,

whilst the TSLS Wald test generally provides a rejection frequency close to the

nominal level when j is low, but begins to overreject as j increases. The same

pattern is seen for the two GMM tests which display even greater levels of over-

rejection.

Given the results in Table 9, I consider the power of the Ŝ tests proposed above

and the AR test. These are plotted for the exponential, logistic and linear design

in figures 4 – 6. These power plots demonstrate that for the exponential π design,

there is very limited power available via the AR test. This is not suprising given

the linear projections in the definition of the AR statistic. For similar reasons

the Ŝ test with π estimated via OLS shows even lower power and never exceeds

the nominal 5% level. The Ŝ tests based on Legendre polynomials by contrast

display substantial power in the j = 1, 2 designs. This is as expected, as – unlike

the AR test – these tests are able to exploit the non-linear identifying information

provided by Z.

In the logistic π case, no test appears to provide non trivial power for the j = 3

case (at least over the interval considered). For the j = 1, 2 cases, the AR and Ŝ

tests based on either OLS or Legendre polynomials display similar power.

Finally, in the linear π case the (optimal) AR test dominates. In the well

identified case (j = 1) the Ŝ test based on OLS estimates of π matches its power

curve, though it performs less well when there is less identifying information. The

other Ŝ tests continue to provide reasonable power in the cases where identification

is stronger.

Design 2: Bivariate, just identified I now consider the case where dθ = 2,

and Z2 is bivariate. π(Z) = π(Z2) will be taken as π(Z2) = (π1(Z2,1), π2(Z2,2))′

with each πi (i = 1, 2) being one of the exponential, logistic or linear functions

considered in Design 1.51 The Z2 are drawn from a zero - mean, multivariate nor-

mal distribution with covariance matrix Var(Z2) = [ 1 0.4
0.4 1 ]. The (homoskedastic)

error terms ε, υ are drawn (independently) from a zero-mean multivariate nor-

mal such that each has variance 1 and the covariances are Cov(ε, υi) = 0.9 and

Cov(υ1, υ2) = 0.7. As in Design 1, Z1 = 1.

The tests considered are similar to as in Design 1. In particular, I consider the

51This separation is assumed unknown to the researcher and is not imposed in the estimation of
π.
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Ŝ tests with π estimated by (i) OLS and (ii) tensor product Legendre polynomials.

I consider both fixing the number of polynomials at k = 3 in each of the univari-

ate series which form the tensor product basis and choosing k ∈ {3, 4, 5, 6, 7}
using information criteria. ν is set to 0.1. I additionally consider the AR test, a

TSLS Wald test and GMM Wald and LM tests using the tensor product basis as

instruments (along with Z1).

The results are shown in Tables 10 & 11. The first table has π1 = π2 whilst

the second table caries the form of π1 only, with π2 always remaining linear. The

results are qualitatively similar across the two tables: the Ŝ test with Legendre

polynomials appears to always control the null rejection probability of the test

close to the nominal 5% level, as does the AR test. The Ŝ test with OLS esti-

mates typically underreject. The TSLS Wald test and two GMM tests considered

overreject when identification is weaker (higher j).

Figures 7 – 15 show power surfaces for the AR test and Ŝ tests computed

with π estimated using k = 3 Legendre polynomials. These are plotted for cases

where π1 and π2 have the same form and where (i) both π1 and π2 have j = 1,

corresponding to a strongly identified setting; (ii) where π1 has j = 1 and π2 has

j = 3, in which θ2 is weakly identified and (iii) where both πi have j = 3, i.e. θ is

weakly identified.

Figures 7 – 9 show the case with exponential π. For this design the AR test

is unable to provide non-trivial power regardless of the identification strength (j).

In the strongly identified case (i) the Ŝ test provides good power in all directions.

In case (ii), where θ2 is weakly identified, the Ŝ test continues to provide good

power against violations of the null in the first co-ordinate but (as expected) only

trivial power in the second co-ordinate. In the weakly identified case (iii), neither

test is able to provide reasonable power against the considered alternatives.

For the logistic and linear cases depicted in Figures 10 – 12 and 13 – 15 respec-

tively, all tests display good power in all directions in the strongly identified case

(i) and good power against violations of the null in the first co-ordinate but only

trivial power against violations in the second co-ordinate in the case (ii) θ2 weakly

identified. The AR test seems to provide marginally higher power in these cases,

but the difference is minor with both tests displaying similar power surfaces. In

case (iii) where θ is weakly identified, the Ŝ test displays only trivial power. The

same is true of the AR test in the logistic design; it is able to provide some power

in one corner of the plot for the linear design.

Some additional simulation results for this design are reported in section S4.2.1

in the supplementary material. In particular, these results highlight that choosing
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the number of polynomial basis functions k by AIC yields power surfaces which

are typically very similar to those in Figures 7 – 15.

Additional simulation results Section S4 contains a discussion of two further

simulation designs, which I briefly summarise here. Design 3 replicates Design 1

with the addition of heteroskedastic errors. Briefly, the results are qualitiatively

the same as found in Design 1 with the Ŝ tests well controlling the empirical

rejection frequency in each scenario. As in the homoskedastic case, the Ŝ test

provides substantially higher power than the AR test when π is exponential, and

competitive power with the AR test in the logistic and the linear cases.

Design 4 considers an over-identified model. Specifically, the base setup is as

in Design 1 (with ρ = 0.95 and Gaussian errors), however Z2 is bivarate mean-zero

normal with Var(Z2) = [ 1 0.4
0.4 1 ] and π(Z2) = (π1(Z2,1) + π2(Z2,2))/2 where π1 and

π2 have one of the exponential, logistic or linear forms of Table 8.52 For the Ŝ

tests, π is estimated in the same manner as for Design 2: using series regressions on

tensor product bases formed of Legendre polynomials. A version with π estimated

using OLS on Z2 (and a constant) is also reported, along with GMM Wald and

LM tests using these tensor product bases as instruments, the TSLS Wald test

and AR, LM (Kleibergen, 2002) and CLR (Moreira, 2003) tests.53

The results show that both the “usual” weak instrument robust tests (AR, LM

and CLR) and the Ŝ tests are able to well control the null rejection frequency,

unlike the TSLS Wald and GMM based tests. In terms of power, the results are

similar to the other designs: in the exponential case the Ŝ tests with nonparamet-

rically estimated π are the only tests able to provide non-trivial power regardless

of identification strength. In the logistic and linear cases, the Ŝ tests typically

provide comparable power to the LM and CLR tests, with the latter two tests

performing slightly better in the linear cases.

5 Empirical applications

In this section I apply the test developed in section 4.2 for the IV model (Example

2.2) to two classic instrumental variables studies.

52This functional form is treated as unknown and not imposed in the estimation of π.
53The CLR test is implemented using the p-value approximation given by Andrews, Moreira,

and Stock (2007).
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5.1 Institutions and economic performance

Acemoglu, Johnson, and Robinson (2001) investigate the effect of better intitu-

tions (i.e. better property rights, less distortionary policies) on economic perfor-

mance. They use a measure of the average protection against expropriation risk as

a measure of the strength of insitutions. Due to potential endogeneity concerns,

they instrument this variable by the mortality rates of European colonial settlers.

In the notation of Example 2.2, Y is the 1995 log gdp per capita on a ppp basis, X

is a measure of the risk of government expropriation of private foreign investment,

Z1 contains a constant and any exogenous variables in the given specifications and

Z2 is the log of a measure of European settler mortality. I refer to the original

article Acemoglu et al. (2001) for more detail on the data and a discussion of the

literature.

Table 4 in Acemoglu et al. (2001) provides their two-stage least squares esti-

mates for a variety of specifications along with the associated (Wald) confidence

intervals; for details of the specifications, see Acemoglu et al. (2001). Table 1

below replicates these results (for specifications (1) – (8)), along with: (i) the first

stage F statistic; (ii) OLS point estimates and the associated (Wald) confidence

intervals; (iii) weak instrument robust Anderson and Rubin (1949) (hereafter AR)

confidence intervals and (iv) weak instrument robust confidence intervals formed

by inverting the Ŝ test developed in Section 4.2. This is implemented using

π̂(Z) = α̂′1Z̃1 + α̂′2pk(Z2),

with pk the first k Legendre orthogonal polynomials, Z̃1 is Z1 excluding the con-

stant term.54 and α̂ is the OLS estimate in the regression of X on (Z̃1, pk(Z2)).

k is chosen via AIC, the truncation parameter ν = 0.001 and the test is inverted

over an evenly spaced grid of 1000 points between -1 and 3.

As can be see in Table 1, the first stage F statistic for many of the considered

specifications is below the rule-of-thumb cutoff of 10 proposed by Staiger and Stock

(1997) and so there is suggestive evidence that the instruments may be weak in

these specifications.55

Overall the Ŝ based confidence intervals do not change the conclusions of Ace-

moglu et al. (2001) – all the confidence intervals exclude zero and and suggest

similarly sized effects as found by Acemoglu et al. (2001). The results do however

54pk,1(z) = 1.
55This possibility is considered by Albouy (2012); Acemoglu, Johnson, and Robinson (2012) who

also report AR confidence intervals for some of these specifications.
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demonstrate that the ability of the Ŝ test to exploit potential non-linearities in the

relationship between the endogenous variable and instrument can result in (test

inversion) confidence intervals which are much shorter than the AR confidence in-

tervals (whilst remaining robust to weak identification). Table 2 shows the lengths

of the OLS, 2SLS and Ŝ confidence intervals as a fraction of the length of the AR

confidence interval for specifications (1) – (7) (specification (8) is excluded due to

the AR confidence interval having infinite length). In all specifications inverting

the Ŝ test produces a shorter confidence interval than inverting the AR test: the

reduction in length ranges from around a 75% reduction in specification (7) to

essentially no reduction in specification (5).56

Table 1: Point estimates and confidence intervals

(1) (2) (3) (4) (5) (6) (7) (8)

n 64 64 60 60 37 37 64 64
F 22.95 13.09 8.65 7.83 30.54 21.61 6.23 3.46
k 3 3 4 4 1 1 3 3

Point estimates
OLS 0.52 0.47 0.49 0.47 0.48 0.47 0.42 0.4
2SLS 0.94 1 1.28 1.21 0.58 0.58 0.98 1.11

Confidence intervals
OLS [0.4, 0.64] [0.34, 0.6] [0.33, 0.64] [0.32, 0.62] [0.35, 0.61] [0.32, 0.61] [0.31, 0.54] [0.28, 0.52]
2SLS [0.63, 1.26] [0.55, 1.44] [0.56, 2] [0.5, 1.92] [0.38, 0.78] [0.34, 0.81] [0.38, 1.58] [0.18, 2.04]
AR [0.7, 1.43] [0.68, 1.88] [0.81, 3.33] [0.75, 3.44] [0.39, 0.82] [0.35, 0.89] [0.6, 3.59] (−∞,−9.24] ∪ [0.59,∞)
S [0.58, 1.05] [0.47, 0.97] [0.26, 1.12] [0.02, 0.97] [0.41, 0.84] [0.36, 0.85] [0.32, 1.09] [0.26, 0.97]

Notes: F is the first stage F statistic; k is the number of polynomials in Z2 chosen by AIC.

Table 2: Length of confidence interval relative to AR

(1) (2) (3) (4) (5) (6) (7)

OLS 0.335 0.213 0.121 0.110 0.611 0.535 0.077
2SLS 0.857 0.736 0.571 0.526 0.922 0.888 0.401
AR 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S 0.647 0.416 0.344 0.354 0.992 0.917 0.256

5.2 Returns to schooling

I revisit the problem of estimating the returns to schooling using IV methods. In

particular I use the data from the original Card (1995) article: 1976 wage data

and education data from the 1966 NLS cohort. See Card (1995) for details on the

56Specifications (5) & (6) yield very similar confidence intervals to the AR intervals as in these
specifications AIC chooses k = 1.
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dataset and Card (2001) for a review of the literature. I set Y to be the log wage

in 1976, X the years of education, Z2 is an indicator for growing up near a 4 –

year college interacted with father’s education, and Z1 includes an intercept and

controls for race, experience, SMSA and region.

Table 3 below provides (i) OLS and (ii) two-stage least squares estimates along

with their associated (Wald) confidence intervals, (iii) weak instrument robust AR

confidence intervals and (iv) weak instrument robust confidence intervals formed

by inverting the Ŝ test developed in Section 4.2. This is implemented using

π̂(Z) = α̂′1Z̃1 + α̂′2pk(Z2),

with pk the first k Legendre orthogonal polynomials, Z̃1 is Z1 excluding the con-

stant term.57 and α̂ is the OLS estimate in the regression of X on (Z̃1, pk(Z2)).

AIC chooses k = 2, the truncation parameter is set to ν = 0.001 and the test is

inverted over an evenly spaced grid of 1000 points between -0.2 and 0.2.58

Table 3: Point estimates and confidence intervals

Method Point Estimate Confidence Interval Relative Length

OLS 0.076 [0.069, 0.084] 0.178
2SLS 0.085 [0.043, 0.128] 0.975
AR [0.042, 0.13] 1.000
S [0.042, 0.118] 0.868

The confidence interval obtained by inverting the Ŝ test is similar but slightly

shorter than the AR interval, achieving an approximate 15% reduction in length.

6 Conclusion

In this paper I introduced a notion of local regularity for (sequences of) tests anal-

ogous to the notion of local regularity for estimators widely used in semiparametric

estimation theory. I established that C(α) – style tests are locally regular under

mild conditions, including in non – regular cases where locally regular estimators

do not exist. Such non – regular cases include, for example, semiparametric weak

identification asymptotics.

I additionally generalised the classical local asymptotic power bounds for lo-

cally asymptotically normal semiparametric models to the case where the efficient

57pk,1(z) = 1.
58The first stage F – statistic in this model is 79.141, far exceeding the rule-of-thumb cutoff of

10 suggested in Staiger and Stock (1997).
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information matrix has positive, but potentially deficient, rank. As such, these

results also apply in cases of underidentification (or weak underidentification).

Moreover, I demonstrated that, for a certain choice of moment function, the C(α)

– style test attains these power bounds. This improves on known results as it does

not require the data to be i.i.d. nor the information operator to be boundedly

invertible.

Three examples are developed in detail and the approach is validated in simu-

lation studies which demonstrate that the asymptotic theory provides an accurate

approximation to the finite sample performance of the considered C(α) tests. In

particular, it is shown that in a single-index model, the considered C(α) test is

robust to plugging in a shape constrained estimator of the link function, whilst in

a IV model, the considered C(α) test remains robust under semiparametric weak

identification asymptotics and can have substantially higher power than classical

weak instrument robust tests when the relationship between the endogenous vari-

ables and instruments is non-linear. This latter point is also highlighted in two

empirical examples using the IV model in which inverting the C(α) test can lead

to substantially shorter confidence intervals than the Anderson and Rubin (1949)

test.
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A Proofs of the main results

Proof of Proposition 3.1. Combination of Assumptions 3.1 and 3.2 yields

(
g′n,θ,λ, Ln,γ(h)

) Pn,γ,0
 N

((
0

−1
2
σγ(h)

)
,

(
Vγ τ ′Σ′γ,21

Σγ,21τ σγ(h)

))
.

Consequently, by Le Cam’s third Lemma (e.g. van der Vaart, 1998, Example 6.7)

gn,γ
Pn,γ,h
 ZτN (Σγ,21τ, Vγ) .

The second claim follows by combining the preceding display with Assumption
3.3(i), Remark 3.1 and Slutsky’s Theorem. Combining the second claim with
Assumption 3.3(ii), Slutsky’s Theorem and the continuous mapping Theorem, the
asymptotic distribution of Ŝn,θ under Pn,γ,h is the law of

Z ′V †γ Z, Z ∼ N (Σγ,21τ, Vγ) .

That this law is the indicated non-central χ2
r distribution follows from Theorem

9.2.3 of Rao and Mitra (1971).

Proof of Theorem 3.1. Since r̂n
Pn,γ−−→ r we have that Pn,γ{cn = cα} → 1. There-

fore, by Proposition 3.1, Remark 3.1 and Slutsky’s Theorem that Ŝn,θ−cn  S−c
under Pn,γ,h where S ∼ χ2

r (a). Since the χ2
r distribution is continuous, by the

Portmanteau Theorem,

lim
n→∞

Pn,γ,hψn,θ = lim
n→∞

Pn,γ,h

(
Ŝn,θ > cn

)
= L{S − c > 0} = 1− P(χ2

r(a) ≤ cα),

for L the law of S.

For the second result, note that if rank(Λ̂n,θ)
Pn,γ−−→ r = 0, then Pn,γ(Rn) → 1

for Rn := {Λ̂n,θ = 0}. On this set Ŝn,θ = 0 and so ψn,θ = 0. By Remark 3.1,
Pn,γ,h(Rn)→ 1 and therefore Pn,γ,hψn,θ ≤ 1− Pn,γ,h(Rn)→ 0.

Proof of Corollary 3.1. Since τ = 0, χ2
r(a) = χ2

r(0) = χ2
r, and hence P(χ2

r(a) ≤
cα) = 1− α. Apply Theorem 3.1 along the stated sequences.

Proof of Corollary 3.2. Note that Pn,γ,hn(θ ∈ Cn) = 1 − Pn,γ,hnψn,θ and apply
Corollary 3.1.

Proof of Corollary 3.3. Let πn(h) := Pn,γ,hψn,θ and π(h) := 1 − P(χ2
r(a) ≤ cr)

if r ≥ 1 or π(h) := 0 if r = 0. By Remark 3.4, πn(h) → π(h) pointwise in
h ∈ Hγ. Since the πn are asymptotically equicontinuous on K, the convergence is
also uniform on K.

Proof of Corollary 3.4. Let πn(h) := Pn,γ,hψn,θ and π(h) := α if r ≥ 1 or π(h) := 0
if r = 0. By Corollary 3.1, πn(h)→ π(h) =: c pointwise in h ∈ Hγ,0. Since the πn
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are asymptotically equicontinuous on K, the convergence is also uniform on K.
Hence,

lim
n→∞

sup
h∈K

πn(h) ≤ lim
n→∞

sup
h∈K
|πn(h)− c|+ c = c = π(h).

Proof of Lemma 3.1. This follows from the fact that (e.g. Strasser, 1985, Theorem
2.3)

|Pn,γ,hψn,θ − Pn,γ,h′ψn,θ| ≤ dTV (Pn,γ,h, Pn,γ,h′).

Proof of Lemma 3.2. The proof is given for the case where (Hγ, d) is a pseudo-
metric space and K ⊂ Hγ. The argument in the case with Hγ,0 replacing Hγ is
analogous.

First suppose r ≥ 1. Then, by asymptotic equicontinuity of h 7→ Qn,γ,h on
K, one has for any hn → h (through K) that δ(Qn,γ,hn , Qn,γ,h) → 0 as n → ∞
and by the asymptotic equicontinuity (on K) of h 7→ Pn,γ,h(r̂n,θ = r) one has that

|Pn,γ,h(r̂n,θ = r)− Pn,γ,hn(r̂n,θ = r)| → 0. Since r̂n,θ
Pn,γ,h−−−→ r (Assumption 3.3 (iii)

and Remark 3.1), it follows that also r̂n,θ
Pn,γ,hn−−−−→ r. Hence, under Pn,γ,hn ,

Ŝn,θ − cn  S − cr, S ∼ χ2
r(a) =⇒ Pn,γ,hnϕn,θ → 1− P(χ2

r(a) ≤ cr) =: π(τ),

by Proposition 3.1 where cr and a are as in Theorem 3.1. Thus, by Theorem 3.1,

|Pn,γ,hnϕn,θ − Pn,γ,hϕn,θ| ≤ |Pn,γ,hnϕn,θ − π(τ)|+ |Pn,γ,hϕn,θ − π(τ)| → 0,

which implies the required asymptotic equicontinuity on K.
In the case where r = 0, the asymptotic equicontinuity onK of h 7→ Pn,γ,h(Λ̂n,θ =

0) implies that for any hn → h (through K), |Pn,γ,hn(Λ̂n,θ = 0) − Pn,γ,h(Λ̂n,θ =

0)| → 0. In combination with rank(Λ̂n,θ)
Pn,γ,h−−−→ 0 (Assumption 3.3 (iii) and Re-

mark 3.1), this implies that Pn,γ,hn(Λ̂n,θ = 0)→ 1 and thus Pn,γ,hnϕn,θ → 0. Thus,
by Theorem 3.1

|Pn,γ,hnϕn,θ − Pn,γ,hϕn,θ| ≤ |Pn,γ,hnϕn,θ|+ |Pn,γ,hϕn,θ| → 0,

which implies the required asymptotic equicontinuity on K.

Proof of Lemma 3.3. For a, b ∈ R and h1, h2 ∈ Hγ we have

∆n,γ(a1h1 + a2h2) = a1∆n,γh1 + a2∆n,γh2

and in consequence ∆γ(a1h1 + a2h2) = a1∆γ(h1) + a2∆γ(h2), hence ∆γ is lin-
ear. We next note that Kγ is well-defined and a bilinear, symmetric, posi-
tive semidefinite (i.e. covariance) kernel. Firstly, since for h ∈ Hγ, we have
σγ(h) = limn→∞ ‖∆n,γh‖2, (‖∆n,γh‖2)n∈N is bounded and Cauchy (in R). Letting
Kn,γ(h, g) := Pn,γ [∆n,γh∆n,γg] and using Cauchy – Schwarz

|Kn,γ(h, g)−Km,γ(h, g)| ≤ |Pn,γ [(∆n,γh−∆m,γh)∆n,γg] + Pn,γ [∆m,γh(∆n,γg −∆m,γg)]

≤ ‖∆n,γh−∆m,γh‖‖∆n,γg‖+ ‖∆m,γh‖‖∆n,γg −∆m,γg‖,

56



hence (Kn,γ(h, g))n∈N is also Cauchy and thus has a limit in R. Bilinearity of
Kγ follows directly from its definition and the linearity of ∆n,γ. Symmetry fol-
lows from the symmetry of multiplication in R. For positive semi-definiteness,
let h1, . . . , hK ∈ Hγ, a ∈ RK . Since each ∆n,γh ∈ L0

2(Pn,γ), each matrix Kn :=
[Kn,γ(hk, hj)]

K
k,j=1 is a covariance matrix and hence positive semi-definite. There-

fore, for each n,
K∑
k=1

K∑
j=1

akajKn,γ(hk, hj) = a′Kna ≥ 0,

hence the same holds in the limit, i.e. with Kn,γ and Kn replaced by Kγ and
K := [Kγ(hk, hj)]

K
k,j=1 respectively.

Finally, by Assumption 3.1 and the fact thatK(h, h) = σγ(h), ∆γh ∼ N (0, K(h, h)).
Using this along with the linearity of ∆n,γ, ∆γ and the bilinearity of K,

K∑
k=1

ak∆n,γ(hk) = ∆n,γ

(
K∑
k=1

akhk

)
Pn,γ
 ∆γ

(
K∑
k=1

akhk

)
=

K∑
k=1

ak∆γhk ∼ N (0, a′Ka) ,

where K := [K(hk, hj)]
K
k,j=1. Therefore, by the Cramér – Wold Theorem, ∆γ is a

mean-zero Gaussian process with covariance kernel K.

Proof of Proposition 3.2. Remark 3.1 and the transitivity of (mutual) contiguity
ensures that the experiments En,γ are contiguous (cf. Strasser, 1985, Definition
61.1). Hence by Theorem 61.6 of Strasser (1985) it suffices to show that the
finite dimensional marginal distributions of h 7→ Ln,γ(h) converge (under Pn,γ) to
those of h 7→ L(h) := ∆γh − 1

2
‖h‖2

γ. For this it is enough to note that the finite
dimensional marginal distributions of ∆n,γ converge to those of ∆γ (under Pn,γ),
as follows by the Cramér – Wold Theorem (as in the proof of Lemma 3.3).

Proof of Proposition 3.3. Let G[0] := Pγ,0. Define a map Z : Hγ → L2(Ω,F , G[0])
according to Z[h] = ∆γ(h) for any arbitrary h ∈ π−1

V ([h]), where πV is the quotient
map from Hγ → Hγ; that this is well defined is noted in footnote 60. By the
definition of 〈· , ·〉γ on Hγ (cf. subsection S2.2) this is a standard Gaussian process

for Hγ.
59 Let each G[h] be defined such that

dG[h]

dG[0]

= exp

(
Z[h]− 1

2
‖[h]‖2

γ

)
,

and note that by Theorem 69.4 in Strasser (1985), Gγ is a Gaussian shift on
(Hγ, 〈· , ·〉γ).

For any h ∈ Hγ we have that Z[h] = ∆γg for some g ∈ π−1
V ([h]) and ∆γh = ∆γg

Pγ,0–almost surely by footnote 60. Since ‖h‖γ = ‖[h]‖γ (cf. subsection S2.2) one
therefore has that

dG[h]

dG[0]

= exp

(
Z[h]− 1

2
‖[h]‖2

γ

)
= exp

(
∆γh−

1

2
‖h‖2

γ

)
=

dPγ,h
dPγ0

, Pγ,0 – a.s..

59More formally, it is the restriction to Hγ of a standard Gaussian process for Hγ (cf. Definition
68.3 in Strasser, 1985).
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By construction, each Pγ,h and G[h] is absolutely continuous with respect to Pγ,0 =
G[0]. Hence, by Lemma 2.4 in Strasser (1985),

dTV (Pγ,h, G[h]) =
1

2

∫ ∣∣∣∣dPγ,hdPγ0
− dG[h]

dPγ0

∣∣∣∣ dPγ,0 =
1

2

∫ ∣∣∣∣dPγ,hdPγ0
− dG[h]

dG[0]

∣∣∣∣ dPγ,0 = 0.

Proof of Lemma 3.4. We have that

〈[(τ, b)] , ([t, g)]〉γ = 〈[(τ, 0)] + [(0, b)] , [(t, 0)] + [(0, g)]〉γ
=
〈
Π⊥[(τ, 0)] + Π[(τ, 0)] + [(0, b)] , Π⊥[(t, 0)] + Π[(t, 0)] + [(0, g)]

〉
γ

=
〈
Π⊥[(τ, 0)] , Π⊥[(t, 0)]

〉
γ

+ 〈Π[(τ, 0)] + [(0, b)] , Π[(t, 0)] + [(0, g)]〉γ
= τ ′Ĩγt+ 〈Π[(τ, 0)] + [(0, b)] , Π[(t, 0)] + [(0, g)]〉γ .

(44)
From this and the fact that Π[(τ, 0)] ∈ kerπ1, we obtain

‖[τ ]‖2 = inf
b∈Bγ
‖[(τ, b)]‖2

γ = inf
[h]∈kerπ1

‖[(τ, 0)]−[h]‖2
γ = τ ′Ĩγτ+ inf

[h]∈kerπ1
‖Π[(τ, 0)]−[h]‖2

γ = τ ′Ĩγτ.

Hence, if ‖τ‖ = ‖[τ ]‖ = 0, it follows that τ ′Ĩγτ = 0. Hence Ĩ1/2
γ τ = 0.

But then Ĩγτ = Ĩ1/2
γ Ĩ1/2

γ τ = 0. Conversely suppose that τ ∈ ker Ĩγ. Then,
‖τ‖2 = τ ′Ĩγτ = 0 and hence ‖τ‖ = 0.

Proof of Lemma 3.5. Let V := {h ∈ Hγ : ‖h‖γ = 0} and let πV : Hγ → Hγ =
Hγ / V be the canonical projection. For h ∈ Hγ we write [h] := πV (h). Define
Z : Hγ → L2(P) as Z[h] = ∆γ(h), which is a mean-zero linear Gaussian process
with covariance kernel K([h], [g]) = Kγ(h, g) = 〈[h] , [g]〉γ.60 Y := ranZ ⊂ L2(P)
is evidently a linear space and

〈[h] , [g]〉 := E [Z[h]Z[g]] = K([h], [g]) = 〈[h] , [g]〉γ , [h], [g] ∈ Hγ.

The above display and the completeness of Hγ yield the closedness of ranZ. Hence
Z is a Hilbert space isomorphism from Hγ to Y . As such it is bijective, with
Z∗ = Z−1. We have

T = {∆γ(h) : h = (0, b) ∈ Hγ} = {Z[h] : h = (0, b) ∈ Hγ} = {Z[h] : [h] ∈ kerπ′1},

where π′1 denotes the restriction of π1 to Hγ. We next note that T ⊥ = {Z[h] :
[h] ∈ (kerπ1)⊥}. For the first inclusion suppose that Z[g] ∈ T ⊥. Then, for any
[h] ∈ kerπ′1,

〈[g] , [h]〉γ = 〈Z[g] , Z[h]〉L2(P ) = 0.

Since ker π1 = cl ker π′1 by Lemma S2.1, for any [h] ∈ kerπ1 there is a sequence
in ker π′1 which converges to [h] and the result follows by taking limits. For the

60This is well-defined: for any other g ∈ Hγ with πV (g) = [h], one has ∆γ(g) = ∆γ(h) + ∆γ(v)
where ‖v‖γ = K(v, v)γ = 0 and hence ∆γ(v) = 0 a.s..
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other inclusion note that a corollary of Lemma S2.1 is that (ker π1)⊥ = (ker π′1)⊥.
Hence, if [g] ∈ (kerπ1)⊥, for any [h] ∈ kerπ′1 we have

〈Z[g] , Z[h]〉L2(P ) = 〈[g] , [h]〉 = 0.

Let Q denote the orthogonal projection on (ker π1)⊥ ⊂ Hγ and R that on
T ⊥ ⊂ Y . Since Z is a Hilbert space isomorphism one has

R∆γ(h) = RZ[h] = ZQZ∗Z[h] = ZQZ−1Z[h] = ZQ[h], [h] ∈ Hγ.

Hence for [h] = [ei, 0], RZ[ei, 0] = ZQ[ei, 0] implying

E
[
∆̃γ(ei, 0)∆̃γ(ej, 0)

]
=
〈
Π⊥[ei, 0] , Π⊥[ej, 0]

〉
γ

= Ĩγ,ij.

Proof of Theorem 3.2. Define the bounded linear map T : Hγ → R as

T [h] :=
〈
Π⊥[1, 0] , Π⊥[h]

〉
γ

=
〈
Π⊥[1, 0] , [h]

〉
γ
.

The equality in the preceding display follows from the idempotentcy and self-
adjointness of orthogonal projections. The boundedness of T follows from the
Cauchy - Schwarz inequality as orthogonal projections have norm one. For any
[h] = [τ, b] ∈ Hγ,

T [h] =
〈
Π⊥[1, 0] , Π⊥[τ, b]

〉
γ

= Ĩγτ. (45)

Assume first that
√
Ĩγ 6= 0, hence rank(Ĩγ) = 1. Then, let [u] = Π⊥[1,0]√

Ĩγ
and

note that ‖[u]‖ = 1 and for any [h] ∈ kerT , 〈[u] , [h]〉γ = 1√
Ĩγ
T [h] = 0, hence

[u] ∈ [kerT ]⊥ and T [u] =
√
Ĩγ > 0. Lemma 71.5 in Strasser (1985) ensures

that any unbiased level α test φ of K0 : T [h] = 0 against K1 : T [h] 6= 0 in the
(restricted) Gaussian shift Gγ satisfies

G[h]φ ≤ 1− Φ
(
zα/2 − Ĩ1/2

γ τ
)

+ 1− Φ
(
zα/2 + Ĩ1/2

γ τ
)

(46)

By Proposition 3.2, En,γ  Eγ where the latter is dominated. Let πn(h) :=
Pn,γ,hφn and fix an arbitrary h? for which the bound will be shown. There is a
subsequence (nm)m∈N along which limm→∞ πnm(h?) = lim supn→∞ πn(h?). Since
[0, 1]Hγ is compact in the product topology, there is a subnet (nm(s))s∈S of (nm)m∈N
and a function π : Hγ → [0, 1] such that lims∈S πnm(s)

(h) = π(h) for all h ∈ Hγ.
By our hypotheses and equation (45) for any h0 such that [h0] ∈ kerT ∩ Hγ and
any h1 such that [h1] ∈ Hγ \ (kerT ∩Hγ)

π(h0) = lim
s∈S
πnm(s)

(h0) ≤ α ≤ lim
s∈S
πnm(s)

(h1) = π(h1).

Theorem 7.1 in van der Vaart (1991) ensures the existence of a test φ in Eγ with
power function π. The above display and Proposition 3.3 ensures that φ is an
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unbiased and level α test of kerT ∩Hγ against Hγ \ (kerT ∩Hγ) in Gγ. Therefore
by Proposition 3.3 again

lim sup
n→∞

Pn,γ,h?φn = lim
m→∞

πnm(h?) = π(h?) = Pγ,h?φ = G[h?]φ,

and combination with (46) proves the result for this case.
To complete the proof suppose that Ĩγ = 0. Then, rank(Ĩγ) = 0 and

1− Φ
(
zα/2 − Ĩ1/2

γ τ
)

+ 1− Φ
(
zα/2 + Ĩ1/2

γ τ
)

= α.

That this provides an upper bound for lim supn→∞ Pn,γ,hφn follows from the as-
sumption that the test is asymptotically of level α and Proposition 3.5.

Proof of Corollary 3.5. This follows from Theorem 3.1: if Σγ,21V
†
γ Σ′γ,s21 = Ĩγ and

r = 1,

lim
n→∞

Pn,γ,hnψn,θ = 1− P(χ2
1(a) > cα) = 1− P(Z2 > cα), Z ∼ N

(
Ĩ1/2
γ τ, 1

)
.

Elementary manipulations show that

1− P(Z2 > cα) = 1− Φ
(
zα/2 − Ĩ1/2

γ τ
)

+ 1− Φ
(
zα/2 + Ĩ1/2

γ τ
)
.

Proof of Theorem 3.3. π1 is valued in Hγ,1 = Rdθ / ker Ĩγ, by Lemma 3.4. It is
also surjective: for any [τ ] ∈ Rdθ / ker Ĩγ let t ∈ π−1

ker Ĩγ
({[τ ]}) where πker Ĩγ is the

quotient map between Rdθ and Hγ,1. Then π1[(t, 0)] = [t] = [τ ]. Therefore, since
Hγ,1 = Rdθ / ker Ĩγ ≈ ran Ĩγ (e.g. Roman, 2005, Theorem 3.5), dim ran π1 = r.
The codimension of ker π1 is also r since Hγ / kerπ1 ≈ ran π1 (e.g. Roman, 2005,
Theorem 3.5). By linearity and [(0, b)] ∈ kerπ1, Π[(τ, b)] = Π[(τ, 0)] + [(0, b)].
This, along with Lemma 3.4 and e.g. Theorem 2.6 in Conway (1985), yields
‖[(τ, b)]− Π[(τ, b)]‖2

γ = ‖[(τ, 0)]− Π[(τ, 0)]‖2
γ = ‖[τ ]‖2 = τ ′Ĩγτ .

Define the sets

Ma :=
{

[(τ, b)] ∈ Hγ : τ ′Ĩγτ = a
}
, M̄a :=

{
[(τ, b)] ∈ Hγ : τ ′Ĩγτ = a

}
.

Suppose that φ is a test on Gγ such that G[0]φ ≤ α, where G[h] denotes the

Gaussian measure under [h] ∈ Hγ. We first consider the case where a > 0. φ
is a level α test of K0 : {[0]} against K1 : [kerπ1]⊥ \ {[0]} in the restriction of
the standard Gaussian shift experiment on [kerπ1]⊥.61 Then by Theorem 30.2 in
Strasser (1985)

inf
[h]∈M̄a

G[h]φ ≤ inf
[h]∈M̄a∩[kerπ1]⊥

G[h]φ ≤ 1− P(χ2
r(a) ≤ cr).

We claim that clMa = Ma. The function q : Hγ → R given by q([(τ, b)]) =

61Note that [kerπ1]⊥ is a finite dimensional linear subspace (of Hγ) since it is isomorphic to
Hγ / kerπ1 which is of dimension r.
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‖[(τ, b)] − Π[(τ, b)]‖2
γ = τ ′Ĩγτ is continuous. Hence, if Ma 3 [(τn, bn)] → [(τ, b)],

τ ′Ĩγτ = a and hence clMa ⊂ Ma. For the converse, let [(τ, b)] ∈ Ma and sup-
pose that ([(τn, bn)])n∈N ⊂ Hγ converges to [(τ, b)]. Since q is continuous, an :=

q([(τn, bn)]) > 0 for all large enough n and an → a. Let [(τ̃n, b̃n)] :=
√
a√
an

[(τn, bn)]

and observe that

τ̃ ′nĨγ τ̃n = ‖[(τ̃n, b̃n)]−Π[(τ̃n, b̃n)]‖2
γ =

a

an
‖[(τn, bn)]−Π[(τn, bn)]‖2

γ =
a

an
q([(τn, bn)]) = a,

and [(τ̃n, b̃n)]→ [(τ, b)]. Thus Ma ⊂ clMa. Hence clMa = Ma. Since [h] 7→ G[h]φ
is continuous, by the preceding display we have:62

inf
[h]∈Ma

G[h]φ = inf
[h]∈M̄a

G[h]φ ≤ 1− P(χ2
r(a) ≤ cr). (47)

For the case where a = 0, note that [0] ∈ M0 and therefore, since φ is of level
α,

inf
[h]∈M0

G[h]φ ≤ G[0]φ ≤ α = 1− P(χ2
r(0) ≤ cr). (48)

Fix a ≥ 0 and let R := 1− P(χ2
r(a) ≤ cr). Let πn(h) := Pn,γ,hφn and suppose

that for some ε > 0,

lim sup
n→∞

inf
{
Pn,γ,hφn : h = (τ, b) ∈ Hγ, τ

′Ĩγτ = a
}
≥ R+ ε.

It immediately follows that

lim sup
n→∞

inf
{
πn(h) : h = (τ, b) ∈ H̃γ, τ

′Ĩγτ = a
}
≥ R+ ε,

and so, for some subsequence (nm)m∈N,

lim
m→∞

inf
{
πnm(h) : h = (τ, b) ∈ H̃γ, τ

′Ĩγτ = a
}
≥ R+ ε.

Since [0, 1]Hγ is compact in the product topology, there is a subnet (nm(s))s∈S of
(nm)m∈N and a function π : Hγ → [0, 1] such that lims∈S πnm(s)

(h) = π(h) for all
h ∈ Hγ. Take any h such that [h] ∈ Ma and note that the preceding display
implies that

π(h) = lim
s∈S
πnm(s)

(h) ≥ lim
s∈S

inf
{
πnm(s)

(h) : h = (τ, b) ∈ H̃γ, τ
′Ĩγτ = a

}
≥ R+ ε.

(49)
By Proposition 3.2, En,γ  Eγ where the latter is dominated and hence by

Theorem 7.1 in van der Vaart (1991) there is a test φ in Eγ with power function
π. Now consider the restriction of Gγ to [ker π1]⊥. By hypothesis, Corollary S2.1

62The continuity of the indicated map follows from the fact that Gaussian shift experiments are
continuous in the total variation norm.
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and Proposition 3.3

G[0]φ = Pγ,0φ = π(0) = lim
s∈S
πnm(s)(0) ≤ lim supπn(0) ≤ α.

Hence φ is a test of level α of K0 against K1 in this experiment, and

inf
[h]∈Ma

G[h]φ = inf
h:[h]∈Ma

Pγ,hφ = inf
h:[h]∈Ma

π(h) ≥ R+ ε,

by (49) and Proposition 3.3, but this contradicts either (47) if a > 0 or (48) if
a = 0.

Proof of Corollary 3.6. Equation (16) follows from Theorem 3.1, since r > 0 and

a = τΣ′γ,21V
†
γ Σγ,21τ = τ Ĩγτ.

For the second part, let fn(h) := Pn,γ,hψn,θ. By the pointwise convergence given
in equation (16) and the asymptotic equicontinuity assumption,

lim
n→∞

fn(h) = 1− P
(
χ2
r

(
τ ′Ĩγτ

)
≤ cr

)
=: f(h),

uniformly on Ka. We may conclude that for any sequence hn → h ∈ Ka,

lim
n→∞

fn(hn) = f(h) ≥ f? := 1− P
(
χ2
r (a) ≤ cr

)
. (50)

In light of the preceding lower bound, if (17) does not hold, there must exist a
sequence hn ∈ Ka such that lim supn→∞ fn(hn) < f?. Since Ka is compact, there
is a subsequence hnm → h ∈ Ka. Embed this into a full sequence as h∗m := hn1 for
m = 1, . . . , n1 and h∗m := hnk for nk ≤ m < nk+1. Then fnm(hnm) is a subsequence
of fm(h∗m) and h∗m → h, so by (50)

lim
m→∞

fnm(hnm) = lim
m→∞

fm(h∗m) = f(h) ≥ f?,

which contradicts lim supn→∞ fn(hn) < f?.

Proof of Lemma 3.6. By asymptotic equicontinuity of h 7→ Qn,γ,h on K, one has
for any hn → h (through K) that δ(Qn,γ,hn , Qn,γ,h) → 0 as n → ∞ and by
the asymptotic equicontinuity of h 7→ Pn,γ,h(r̂n,θ = r) (on K) one has that

|Pn,γ,h(r̂n,θ = r) − Pn,γ,hn(r̂n,θ = r)| → 0. Since r̂n,θ
Pn,γ,h−−−→ r (Assumption 3.3

(iii) and Remark 3.1), it follows that also r̂n,θ
Pn,γ,hn−−−−→ r. Hence, under Pn,γ,hn ,

Ŝn,θ − cn  S − cr, S ∼ χ2
r(a) =⇒ Pn,γ,hnψn,θ → 1− P(χ2

r(a) ≤ cr) =: π(a),

by Proposition 3.1 where a = τ ′Ĩγτ , h = (τ, b). Therefore,

|Pn,γ,hnψn,θ − Pn,γ,hψn,θ| ≤ |Pn,γ,hnψn,θ − π(a)|+ |Pn,γ,hψn,θ − π(a)| → 0,
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by Corollary 3.6 (cf. equation (16)), implying the required asymptotic equiconti-
nuity on K.

Proof of Theorem 3.4. Denote by G γ the Gaussian shift on Hγ. We will first
consider minimising the regret

R̃(φ) := sup
{
π̃?([h])−G[h]φ : [h] ∈ Hγ \ kerπ1

}
, π̃?([h]) := sup

ϕ∈C̃
G[h]ϕ

where C̃ is the class of level–α tests of [h] ∈ kerπ1 against [h] /∈ kerπ1 in Gγ.
Consider the Neyman – Pearson test, ψ?, of [g] ∈ kerπ1 against [g]+ [h], where

[h] ∈ [kerπ1]⊥ in G γ. This test rejects when

exp

(
Z[g + h]− Z[g]− 1

2
‖[g + h]‖2

γ +
1

2
‖[g]‖2

γ

)
= exp

(
ZΠ⊥[h]− 1

2
‖Π⊥[h]‖2

γ

)
> k,

for a k chosen such that the test is of level α and where Z is the central process of
G γ (and thus a standard Gaussian process under G[0]). The choice of k does not
depend on the [g] ∈ kerπ1 and the power of this test depends only on ‖Π⊥[h]‖2

γ =

τ ′Ĩγτ where π1[h] = [τ ].
Now let [h] ∈ Hγ \kerπ1 and consider testing K1 : [h] against K0 : [h] ∈ kerπ1.

One has [h] = [g]+Π⊥[h] where [g] = Π[h] ∈ kerπ1. By the preceding observations,
ψ? is a most powerful level-α test for this hypothesis.63 Thus ψ? ∈ C̃ and

π̃?([h]) := sup
φ∈C̃

G[h]φ = G[h]ψ
?. (51)

For i = 1, . . . , dθ, let ui := Π⊥[(ei, 0)] and let X := (Zu1, . . . , Zudθ)
′. Let ψ be the

test which rejects when (
X ′Ĩ†γX

)2

> cr,

for cr the 1 − α quantile of a χ2
r random variable. By Theorem 69.10 in Strasser

(1985)
X ∼ N (Ĩγτ, Ĩγ) under G[h], where [τ ] = π1[h].

Therefore, by e.g. Theorem 9.2.3 in Rao and Mitra (1971),

G[h]ψ = 1− P(χ2
r(a) ≤ cr), a = τ ′Ĩγτ = ‖Π⊥[h]‖2

γ.

As both G[h]ψ
? and G[h]ψ depend only on ‖Π⊥[h]‖2

γ the same is true of G[h]ψ
? −

G[h]ψ. Fix a ε > 0 and suppose that for some test φ ∈ C̃, R̃(φ) < R̃(ψ) − 2ε.
There is an a > 0 such that

sup
{
G[g+h]ψ

? −G[g+h]ψ : [h] ∈ [kerπ1]⊥, ‖[h]‖2
γ = a

}
≥ R̃(ψ)−ε, for all [g] ∈ kerπ1.

63Suppose there were another level α test φ of K0 against K1, with strictly higher power than
ψ?. Then, this would also be a test of level α for [g] against Π⊥[h]. But this would contradict
the Neyman – Pearson Lemma (e.g. Lehmann and Romano, 2005, Theorem 3.2.1).
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In consequence, for all [g] ∈ kerπ1 and all [h] ∈ Sa := {[h] ∈ [kerπ1]⊥ : ‖[h]‖2
γ = a},

G[g+h]ψ
? −G[g+h]φ ≤ R̃(ψ)− 2ε ≤ G[g+h]ψ

? −G[g+h]ψ − ε,

hence
inf

[h]∈Sa
G[h]φ ≥ inf

[h]∈Sa
G[h]ψ + ε = 1− P(χ2

r(a) ≤ cr) + ε,

which contradicts Theorem 30.2 in Strasser (1985).
To complete the proof, it suffices to show that a test ϕ : Ω → [0, 1] is in C if

and only if it is in C̃ and R(ϕ) = R̃(ϕ). The first part follows from the observation
h ∈ Hγ,0 if and only if [h] ∈ kerπ1 and Proposition 3.3 which implies that for any
h ∈ Hγ, Pγ,hϕ = G[h]ϕ. For the second part, (51), Proposition 3.3 and the first
part together imply that π̃?([h]) = π?(h) for all h ∈ Hγ. Therefore,

π̃?([h])−G[h]ϕ = π̃?(πV (h))−GπV (h)ϕ = π?(h)− Pγ,hϕ, h ∈ Hγ.

Since h ∈ Hγ,1 if and only if [h] ∈ Hγ \ kerπ1, one therefore has

R̃(ϕ) = sup{π̃?([h])−G[h]ϕ : [h] ∈ Hγ\kerπ1} = sup{π?(h)−Pγ,hϕ : h ∈ Hγ,1} = R(ϕ).

Proof of Proposition 3.4. Let π be a cluster point of πn. Then π = lims∈S πn(s)

for some subnet (πn(s))s∈S of (πn)n∈N. That is, lims∈S πn(s)(h) = π(h) for each
h ∈ Hγ. Hence by Proposition 3.2 and Theorem 7.1 in van der Vaart (1991) there
is a test φ in Eγ such that Pγ,hφ = π(h). It follows from the hypothesis that φ is
of level α. The result follows from Theorem 3.4.

Proof of Proposition 3.5. Let h ∈ Hγ be the element along which the conclusion
is to be shown. By equation (44), if r = 0 then ‖[h] − Π[h]‖γ = 0, i.e. [h] =
Π[h] ∈ kerπ1. Therefore there is a h∗ := (0, b) ∈ Hγ,0 such that ‖h−h∗‖γ = 0. By
Corollary S2.1 and the hypothesis, it follows that

lim supPn,γ,hφn ≤ lim sup
n→∞

Pn,γ,h∗φn + lim sup
n→∞

|Pn,γ,h∗φn − Pn,γ,hφn| ≤ α.

Proof of Theorem 3.5. As orthogonal projection operators are idempotent and
self-adjoint,

Ĩn := Pn[˜̀n ˜̀′
n] = Pn[ ˙̀

n
˜̀′
n].

Define Kn(h, g) := Pn,γ[∆n,γh∆n,γg] and let Gn be a zero-mean Gaussian process
with covariance kernel Kn. We will first show that

Ĩn,ij = E
[
Gn(ei, 0)G̃n(ej, 0)

]
, (52)

where
G̃n(ej, 0) := Gn(ej, 0)− E [Gn(ej, 0)|{Gn(0, b) : b ∈ B}] . (53)

For (52), let Zn be defined as Zn(∆n,γh) := Gnh. Zn is evidently linear. It is

also bounded as ‖Zn(∆n,γh)‖ = ‖Gnh‖ =
√
Kn(h, h) = ‖∆n,γh‖. Hence we may
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extend this map by continuity to a bounded linear map Zn : cl{∆n,γh : h ∈
H} → cl{Gnh : h ∈ H}. Zn is surjective: let G = limm→∞ Gnhm. Then, setting
D = limm→∞∆n,γhm ∈ cl{∆n,γh : h ∈ H}, G = Zn(D) by continuity. Finally, for
any h, g ∈ Hγ we have

Pn [∆n,γh∆n,γg] = Kn(h, g) = E [GnhGng] = E [Zn(∆n,γh)Zn(∆n,γg)] ,

and the same holds for elements in the closure by continuity. Hence Zn is a Hilbert
space isomorphism. Let R be the orthogonal projection onto {Gn(0, b) : b ∈ B}⊥
and Q the orthogonal projection onto {∆n,γ(0, b) : b ∈ B}⊥. For h ∈ Hγ one has

RGnh = RZn(∆n,γh) = ZnQZ
−1
n Zn(∆n,γh) = ZnQ∆n,γh.

This extends to elements in the closure by continuity. Hence

Ĩn,ij = Pn [∆n,γ(ei, 0)Q∆n,γ(ej, 0)] = E [Gn(ei, 0)RGn(ej, 0)] . (54)

By Theorem 9.1 in Janson (1997),

E [Gn(ej, 0)|{Gn(0, b) : b ∈ B}] = Π [Gn(ej, 0)|cl {Gn(0, b) : b ∈ B}] , (55)

and so G̃n(ej, 0) = RGn(ej, 0). Combining this with (54) yields (52). Now put
Gn := σ({Gn(0, b) : b ∈ B}), Gn := σ({G(0, b) : b ∈ B}) and define

Xn := (Gn(ei, 0),E[Gn(ej, 0)|Gn]) , X := (G(ei, 0),E[G(ej, 0)|G ]) .

By (55) and Kn(h, h) → Kγ(h, h) (by Assumption 3.1, cf. Lemma 3.3), (Xn)n∈N
is a sequence of Gaussian random variables with bounded second moment and so
uniformly square integrable. Given this and Lemma 3.5, to complete the proof it
suffices to show that Xn  X. In the present setting this follows from Theorem
S2.2 in the supplementary material.

Proof of Lemma 3.8. We have that P n
γ

(
∆n,γh, g

′
n,γ

)
= 0 and since the observa-

tions are i.i.d.,

P n
γ

(
∆n,γh, g

′
n,γ

)′ (
∆n,γh, g

′
n,γ

)
= P n

γ

[
[∆n,γh]2 [∆n,γh]g′n,γ
gn,γ[∆n,γh] gn,γg

′
n,γ

]
= Pγ

[
[Aγh]2 [∆n,γh]g′θ,λ

gθ,λ[∆n,γh] gθ,λg
′
θ,λ

]
= Pγ

[
[Aγh]2 τ ′ ˙̀γg

′
θ,λ

gθ,λ ˙̀′
γτ gθ,λg

′
θ,λ

]
=: Σγ(h),

where the second to last equality is due to gγ ∈ {Dγb : b ∈ Bη}⊥. Since the
observations are i.i.d., for each h ∈ Hγ, the weak convergence(

∆n,γh, g
′
n,γ

) Pnγ
 N (0,Σγ(h)),
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follows by the central limit theorem.

Proof of Corollary 3.7. By construction gγ ∈ {Dγb : b ∈ Bη}⊥. Apply Lemma
3.8.

Proof of Corollary 3.8. By properties of orthogonal projections Pγ[ ˙̀
γg
′
θ,λ] = Pγ[gθ,λg

′
θ,λ]

(e.g. Theorem 12.14 in Rudin, 1991). Hence, given the expression for Σγ(h) in
the proof of Lemma 3.8, we need show only that Pγ[gθ,λg

′
θ,λ] = Ĩγ. For any

hi = (τi, bi) ∈ Hγ, i = 1, 2, by the i.i.d. assumption

Pn,γ[∆n,γh1∆n,γh2] = Pγ [Aγh1Aγh2] ,

which is constant in n. In conjunction with Lemma 3.3, this implies that for each
n ∈ N,

Pγ [Aγh1Aγh2] = P[∆γh1∆γh2].

Let X = cl ranAγ ⊂ L2(Pγ) and Y = cl ran ∆γ ⊂ L2(P); these are Hilbert spaces
when equipped with the inner products induced by the left and right hand side
of the preceding display respectively.64 Define the map U : ranAγ → ran ∆γ by
UAγh := ∆γh for h ∈ Hγ. This is evidently a bounded, linear, surjective isometry.
It can therefore be uniquely extended to a bounded, linear, surjective isometry
U : X → Y , i.e. U is a Hilbert space isomorphism between X and Y . Hence, if
R is the orthogonal projection onto T ⊥ (defined in Lemma 3.5) and Q that onto
{Dγb : b ∈ Bη}⊥ = {Aγh : h = (0, b) ∈ Hγ}⊥, one has

R∆γh = RUAγh = UQU∗UAγh = UQAγh,

which implies the required conclusion since the i-th element of ˙̀
γ is Aγ(ei, 0).65

B Tables & figures

B.1 Single index model

Table 4: Index functions used in the simulation exeriments

name expression c1 c2 c3

Exponential fj(v) = 5 exp(−v2/2c2j ) 1.25 2 4
Logistic fj(v) = 25(1 + exp(−v/cj))−1 0.75 3 12

64Where, as usual, we identify a.s. equal functions.
65Cf. the last step in the proof of Lemma 3.5.
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Table 5: ERF (%) ε ∼ N (0, 1), fj(v) = 5 exp(−v2/2c2
j )

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 5.86 5.58 5.64 5.30 5.14 4.64
600 5.60 5.50 5.36 5.76 5.66 5.14
800 5.58 5.32 5.42 5.70 5.62 5.56

Wald

400 14.64 23.16 13.80 14.52 18.72 13.22
600 12.18 23.34 13.94 11.84 16.92 12.78
800 11.26 19.70 14.44 10.70 16.44 11.48

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.

Table 6: ERF (%) ε ∼ N (0, 1), fj(v) = 25 (1 + exp(−v/cj))−1

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 5.32 5.16 5.16 6.02 5.52 5.32
600 5.32 5.44 5.34 5.62 5.36 5.26
800 5.12 5.26 5.20 5.66 5.42 5.40

Wald

400 7.36 12.94 12.90 8.40 11.56 9.10
600 6.54 10.74 15.76 6.64 9.36 9.30
800 5.88 9.24 16.92 6.42 8.46 12.38

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−1, 1) are independently drawn.
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Figure 1: ERF (%) ε ∼ N (0, 1), fj(v) = 5 exp(−v2/2c2
j )
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Based on 5000 Monte carlo replications. The Zk ∼ U(−1, 1) are independently drawn.

Figure 2: ERF (%) ε ∼ N (0, 1), fj(v) = 25 (1 + exp(−v/cj))−1
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Based on 5000 Monte carlo replications. The Zk ∼ U(−1, 1) are independently drawn.
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Table 7: ERF (%) ε ∼ N (0, 1), index function as in (S35)

X = (Z1, Z2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8)

n f1 f2 f3 f1 f2 f3

Ŝ

400 6.26 5.90 5.82 6.62 6.60 6.52
600 5.82 4.98 5.30 6.46 5.34 5.06
800 5.82 5.20 4.98 5.98 5.60 5.36

Wald

400 13.18 8.54 3.88 13.78 8.28 4.18
600 10.42 6.66 2.32 12.22 7.22 2.50
800 10.40 6.72 1.26 11.94 6.78 1.26

Notes: Based on 5000 Monte carlo replications. The Zk ∼
U(−3/2, 3/2) are independently drawn.

Figure 3: ERF (%) ε ∼ N (0, 1), index function as in (S35), X = (Z1, Z2)
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Based on 5000 Monte carlo replications. The Zk ∼ U(−3/2, 3/2) are independently drawn.
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B.2 IV model

Table 8: Index functions used in the simulation exeriments

name expression c1 c2 c3

Exponential πj(z) = 5 exp(−z2/2c2j ) 1.250 2.000 4.00
Logistic πj(z) = 25(1 + exp(−z/cj))−1 0.296 2.667 24.00
Linear πj(z) = cjz 1.000 0.300 0.09

The cj for the logistic functions correspond to cj = 72/3(7−2j).

Figure 4: πj(z) = 5 exp(−z2/2c2
j)
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Table 9: Empirical rejection frequencies, IV, Design 1

Ŝ AR TSLS W GMM W GMM LM

n j OLS k = 6 AIC BIC

Exponential

200 1 0.74 5.78 5.78 5.70 4.98 4.94 8.04 5.56
200 2 0.24 6.16 6.16 6.20 4.98 12.20 13.58 6.10
200 3 0.04 6.14 6.14 6.38 4.98 30.36 58.44 19.48

400 1 0.12 5.18 5.18 5.08 5.30 4.86 6.24 5.32
400 2 0.02 5.74 5.74 5.60 5.30 11.36 8.66 5.30
400 3 0.00 3.18 3.18 3.72 5.30 30.72 35.98 12.92

600 1 0.04 5.30 5.30 5.30 5.36 5.40 6.00 5.32
600 2 0.00 5.50 5.50 5.40 5.36 12.18 7.54 5.70
600 3 0.00 2.14 2.14 2.64 5.36 30.92 28.02 10.94

Logistic

200 1 4.74 5.00 5.00 4.52 4.98 4.94 4.92 5.20
200 2 4.74 4.74 4.74 4.78 4.98 4.98 5.64 5.36
200 3 2.24 6.80 6.80 6.92 4.98 7.76 40.42 15.24

400 1 5.18 4.86 4.60 4.54 5.30 5.36 5.10 4.98
400 2 5.18 5.04 5.04 5.00 5.30 5.10 5.50 5.24
400 3 2.28 4.26 4.26 4.62 5.30 5.92 23.88 10.52

600 1 5.34 5.46 5.30 4.76 5.36 5.28 5.14 5.60
600 2 5.34 5.46 5.46 5.44 5.36 5.54 6.00 5.48
600 3 2.68 3.68 3.68 3.92 5.36 6.30 18.82 9.42

Linear

200 1 4.74 5.32 5.32 5.50 4.98 4.64 8.56 5.60
200 2 2.28 7.04 7.04 7.06 4.98 6.88 33.46 12.68
200 3 0.14 4.66 4.66 5.28 4.98 15.12 89.54 46.52

400 1 5.18 5.32 5.32 5.32 5.30 5.16 6.52 5.44
400 2 2.36 5.08 5.08 5.18 5.30 5.42 19.74 8.88
400 3 0.02 1.12 1.12 2.08 5.30 10.92 78.72 37.06

600 1 5.34 5.58 5.58 5.62 5.36 5.42 7.00 6.18
600 2 2.86 4.30 4.30 4.62 5.36 6.08 15.52 8.58
600 3 0.00 0.28 0.28 0.66 5.36 10.68 69.00 31.44

Notes: Based on 5000 Monte carlo replications. All Ŝ tests except “OLS” use Leg-
endre polynomials to estimate π.
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Figure 5: πj(z) = 25(1 + exp(−z/cj))−1
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Figure 6: πj(z) = cjz
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Table 10: Empirical rejection frequencies, IV, Design 2, π1,j = π2,j

Ŝ AR TSLS W GMM W GMM LM

n j OLS k = 3 AIC BIC

Exponential

200 1 3.62 4.88 4.80 4.90 5.28 3.94 21.40 9.32
200 2 2.28 5.44 5.40 5.14 5.28 13.16 49.92 17.62
200 3 0.92 5.50 5.46 5.06 5.28 36.94 99.40 76.08

400 1 0.64 4.82 4.82 4.64 5.20 3.84 13.22 7.16
400 2 0.14 4.96 4.96 4.82 5.20 12.12 27.84 12.14
400 3 0.02 6.48 6.48 5.68 5.20 35.00 95.40 59.42

600 1 0.22 4.64 4.64 4.80 5.34 4.04 9.48 6.24
600 2 0.00 5.04 5.04 5.08 5.34 13.04 19.12 9.08
600 3 0.00 6.34 6.34 6.24 5.34 36.68 88.00 48.02

Logistic

200 1 5.06 4.56 1.86 2.42 5.28 5.40 6.22 5.46
200 2 5.06 4.52 4.56 4.56 5.28 5.50 9.06 5.92
200 3 4.56 5.16 5.14 4.84 5.28 8.72 95.36 60.26

400 1 5.00 5.14 3.34 3.12 5.20 5.30 5.98 5.58
400 2 5.00 4.78 4.78 4.80 5.20 5.40 6.58 5.64
400 3 4.52 6.16 6.16 5.80 5.20 7.42 79.14 42.14

600 1 5.04 4.40 3.64 3.32 5.34 5.30 5.24 5.16
600 2 5.04 4.82 4.82 4.54 5.34 5.10 6.40 5.20
600 3 4.12 5.94 5.94 5.62 5.34 6.94 63.94 32.82

Linear

200 1 5.06 4.92 4.90 4.68 5.28 5.28 20.86 9.42
200 2 4.14 5.02 4.98 4.80 5.28 8.28 90.42 49.82
200 3 2.38 5.74 5.78 5.34 5.28 15.28 99.98 95.46

400 1 5.00 5.04 5.04 4.68 5.20 5.30 12.34 7.38
400 2 4.30 5.78 5.78 5.60 5.20 6.94 68.50 34.12
400 3 0.34 6.92 6.92 6.20 5.20 12.16 99.96 91.84

600 1 5.04 4.98 4.98 4.72 5.34 5.22 10.08 6.88
600 2 3.86 5.58 5.58 5.30 5.34 6.52 53.24 26.44
600 3 0.00 6.04 6.04 5.58 5.34 11.34 99.78 88.42

Notes: Based on 2500 Monte carlo replications. k = 3 indicates that each univariate
series forming the tensor series has k = 3.
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Table 11: Empirical rejection frequencies, IV, Design 2, π2,j = cjZ2,2

Ŝ AR TSLS W GMM W GMM LM

n j OLS k = 3 AIC BIC

Exponential

200 1 4.88 4.74 4.68 4.66 5.28 5.10 24.60 11.38
200 2 4.14 5.54 5.44 4.90 5.28 12.00 85.52 44.02
200 3 1.40 5.24 5.22 4.94 5.28 29.20 99.94 92.38

400 1 5.26 4.98 4.98 4.96 5.20 4.76 15.06 8.42
400 2 3.70 5.62 5.62 5.36 5.20 11.30 61.32 28.94
400 3 0.06 6.56 6.56 5.88 5.20 26.64 99.68 86.80

600 1 4.84 4.64 4.64 4.22 5.34 5.02 11.64 7.10
600 2 3.48 5.64 5.64 5.40 5.34 11.72 47.58 23.32
600 3 0.00 6.40 6.40 5.80 5.34 27.80 99.22 82.16

Logistic

200 1 5.06 4.80 3.38 3.64 5.28 5.26 17.16 8.88
200 2 5.62 5.54 5.58 5.28 5.28 7.88 78.96 39.44
200 3 4.52 5.30 5.30 5.04 5.28 14.74 99.80 86.88

400 1 5.00 5.22 4.40 4.12 5.20 5.14 10.62 7.22
400 2 5.80 5.90 5.90 5.70 5.20 6.70 54.62 25.14
400 3 4.00 6.28 6.28 5.94 5.20 11.84 99.04 80.50

600 1 5.04 4.68 4.22 3.86 5.34 5.24 9.10 6.42
600 2 5.92 5.26 5.26 4.96 5.34 6.24 42.44 21.60
600 3 3.72 6.32 6.32 5.88 5.34 11.34 97.44 74.64

Linear

200 1 5.06 4.92 4.90 4.68 5.28 5.28 20.86 9.42
200 2 4.14 5.02 4.98 4.80 5.28 8.28 90.42 49.82
200 3 2.38 5.74 5.78 5.34 5.28 15.28 99.98 95.46

400 1 5.00 5.04 5.04 4.68 5.20 5.30 12.34 7.38
400 2 4.30 5.78 5.78 5.60 5.20 6.94 68.50 34.12
400 3 0.34 6.92 6.92 6.20 5.20 12.16 99.96 91.84

600 1 5.04 4.98 4.98 4.72 5.34 5.22 10.08 6.88
600 2 3.86 5.58 5.58 5.30 5.34 6.52 53.24 26.44
600 3 0.00 6.04 6.04 5.58 5.34 11.34 99.78 88.42

Notes: Based on 2500 Monte carlo replications. k = 3 indicates that each univariate
series forming the tensor series has k = 3.
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Figure 7: πi exponential with j = 1 (i = 1, 2)
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Figure 8: π1 exponential with j = 1, π2 exponential with j = 3
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Figure 9: π1 exponential with j = 3, π2 exponential with j = 3
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Figure 10: πi logistic with j = 1 (i = 1, 2)
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Figure 11: π1 logistic with j = 1, π2 logistic with j = 3
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Figure 12: π1 logistic with j = 3, π2 logistic with j = 3
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Figure 13: πi linear with j = 1 (i = 1, 2)
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Figure 14: π1 linear with j = 1, π2 linear with j = 3
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Figure 15: π1 linear with j = 3, π2 linear with j = 3
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